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Abstract17

This paper deals with the real-time implementation of feedback controllers. In particular, it provides18

an analysis of the stability property of closed-loop systems that include a controller that can19

sporadically miss deadlines. In this context, the weakly hard m-K computational model has been20

widely adopted and researchers used it to design and verify controllers that are robust to deadline21

misses. Rather than using the m-K model, we focus on another weakly-hard model, the number of22

consecutive deadline misses, showing a neat mathematical connection between real-time systems23

and control theory. We formalise this connection using the joint spectral radius and we discuss how24

to prove stability guarantees on the combination of a controller (that is unaware of deadline misses)25

and its system-level implementation. We apply the proposed verification procedure to a synthetic26

example and to an industrial case study.27
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1 Introduction41

The contribution of this paper is a verification procedure to prove the robustness of controller42

implementations to deadline misses. For this task, literature contributions focus on the43

computation model where the control task can miss at most m deadlines in a window of K44
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1:2 Control-System Stability under Consecutive Deadline Misses Constraints

activations (i.e., them-K model). This was one of four proposed models [3] to analyse systems45

with deadline misses. In this paper we show that there is a natural analytical connection46

between another of these four models, the number of maximum consecutive deadline misses,47

and control-theoretical tools that can be used to prove properties of closed-loop systems,48

such as stability.49

Historical Perspective: During the past couple of decades the real-time systems community50

made an effort in formalising requirements, models, and algorithms to handle systems that51

can (sporadically) miss deadlines. In this quest, Hamdaoui and Ramanathan analysed tasks52

that behave according to the (m, k) model [18]. With this model, tasks can be modelled53

as sequences of jobs. In every set of k consecutive jobs, at least m jobs must meet their54

deadline. This model was analysed, finding schedulability conditions and scheduling schemes,55

e.g., [35]. Building on the ideas from this research, the weakly hard model of computation56

was formalised [3]. A weakly hard real-time system is a system in which the distribution of57

deadline misses and hits during a window of time is precisely bounded.58

Bernat, Burns and Liamosí [3] give four possible definitions for a weakly hard task τ .59

1. τ `
(
n
m

)
, with 1 ≤ n < m: According to this definition, for each set of m consecutive60

deadlines, τ meets at least n of them. With a slight difference in notation, this model61

corresponds to the (m, k) model by Hamdaoui and Ramanathan [18].62

2. τ `
〈
n
m

〉
, with 1 ≤ n < m: Here, the system guarantees that for each set of m consecutive63

deadlines, τ meets consecutively n of them.64

3. τ `
(
n
m

)
, with 1 ≤ n < m: This is the dual definition with respect to the first one. In65

this case, the system guarantees that for each set of m consecutive deadlines, τ misses at66

most n of them.67

4. τ ` 〈n〉, n ≥ 1: According to this definition the maximum number of consecutive deadline68

misses that τ can experience is n.169

The third of these models gained traction in the research community, and the term weakly-70

hard task started to indicate a task that can experience a bounded number of misses in a71

window of jobs. In particular, with a slightly confusing terminology, this third model is also72

often called the m-K model.2 This specifies that a task can experience at most m misses in73

a window of K consecutive jobs [1, 9, 10,12,14,19,20,33,34,41–43].74

The m-K Model for Control Tasks: In the attempt to achieve computing and control co-75

design, both schedulability results like [43] and analysis using model checking [12] have been76

investigated. The research community contributed with criteria to determine stability [5],77

determine convergence rates [14], and to design controllers in the presence of deadline78

misses [29]. Furthermore, the performance cost of deadline misses was investigated [34,44],79

together with the role of the strategy used to handle the misses [33, 41], i.e., killing the task80

or allowing its continuation with different policies for the following iteration. The general81

consensus is that sequences of misses and hits (i.e., the m-K model) are to be considered82

and analysed to determine physical properties of the system.83

Contribution: In this paper we use the τ ` 〈n〉 model and cast the problem of verifying the84

stability of closed-loop systems into a neat mathematical framework. The solution ensures85

the stability of the combination of: (1) the physics of the plant under control and, (2) the86

1 The original definition was τ `
〈

n
m

〉
, with 1 ≤ n < m. However, according to [3, Theorem 4] there is no

need to specify the window size, i.e., the task τ can be equivalently defined using any window, hence we
use τ ` 〈n〉.

2 Notice the difference between the (m, k) model (that stated that there were m hits for every sequence
of k consecutive jobs, with 1 ≤ m < k) and the m-K model (that imposes that there are at most m
misses in every window of K jobs, with 1 ≤ m < K).
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execution of the controller (that may miss deadlines). We believe that the τ ` 〈n〉 model is87

as relevant as the m-K model from the industrial standpoint.88

In fact, in industrial products, deadline misses are often caused by transient overload89

periods or faults. In many industrial applications, a system load of over 80% is targeted90

for cost reasons. Such a high system load can usually not be achieved with purely formal91

methods that are based on worst-case considerations, especially on multi-core platforms.92

For this reason, many industrial systems are designed for average runtimes plus a safety93

margin, in conjunction with rate monotonic scheduling. Our experience is that, following94

this practical approach in contrast to analytical ones, deadline violations may occur, e.g.,95

due to a transient interrupt load. During these transient periods the miss ratio often is96

quite high, making the number of consecutive misses a very relevant indicator of the system97

performance. We argue that methods that evaluate and prove the robustness of controllers98

to deadline violations in this setup are of high industrial interest.99

Outline: In the remainder of this paper we will recap the necessary control background100

and then provide our contribution. In particular, Section 2 explains how a plant is modelled101

and how a state feedback controller is applied to regulate the plant’s behaviour. Section 3102

describes the strategies that are typically used to handle deadline misses and provides some103

insights on what is the best choice from the system perspective. Section 4 shows how to104

guarantee properties of closed-loop systems (like stability) in the presence of deadline misses105

with the τ ` 〈n〉 model. Section 5 shows some experimental results validating our claims.106

Finally, Section 6 presents an overview of related work and Section 7 concludes the paper.107

2 Control Background108

In this section we recap the basic concepts of control theory that are used in the rest of109

the paper. We analyse linear time-invariant models and controllers implemented as periodic110

tasks with implicit deadlines.111

Plant Model: The starting point for control design is always understanding the object that112

the controller should act upon. The control engineer obtains a model Pc of the plant to113

control. In most cases, this model is linear and time-invariant, and represents with ordinary114

differential equations the dynamics of the system in the following form.115

Pc :
{
ẋ(t) = Ac x(t) +Bc u(t)
y(t) = Cc x(t) +Dc u(t) (1)116

Here, the system state x(t) = [x1(t), . . . , xp(t)]T evolves depending on the current state and117

the input signal u(t) = [u1(t), . . . , ur(t)]T, where the superscript T indicates the transposition118

operator. We denote with p the number of state variables (i.e., the length of vector x) and119

with r the number of input variables (i.e., the length of vector u). The matrices Ac, Bc, Cc,120

and Dc encode the dynamics of the system. In the following, we will make two assumptions:121

Dc is a zero matrix of appropriate size, and Cc is the unit matrix of appropriate size.3 The122

first assumption means that the system is strictly proper and holds for almost all the physical123

models used in control. The second assumption means that the state is measurable. This124

does not always hold for real systems, but state observers can be built whenever this is not125

true [26], to estimate the state x(t).4 This means that, without losing generality, we can126

3 Ac is a p× p matrix, Bc is a p× r matrix, Cc is a p× p matrix, and Dc is a p× r matrix.
4 As a remark, if a state observer is present its dynamics should be taken into account in the analysis.

This extension only requires to augment the system state with the rows and columns corresponding to
the execution of the observer, but the analysis method remains the same.

ECRTS 2020
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represent Pc as127

ẋ(t) = Ac x(t) +Bc u(t), (2)128

and describe the system dynamics using only Ac and Bc.129

From this starting point, control systems are usually designed and realised in one of these130

two ways:131

1. The plant model Pc is used to synthesise a controller (model) Cc in continuous-time.132

Closed-loop system properties, like stability, are proven on the feedback interconnection133

of Cc and Pc. However, when the controller is implemented, digital hardware is used.134

This means that the controller model Cc has to be discretised, obtaining Cd. Cd describes135

the behaviour of Cc at given sampling instants.136

2. The model of the plant in continuous time Pc is discretised, obtaining a discrete-time137

plant model Pd. Pd describes the behaviour of Pc at given sampling instants. A controller138

Cd is designed directly in the discrete-time framework, using the discrete-time plant model139

Pd. Closed-loop properties are proven on the feedback interconnection of Cd and Pd.140

In both cases, when an object (being it the plant or the controller) is discretised, a sampling141

period π is chosen. With either design methods, we can obtain a discrete-time model of the142

plant Pd and of the controller Cd. In control theory, usually it is possible to prove properties143

of the interconnection between these two models. In particular, we use Cd rather than Cc to144

prove properties using the controller that is closer to the real implementation. However, on145

top of what is done in classical control theory, we want to take into account deadline misses.146

We discretise Pc from Equation (2). From the representation in terms of ordinary147

differential equations, we obtain the system of difference equations Pd as148

Pd : x[k+1] = Ad x[k] +Bd u[k]. (3)149

Here, k counts the sampling instants (i.e., there is a distance of π [s] between the k-th and150

the k + 1-th instant). The matrices Ad and Bd are the counterparts of Ac and Bc for the151

continuous-time system. They describe the evolution of the system in discrete-time, have the152

same dimensions of the corresponding continuous-time matrices, and their elements depend153

on the choice of the sampling period π.154

Controller Model: Once a model of the plant is available, control design can be carried155

out with many different methods. In this paper we tackle periodic controllers expressed as156

state feedback controllers, i.e., controllers that execute periodically with period π and whose157

discrete-time form is158

u[k] = Kk x[k]. (4)159

The control design problem is the problem of finding the matrix Kk that stabilises the system160

and obtains some desired properties. The state feedback formulation is more general than it161

may seem at a first glance. State feedback controllers are not purely proportional controllers,162

although their update is proportional to the state vector. It is possible to augment the state163

vector of the system – for example introducing an error term and its integral – to achieve164

controllers that are not simply proportional but contain integral action.5 Additionally, it165

5 The most widely adopted controllers in industry are the Proportional and Integral (PI) or the Propor-
tional, Integral and Derivative (PID) controllers. These controllers can be expressed in state-feedback
form (as seen later in Section 5 for a specific example), by augmenting the system state x(t) with the
difference between the desired state values and the obtained ones, i.e., the error, and its integral, or
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is possible to use pole placement [26], or to compute optimal controllers using the Linear166

Quadratic Regulator [25] formulation.167

In an industrial setting,6 many controllers are still designed assuming zero latency and168

instantaneous computation [46], i.e., assuming that it takes zero time to retrieve the sensor169

measurement from the plant, compute the control signal, and apply it. When the dynamics170

of the plant are slow and the controller is able to sample and measure signals at a reasonable171

speed, this assumption does not significantly affect the behaviour of the system. However, in172

most cases, basic properties like stability can be violated because of the computational delays173

that are introduced in the loop. The controller job that is activated at time ta completes its174

execution at time tc, where tc is in the controller period, i.e., tc ∈ (ta, ta + π], introducing a175

computational delay tc − ta.176

Due to this computational delay, in industry, it became common practice to design control177

systems following the Logical Execution Time (LET) paradigm and to synchronise input178

and output exactly to the period boundary. In this case, the control signal is computed179

within a control period and applied at the beginning of the next period. This enhances the180

predictability of the system, allows the processor to execute other tasks without affecting the181

control properties, and ensures a consistent behaviour.182

In control terms, this means that the controller actuates its control signal computation183

with a one-step delay. Assuming that the cycle of sampling, computing, and actuating can be184

always terminated within a control period, this allows the designer to synthesise an optimal185

controller regardless of the time-varying components of the computational delay such as186

activation jitter, unpredictable interrupts, uncertain computation times [28]. The equation187

for the state feedback controller then becomes188

Cd : u[k] = K x[k−1], (5)189

where K is the designed controller. With very few exceptions, the vast literature on control190

design assumes that the deadlines to compute control signals are always met. Recently,191

Linsenmayer and Allgöwer started to connect the theory of m-K real-time systems (i.e., the192

τ `
(
m
K

)
model) with control design [29], showing that it is in some cases possible to design a193

state feedback controller that is robust (i.e., guarantees stability) to deadline misses. In this194

paper we will connect the amount of possible consecutive deadline misses (i.e., the τ ` 〈n〉195

model) to the analysis of stability as a control design property.196

Feedback Interconnection: Assume there are no deadline misses. In this case, we can197

plug the value of u[k] obtained from Equation (5) into the plant Equation (3), obtaining198

x[k+1] = Ad x[k] +BdK x[k−1]. (6)199

To analyse the closed-loop system, we define a new state variable x̃[k] = [xT[k], x
T
[k−1]]T (the200

superscript T indicates the result of the transposition operator). We recall that p denotes201

the order of the system (i.e., the number of state variables in vector x[k]). Using the new202

sum, over time. There is a small difference between the controller expressed in state-feedback form
and the controller expressed as a state-space system. In the first case, when the controller misses its
deadline, the update function for the state is still executed (as it is now part of the system equation). It
is however possible to generalise the findings in this paper to handle controllers in state-space form.

6 In fact, a survey published in 2001 by Honeywell [11] states that 97% of the existing industrial controllers
are PI controllers and use no delay compensation. This does not mean that the control community has
not developed solutions to properly address delays in the control design. It simply means that in many
industrial settings the design is still simple and limited to considering the computation instantaneous.

ECRTS 2020
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state variable x̃[k], Equation (6) can be rewritten as203

x̃[k+1] =
[
x[k+1]
x[k]

]
=
[
Ad BdK

Ip 0p×p

]
︸ ︷︷ ︸

A

[
x[k]
x[k−1]

]
= A x̃[k], (7)204

where Ip and 0p×p are respectively the identity matrix and the zero matrix of size of the205

number of state variables p.206

Stability: A discrete-time linear time-invariant system is asymptotically stable if and only if207

all the eigenvalues of its state matrix are strictly inside the unit disk. For the system shown208

in Equation (7), this means that the eigenvalues of A should have magnitude strictly less209

than one.210

Another way of formulating the stability requirement uses the concept of spectral radius211

ρ(A). The spectral radius is defined as the maximum magnitude of the eigenvalues of A. If212

we denote with {λ1, ..., λn} the set of eigenvalues of A, this means213

ρ(A) = max {|λ1|, . . . , |λn|} . (8)214

Requiring that all the eigenvalues have magnitude strictly less than one is equivalent to215

stating that the spectral radius of the A matrix should be less than 1.216

This only proves the stability of the system in absence of deadline misses. However, we217

are aware that sporadic misses can occur, either due to faults [16] or to the chosen period π218

not satisfying the requirement of worst-case response time for the controller task τ being less219

than the controller period [12,33,34].220

3 Deadline Miss221

In order to properly analyse the closed-loop system properties when deadlines can be missed,222

it is necessary to define a model of how the system reacts to deadline misses. There are223

two aspects of this reaction: (i) what is the chosen control signal when a miss occurs [29],224

and (ii) how is the operating system treating the job that missed the deadline [33]. In the225

remainder of this section, suppose that in the k-th iteration the controller task τ did not226

complete its execution before the deadline, i.e., it does not complete its computation before227

time (k + 1)π [s]. We denote time (k + 1)π [s] with tm.228

Control Signal: At time tm, a control signal should be applied to the plant. Two alternatives229

have been identified for how to select the next control signal [29]: zero and hold.230

1. Zero: The control signal u[k+1] is set to zero.231

2. Hold: The control signal u[k+1] is unchanged, i.e., it is the previous value of the control232

signal u[k].233

The choice of these two alternatives often depends on the control goal that should be achieved.234

When a controller is designed for setpoint tracking (i.e., to ensure that the value of some235

physical quantity follows a desired profile – e.g., to have a robot follow a desired trajectory),236

the control signal is usually zero in case the measured physical quantity is equal to its setpoint.237

In this case, setting the control signal to zero means assuming that the model of the plant is238

correct and the computation does not need correction. When a controller is designed for239

disturbance rejection (i.e., to ensure that the effect of some physical disturbance is not visible240

in the measurements – e.g., to keep the altitude of a helicopter constant despite wind) then241

the control signal is usually a reflection of the effort needed to counteract the disturbance.242

In this case, holding the previous value of the control signal means making the assumption243

that the system is experiencing the same disturbance.244
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System-Level Action: The second decision to make is the choice of what to do with the245

job that missed the deadline. In this case three alternatives have been proposed [33]: kill,246

skip-next, and queue(1).247

1. Kill: At time tm the job that missed the deadline is killed and a new job is activated.248

2. Skip-next: At time tm the job that missed its deadline is allowed to continue with the249

same scheduling parameters (e.g., priority or budget) and carries on in the next period.250

The job that should have been activated at the deadline missed is not activated, and the251

next activation is set to tm + π.252

3. Queue(1): At time tm the job that missed its deadline is continued. A new job is activated253

with deadline tm + π. The two jobs share the scheduling parameters during the period254

interval [tm, tm + π]. At time tm + π, the most recent update of the control value is255

applied. If both jobs finish their computation, the control variable is set to the value256

produced by the most recently activated job (i.e., the job that started at time tm and257

was placed in the queue until the old job that missed its previous deadline finished). If258

only the first job finishes the computation the control variable is set to the value of the259

job that finished and the following one is continued in the subsequent period.260

In Section 4 we will analyse the system in all possible configurations. However, we point261

out that, from an implementation perspective, killing the control job may not be feasible262

in many industrial settings. In fact, the system has reached an inconclusive intermediate263

state. The internal state of the controller could have been updated and the system should264

implement a clean rollback of these changes. Implementing a clean rollback procedure is265

risky. Furthermore, if the lengthy computation (and subsequent deadline miss) is due to the266

received input values, it is likely that the next iteration will start from state values that are267

fairly close to the previous ones, with higher than normal risk of missing a deadline.268

We also notice that enqueuing the task could be beneficial from the control perspective,269

because a computation with most recent measurements of the state variables could be270

applied. However, the scheduling parameters for τ have most likely been tuned for one single271

control job to be executed in a period. For example, if the control task is executed using272

reservation-based scheduling, its budget is selected to match one execution. When using273

fixed-priority scheduling, the controller priority has been selected. Executing a second control274

task may create ripple effects and have a disruptive effect on lower priority tasks.275

Finally, if the deadline is missed, this means that the system is likely experiencing a276

transient overload state, which would make skip-next the best option to relieve some pressure277

from the system.278

4 System Analysis279

In this section we present our analysis of the closed-loop system with deadline misses. We280

first discuss the fundamentals of what happens from the physical perspective when a deadline281

is missed and then discuss the combinations identified in Section 3 for how the system handles282

the miss.283

Fundamentals: Here we present the general methodology that we apply to verify the stability284

of closed-loop systems with different strategies. We cast the problem into a switching-systems285

stability problem and show how real-world implementations behave.286

Within one control period, there are two possible realisations. The controller job that was287

activated at time k π can either hit or miss its deadline. Figure 1 shows the case in which no288

deadline is missed, while Figure 2 shows the behaviour of the system when a deadline miss289

occur with the hold and skip-next strategy. In the figures, we use ei to indicate the execution290

ECRTS 2020
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x(t)

Cd

u(t)

π

x[1]

x[2] x[3] x[4]

u[1]
u[2] u[3]

e1 e2 e3

t

Figure 1 System evolution in case no dead-
line is missed. The state feedback controller
Cd computes the control signal u based on
measurements of the state x.

x(t)

Cd

u(t)

π

x[1]

x[2] x[3] x[4]

u[1]
u[2] u[3] = u[2] u[4]

skipe1 e2

t

Figure 2 System evolution in case of a dead-
line miss with the hold policy and skip-next
strategy. The controller misses the deadline
and completes in the subsequent period.

time of the i-th job of the controller. The figure just provides a visual representation of a291

lengthy execution, but misses can occur due to other sources of interference, e.g., higher292

priority task being executed with a fixed-priority scheduling algorithm, interrupts being293

raised and served during the execution of the control task, or access to locked shared resources294

being requested. In Figure 2, the control signal u[2] is held as u[3]. The next controller295

execution instance is skipped and the result of the completion of e2 is applied as u[4].296

The procedure that we follow to analyse the closed loop system is the following:297

1. We express the dynamics of the closed-loop system in the cases of hit and of miss.298

Following a procedure similar to the one we used in Equation (7), we determine the state299

matrices for the closed-loop systems in case of deadline hit and deadline miss, respectively300

AH and AM . We then know that the system with (unconstrained) deadline misses can be301

expressed as a switching system [27] that arbitrarily switches between these two matrices.302

If the original system in Equation (3) was unstable, there is no hope that the switching303

system that arbitrarily switches between AH and AM is stable (as either an old or no304

control action is applied when a miss occurs). However, we still have not introduced any305

weakly hard constraint.306

2. We determine the set of possible cases for the evolution of the system when τ ` 〈n〉307

guarantees are provided, i.e., the possible realisations of the system behaviour. We308

denote with Σ the set of possible matrices that these realise. For τ ` 〈n〉 guarantees,309

the set of possible realisations is {H,MH, . . . ,MnH}. The set contains either a single310

hit, or a certain number of misses (up to n) followed by a hit.7 This means that311

Σ = {AH , AHAM , AHA2
M , ...AHA

n
M}. This can be written in a compact form as Σ =312

{AHAiM | i ∈ Z≥, i ≤ n} where Z≥ indicates the set of integers including zero. Notice313

that matrices are multiplied from the right to the left (denoting the standard evolution314

of the system from a mathematical standpoint). This step introduces the weakly hard315

constraint for which we investigate the system stability.316

3. We compute a generalisation of the spectral radius concept, called joint spectral radius317

ρ(Σ) [21,36], that allows us to assess the stability of the closed-loop system that switches318

between the realisations (i.e., the valid scenarios including a number of misses between319

7 The notation used to define Σ is slightly simplified here, as the matrix AH may be different depending
on how many deadlines have been missed (for example, with the skip-next strategy the controller uses
an old measurement of the state to compute the control signal). We will be more precise in the following
when we show how to apply the procedure to the different cases. Furthermore, notice that the matrices
in Σ represent the evolution across a different number of time steps: AH advances the time in the system
of π, while AHAM advances the system time of 2π. This is not a concern for the system analysis.
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0 and n followed by a hit) included in Σ. More precisely, the closed-loop system that320

can switch between the realisations included in Σ is asymptotically stable if and only if321

ρ(Σ) < 1 [21, Theorem 1.2].322

In order to generalise the spectral radius to a set of matrices, we introduce some notation.323

The following paragraphs are using the notation and sequential treatise proposed in [21] to324

introduce the concept of the joint spectral radius. We recap only what is needed for the325

purpose of understanding our analysis.326

Joint Spectral Radius [21, 36]: The first step for our definition is to determine what327

happens when some steps of evolution of the switching system occur. We then denote with328

ρµ(Σ) the spectral radius of the matrices that we find after µ-steps. Precisely,329

ρµ(Σ) = sup{ρ(A)1/µ : A ∈ Σµ}. (9)330

In this definition we quantify the average growth over µ time steps, as the supremum of the331

spectral radius (elevated to the power 1/µ) of all the matrices that can be evolutions of the332

system after µ matrix multiplications (i.e., after µ evolution steps, where an evolution step333

is either a hit or a set of constrained misses followed by a hit). Equation (9) denotes the334

supremum of all the possible combinations of products of µ matrices that are included in Σ.335

Using ρµ(Σ) we can define the joint spectral radius of a bounded set of matrices Σ as336

ρ(Σ) = lim sup
µ→∞

ρµ(Σ). (10)337

We are then looking at the evolution of the system for an infinite amount of time, i.e., pushing338

µ to the limit.339

Determining that the switching system is asymptotically stable is equivalent to assessing340

that the joint spectral radius of the set of matrices Σ is less than 1. This condition is both341

sufficient and necessary [21, Theorem 1.2]. This means that if the joint spectral radius is342

higher than 1, there is at least a sequence of switches of hits and misses that destabilises the343

closed-loop system.344

Joint Spectral Radius Computation: On the practical side, the problem of computing345

if the joint spectral radius is less than 1 is undecidable [8]. In many cases it is possible to346

approximate the joint spectral radius with satisfactory precision [6,7,17,32] and obtain upper347

and lower bounds for ρ(Σ). Clearly, the closest the two bounds are, the more precise is the348

estimation of the true value of the joint spectral radius. We can safely say that our controller349

design is sufficiently robust to deadline misses if the upper bound on the joint spectral radius350

ρ(Σ) is less than 1.351

Joint Spectral Radius with at most n Consecutive Misses: If the joint spectral radius352

of the set Σ is less than 1, the stability of all the combinations of realisations (of hits and353

misses, that include at most n consecutive misses) is proven, regardless of the window size.354

For example, let us assume that we are analysing a system with the real-time guarantee355

that we cannot experience more than two consecutive misses. The realisations that we356

analyse are {AH , AHAM , AHAMAM} and the joint spectral radius unfolds and checks all357

the possible (infinitely long) sequences of combinations of these realisations.358

For a length of two, this means that we check: (1) AHAH as the product of the first359

term twice, (2) AHAHAM as the product of the first two terms picking the first as final360

(in terms of time evolution of the system), (3) AHAHAMAM as the product of the first361

and last terms picking the first as initial, (4) AHAMAH as the product of the first two362

terms picking the second as final, (5) AHAMAHAM as the product of the second term twice,363

(6) AHAMAHAMAM as the product of the last two terms, picking the second as final, (7)364
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AHAMAMAH as the product of the last and first term, (8) AHAMAMAHAM as the product365

of the last and second term, (9) AHAMAMAHAMAM as the last term twice. This procedure366

is repeated for more products, up to infinitely long sequences. From the computation side,367

the results are an upper and a lower bound on the value of the (true) joint spectral radius.368

The analysis is sound on the control side, as stability is guaranteed if and only if the joint369

spectral radius is less than 1. On the theoretical side, this demonstrates that the τ ` 〈n〉370

model can elegantly provide a necessary condition for the stability of the system. The only if371

part means that there is at least a sequence of hits and misses (where at most we experience372

n consecutive misses) that causes the system to be unstable if the (true value of the) joint373

spectral radius is larger than 1.374

Considering that we only compute an upper and lower bound on the joint spectral radius,375

what we can conclude is: if the lower bound that we obtain is above 1, we are entirely certain376

that such a sequence exists, while if the lower bound is below 1 and the upper bound is377

above 1 we have no mathematical certainty that the system is unstable. Nonetheless, on the378

practical side, the bounds obtained with modern approximation techniques [6, 7, 17,32] are379

usually very close to one another, implying that they are a very good estimate of the true380

value of the joint spectral radius.381

It is important to note that even if the control system is able to stabilise the system382

in the presence of n consecutive misses, this does not mean that executing the controller383

with a period of nπ, rather than its original period π, is a sensible choice. In fact, the384

performance (measured for example using the integral of the squared error) of the controller385

that is executing with a larger period would be dramatically worse than the performance386

of the controller with the shorter period that can experience misses. Being able to tolerate387

misses is very different than performing well when these misses occur.388

Relation with m-K model: We here briefly discuss the relation between the guarantees389

that we obtain with the τ ` 〈n〉 model and the m-K model, τ `
(
m
K

)
.390

The τ ` 〈n〉 model includes all the realisations that are contained in the τ `
(
n
K

)
regardless391

of the value of K. However, it can also include additional realisations (that could generate392

instability) that are not included in the τ `
(
n
K

)
model, if K > n+ 1. The τ ` 〈n〉 model393

over-approximates the set of possible realisations that one can obtain with an m-K task394

(assuming that n = m). This means that there is a chance that an m-K control task stabilises395

the system when the corresponding task with n = m consecutive deadline misses would not.396

The difference between n andK determines the extent of the potential over-approximation.397

With a smaller difference, the set of possible realisations converges to the set of realisations398

that are included in the τ ` 〈n〉 model. More precisely, the set of possible realisations399

considered with the τ `
(
n
n+1
)
model is the same as the set obtained with the τ ` 〈n〉 model.400

However, increasing K, reduces the set of possibilities that are considered, shrinking the401

size of the set of valid realisations. Figure 3 shows the relationship between three sets when402

K2 > K1 > n+ 1.403

If the system with τ ` 〈n〉 is found stable, then control task τ that is givenm-K guarantees404

also stabilises the plant if m ≤ n. This means that as a first approximation, regardless of the405

value of K, when dealing with the m-K model, one can check the stability for a maximum of406

m consecutive deadline misses and if the condition is satisfied, then the closed-loop is stable407

regardless of the value of K.408

As a final remark, from the industrial point of view, the analysis of the case when K � n409

is not particularly interesting, because stability and quality of control guarantees are provided410

by the design of robust controllers [26] (i.e., a small perturbation in scheduling is anyway411

covered by the redundancy and design of control systems). On the contrary, there is a clear412
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τ `
(
n
K1

)
,K1 > n+ 1

τ `
(
n
K2

)
,K2 > K1

τ ` 〈n〉 = τ `
(
n
n+1
)

Figure 3 Sets of potential realisations with different models.

industrial interest in analysing the K ≈ n+ 1 case, due to transient heavy load perturbations.413

Application: We now show how to apply the theory to practical case studies. We imple-414

mented our analysis methods in MATLAB®. The input values for our stability verification415

procedures are: n (the number of contiguous deadline that the system can miss), Ad and416

Bd (the matrices that determine the dynamics of the system), and K (the controller that is417

designed and should be validated). We used the JSR Matlab toolbox [22, 45] to compute418

bounds on the joint spectral radius. We constructed the set Σ based on the expressions419

derived for the given deadline-handling methods, i.e., for the combination of the control signal420

management policy (zero or hold) and the system-level action (kill, skip-next, or queue(1)).421

Zero&Kill: The zero and kill strategy is the simplest to analyse. For this strategy we can422

look at Equations (3) and (5). The system behaves according to423

x̃[k+1] =
[
x[k+1]
u[k+1]

]
=
[
Ad Bd
K 0r×r

]
︸ ︷︷ ︸

AH

[
x[k]
u[k]

]
= AH x̃[k] (11)424

in case of a hit. Notice that this is in principle exactly the same for each strategy, as when the425

controller hits the deadline the behaviour is the same. Kill implies that in case of a deadline426

miss there is an abort of what the control task has been computing up to its deadline, which427

means there is no need to take into account its (partial) behaviour. In case of a deadline428

miss in the k-th iteration, the control signal u[k+1] is set to zero. This means that the system429

evolves according to430

x̃[k+1] =
[
x[k+1]
u[k+1]

]
=
[
Ad Bd

0r×r 0r×r

]
︸ ︷︷ ︸

AM

[
x[k]
u[k]

]
= AM x̃[k] (12)431

in case of a miss. With n maximum consecutive misses, we can then compute all the matrices432

in Σ = {AHAiM | i ∈ Z≥, i ≤ n}8 and then compute the upper bound on ρ(Σ).433

We would like to remark that while this strategy is simple to analyse, for practical434

applications it is hard to guarantee – using kill – that the control task τ will miss at most n435

consecutive deadlines (as the state of the running task is always re-set at every period start).436

Zero&Skip-Next: The difference between Zero&Kill and Zero&Skip-Next lays in the437

freshness of the measurements that are used for the computation of the control signal when438

the task τ hits its deadline. In fact, if the task was killed and a new job was activated then439

the state measurement would occur at the beginning of the new activation, while if the task440

8 As defined in the introductory part of Section 4 (see point 2 in Fundamentals), Z≥ indicates the set of
integers including zero.
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x(t)

Cd

u(t)

π

x[1]

x[2] x[3] x[4]

u[1] u[2] u[3]
u[4]

skipskip

t

Figure 4 System evolution in case of two consecutive deadline misses with the skip-next strategy
and the zero policy.

was allowed to continue, it would use old measurements. Figure 4 shows how the system441

evolves in case of consecutive deadline misses. Suppose that the control task τ completes its442

execution in the third period. Then this is not equivalent to experiencing two misses and a443

hit, because the completion uses old state measurements. We need to then express the state444

matrix evolution when there is a recovery hit, rather than a regular hit (in the figure u[4] is445

set using x[1]).446

To properly analyse this system, our state has to include the previous values that can447

be used for the control signal computation. With τ ` 〈n〉 guarantees, we can then define448

our augmented state vector as x̃[k] = [xT[k], x
T
[k−1], ..., x

T
[k−n], u

T
[k]]T, i.e., the state vector of449

the closed-loop system is composed of n+ 1 elements of the state vector and 1 element for450

the control signal.451

Then we can write the closed-loop system in case of a deadline hit, i.e., the equivalent of452

Equation (7), as453 
x[k+1]
x[k]
...

x[k−n+1]
u[k+1]

 =

Ad 0p×(n·p) Bd
In·p 0(n·p)×(p+r)

K 0r×(n·p) 0r×r


︸ ︷︷ ︸

AH


x[k]
x[k−1]
...

x[k−n]
u[k]

 . (13)454

Here, we added some padding to the matrix to identify that state variables are transferred from455

one time instant to the next; i.e., to add the trivial equations x[i] = x[i],∀i | x−n+ 1 ≤ i ≤ k.456

In fact, when the deadline is hit (not after a miss) there is no use of the previous values of457

the state.458

When a miss occurs, the control signal is set to zero. This means that we can use the459

AH matrix defined in Equation (13) and substitute the value of K with a zero matrix of460

appropriate size, i.e., 0r×p to obtain the AM matrix,461 
x[k+1]
x[k]
...

x[k−n+1]
u[k+1]

 =

Ad 0p×(n·p) Bd
In·p 0(n·p)×(p+r)

0r×(n+1)·p+r


︸ ︷︷ ︸

AM


x[k]
x[k−1]
...

x[k−n]
u[k]

 . (14)462

Now we should remark that a hit and a recovery hit have two different matrix realisation,463

i.e., a hit that follows a certain number of misses (up to n) has a different matrix with respect464

to AH . In fact, we have to take into account the use of the old state measurement to produce465

the control signal of the recovery hit. We denote with ARi the matrix that represents the466
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evolution of the closed-loop system when a recovery happens after i deadlines were missed.467

This matrix can be constructed modifying the last row of AH , and switching the position468

of K to use the correct state vector (i.e., the one that corresponds to the measurements469

obtained n steps before).470

For i = 1, i.e., with one deadline miss, we can write471 
x[k+1]
x[k]
...

x[k−n+1]
u[k+1]

 =

 Ad 0p×(n·p) Bd
In·p 0(n·p)×(p+r)

0r×p K 0r×(n−1)·p 0r×r


︸ ︷︷ ︸

AR1


x[k]
x[k−1]
...

x[k−n]
u[k]

 . (15)472

Consistently with our treatise, AR0 = AH . We can then compute the set Σ as Σ = {ARiAiM |473

i ∈ Z≥, i ≤ n} and then compute the upper bound on ρ(Σ) using the computed set of474

matrices9.475

Zero&Queue(1): The behaviour of the combination of the zero policy and the queue(1)476

strategy vary depending on the possibility of the queued job to complete before the deadline477

or not. We are going to make the additional hypothesis that the worst-case response time for478

a job is less than nπ, where n is the maximum number of consecutive deadline misses. We479

can start from the set Σ used for the Zero&Skip-Next combination and add to the set all480

the matrices AHAiM , that take into account the possibility that the queued job completed481

before its deadline. We should also include in the set Σ the matrices ARi alone, as it could482

happen that a queued job doesn’t terminate in the period it was started in. We then obtain483

Σ = {AHAiM , ARi , ARiAiM | i ∈ Z≥, i ≤ n}, and we can use the set to compute the upper484

bound on the joint spectral radius ρ(Σ).485

Hold&Kill: The hold and kill strategy aborts the task but applies the previously computed486

control signal to the plant. An easy way to analyse this case is to include in the state of the487

system also the control signal, such that we can determine the switch between two different488

matrices without having the matrices grow. We denote with x̃[k] = [xT[k], u
T
[k]]T. We recall489

that r is used to represent the number of input variables.490

We can write the evolution of the system when a deadline is hit as491 [
x[k+1]
u[k+1]

]
=
[
Ad Bd
K 0r×r

]
︸ ︷︷ ︸

AH

[
x[k]
u[k]

]
, (16)492

meaning that the computation (the third row of the AH matrix) is completed and the new493

control variable is updated with the information from the plant. When a deadline is missed,494

we compute the system evolution as495 [
x[k+1]
u[k+1]

]
=
[
Ad Bd

0r×r Ir

]
︸ ︷︷ ︸

AM

[
x[k]
u[k]

]
, (17)496

9 The drawback of constructing the set Σ as shown above is that the size of the matrices in the set grows
linearly with the number of deadline misses. It is possible to construct a compact representation that
uses as state vector x̃[k] = [xT

[k], u
T
[k]]

T but writes the evolution of the system directly as the relation
between x̃[k] and x̃[k+n+1]. This second way of expressing the system dynamics has the disadvantage of
hiding misses and hits and only showing the evolution at each hit (still keeping track of what happened
at the instants in which the misses occurred). We implemented both versions in our code and checked
that the obtained results are the same except for the computational speedup. This remark applies to all
the strategies using skip-next.
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encoding the hold as the identity matrix that multiplies the old control value for the equation497

that determines the evolution of u[k]. As done for the zero&kill alternative, if we assume498

there can be a maximum of n consecutive deadline misses, we can then compute all the499

matrices in Σ = {AHAiM | i ∈ Z≥, i ≤ n} and then compute the upper bound on ρ(Σ).500

Hold&Skip-Next: In order to analyse the combination of hold and skip-next we need to501

augment the state vector as we did for the zero&skip-next handling strategy. Also in this502

case, we use our newly defined state vector x̃[k] = [xT[k], x
T
[k−1], . . . , x

T
[k−n], u

T
[k]]T. We obtain503

the following expression for the closed-loop system when we hit a deadline,504 
x[k+1]
x[k]
...

x[k−n+1]
u[k+1]

 =

Ad 0p×(n·p) Bd
In·p 0(n·p)×(p+r)

K 0r×(n·p) 0r×r


︸ ︷︷ ︸

AH


x[k]
x[k−1]
...

x[k−n]
u[k]

 . (18)505

When we miss a deadline we use the old control value, introducing an identity matrix in the506

last column and last row of the closed-loop state matrix to indicate that the previous control507

signal is saved,508 
x[k+1]
x[k]
...

x[k−n+1]
u[k+1]

 =

Ad 0p×(n·p) Bd
In·p 0(n·p)×(p+r)

0r×(n+1)·p Ir


︸ ︷︷ ︸

AM


x[k]
x[k−1]
...

x[k−n]
u[k]

 . (19)509

Finally, we should define the behaviour of system in the case of a recovery hit, as done510

for the zero&skip-next strategy, but including the dynamic evolution of the control signal511

that has been added to x̃. For one deadline miss we obtain AR1 as512 
x[k+1]
x[k]
...

x[k−n+1]
u[k+1]

 =

 Ad 0p×(n·p) Bd
In·p 0(n·p)×(p+r)

0r×p K 0r×(n−1)·p 0r×r


︸ ︷︷ ︸

AR1


x[k]
x[k−1]
...

x[k−n]
u[k]

 , (20)513

and the following matrices are obtained by moving the position of the term K in the state514

evolution matrix to reflect how old is the sensed data that is being used for the computation515

of the control signal.516

Again, AR0 = AH , and we can define the set Σ as Σ = {ARiAiM | i ∈ Z≥, i ≤ n}. With517

this, we can compute the upper bound on ρ(Σ).518

Hold&Queue(1): To analyse the hold&queue(1) strategy, we follow the same principles used519

for the zero&queue(1) strategy. We start from the hold&skip-next matrices and determine520

Σ = {AHAiM , ARi , ARiAiM | i ∈ Z≥, i ≤ n}.521

5 Experimental Validation522

In this section we present a few examples of how the analysis presented in Section 4 can be523

applied to determine the robustness to deadline misses of control system implementations.524

In particular, we first present some results obtained with an unstable second-order system,525

which could be used to approximate unstable plants such as a segway that has to be stabilised526
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about the top position. Then, we verify the stability of a permanent magnet synchronous527

motor for an automotive electric steering application.528

Unstable Second-Order System: We analyse the following continuous-time linear time-529

invariant open-loop system,530

ẋ(t) =
[
+10 +0
−2 −1

]
︸ ︷︷ ︸

Ac

x(t) +
[
5 01
4 10

]
︸ ︷︷ ︸

Bc

u(t), (21)531

where both the state and the input vector are composed of two variables. The expression532

above is the equivalent of Equation (2). Since the Ac matrix is a lower triangular matrix,533

one can immediately see that the poles of the system are 10 and −1. Since one pole is in534

the right half plane, the system has one unstable mode and there is a need for control to535

stabilise the system.536

An optimal linear quadratic regulator [26] is designed for this system, assuming that the537

controller execution is instantaneous and there is no one-step delay actuation, obtaining538

K =
[
−4.7393 +0.2430
+0.2277 −0.8620

]
. (22)539

First, we check the stability of the closed loop system when the controller is executed with540

one step delay. We select a sampling period of 10ms and discretise the system obtaining541

x[k+1] =
[
+1.1053 0.0000
−0.0209 0.9900

]
︸ ︷︷ ︸

Ad

x[k] +
[
0.0526 0.0105
0.0393 0.0994

]
︸ ︷︷ ︸

Bd

u[k]. (23)542

This corresponds to Equation (3). The matrix Ad is also lower triangular, which means that543

the poles of the open-loop system are the numbers indicated in the main diagonal. Since one of544

them is outside the unit circle, the discretised version of the continuous-time system is (unsur-545

prisingly) also unstable and needs control. The poles of the closed-loop system corresponding546

to the execution of the LET controller every 10ms are {0.8911, 0.8141, 0.3013, 0.0888} and547

they are all inside the unit circle, meaning that the system is stabilised by the LET controller548

K from Equation (22), and our control design is a good choice.549

Our research question is how many deadlines can we miss when we execute the controller550

with all the possible deadline miss handling strategies. Table 1 summarises the results we551

obtain for the analysis.552

With the zero strategy, irrespective of the choice of how to handle the job that misses the553

deadline (kill, skip-next, or queue), the system is robust to missing one deadline (the upper554

bound on the joint spectral radius is less than 1 for one deadline miss). A subsequent miss is555

not tolerated, and the closed-loop system becomes provably unstable (the lower bound on556

the joint spectral radius is above 1). We now look at what happens when the control signal557

is kept constant in case of misses, i.e., when we hold. Hold&kill ensures that we could miss558

five deadlines in a row without the emergence of unstable behaviour. However, if a sixth559

deadline is missed, the system could become unstable. In this case, in fact, the upper-bound560

on the joint spectral radius exceeds 1. The lower bound, however, is below 1. This means561

that there is no complete certainty that the system is unstable, but there is a high risk. The562

true value (for which we have certainty) lies in between the the two bounds. If we continue563

our analysis, the situation where the true values is around 1 and uncertain persists up to 7564

deadline misses. When we introduce the possibility of missing 8 consecutive deadlines, both565
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Table 1 Stability Results for the Unstable Second-Order System

Misses Stability Lower Bound Upper Bound

Zero&Kill 1 3 0.961037 0.961975
2 7 1.071911 1.071915

Zero&Skip-Next 1 3 0.914298 0.920769
2 7 1.059819 1.059822

Zero&Queue(1) 1 3 0.961037 0.964287
2 7 1.071911 1.071915

Hold&Kill 1 3 0.891089 0.891090
2 3 0.891089 0.891090
3 3 0.891089 0.891098
4 3 0.891089 0.891251
5 3 0.891089 0.935272
6 7 0.891089 1.004593
7 7 0.961344 1.083038
8 7 1.065537 1.172249

Hold&Skip-Next 1 3 0.891089 0.891090
2 3 0.914556 0.944458
3 7 1.076507 1.091171

Hold&Queue(1) 1 7 1.347066 1.370827

the lower-bound and the upper-bound are above 1, meaning that the system is provably566

unstable for some sequences. Notice that this does not mean that the instability is found567

when we repeat the sequence with 8 consecutive misses followed by a hit. It could happen568

that the unstable sequence is a combination of a number of deadline misses up to 8 followed569

by a different number, followed by a number of deadline hits, and so forth. In fact, in our570

investigation we have encountered cases in which the closed-loop system was stable in case of571

the repetition of the sequence with n misses followed by a hit, but unstable with a number572

of consecutive misses up to n. For any practical application, terminating the investigation573

when the upper-bound crosses 1 ensures a safety margin and guarantees the correct system574

operation.575

When hold is paired with skip-next the system tolerates 2 misses. When queue(1) is uses,576

on the contrary, the system does not tolerate even a single miss. As a final remark, notice577

that while the number of tolerated deadline misses is higher for hold&kill, when a task is578

killed it is difficult to guarantee – with real-time analysis – that the subsequent job will579

not miss its deadline (especially due to locality effects). On the contrary, in general, when580

skip-next is applied, it is easier to guarantee the termination of in the consecutive periods.581

This is true unless the deadline misses are caused by a bug in the control task itself, in which582

case the control task may never terminate.583

Electric Steering Application: Here we verify the stability of a permanent magnet584

synchronous motor for an automotive electric steering application in the presence of deadline585

misses. We first present a standard model for the motor and a proportional and integral (PI)586

controller for setpoint tracking, written in the state-feedback form.587

When modeling the motor, our system state is x(t) = [id(t), iq(t)]T where id(t) and iq(t)588

represent respectively the currents in the d and q coordinates over time. The aim of our589

control design is to track arbitrary reference values for the currents. The control signal is590
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u(t) = [ud(t), uq(t)]T, where ud(t) and uq(t) represent respectively the voltages applied to591

the motor in the d and q coordinate system (subject to an affine transformation). The model592

of the motor can be written as593

ẋ(t) =
[
− R/Ld Lq ωel/Ld

− Ld ωel/Lq − R/Lq

]
x(t) +

[
1/Ld 0

0 1/Lq

]
u(t). (24)594

Here, Ld [ht] and Lq [ht] denote respectively the inductance in the d and q direction, R [Ohm]595

is the winding resistance, and ωel [rad/s] is the frequency of the rotor-induced voltage596

(assumed as constant). We used the parameters of our motor10 and discretised the plant597

using Tustin’s method11, and a sampling period of 10µs, obtaining598

x[k+1] =
[
+0.996 +0.075
−0.052 +0.996

]
︸ ︷︷ ︸

Ad,base

x[k] +
[
+0.100 +0.003
−0.003 +0.083

]
︸ ︷︷ ︸

Bd,base

u[k]. (25)599

Notice that the eigenvalues of Ad,base are 0.9957± 0.0626i and their absolute value is 0.9977,600

meaning that the open-loop system is stable (even without control). Control is here added601

to constrain the behaviour of the system and make sure it tracks current setpoints without602

errors.603

To achieve zero steady-state error, we would like to design our controller in the PI form,604

using a term that is proportional to the error between the actual current vector and the605

setpoint vector and a term that is proportional to the integral of the error. We then need to606

augment the state vector x[k] and keep track of the error at the current time step and at the607

previous time step. We also need to add to the input vector the setpoints for the currents in608

the D and Q directions. This allows us to write our PI controller in the state-feedback form.609

After this transformation, we denote the new system input as v[k] = [uT[k], w
T
[k]]T where610

w[k] denotes a vector that contains the desired values for the currents id and iq at time k.611

We also define the new system state as s[k] = [xT[k], e
T
[k], e

T
[k−1]]T, where e[k] is the error at612

time k, i.e., e[k] = w[k] − x[k]. We therefore model the system as613

s[k+1] =

Ad,base 02×2 02×2
−I2 02×2 02×2
02×2 I2 02×2


︸ ︷︷ ︸

Ad

s[k] +

Bd,base 02×2
02×2 I2
02×2 02×2


︸ ︷︷ ︸

Bd

v[k]. (26)614

We design our PI controller as615

K =

02×2

K1︷ ︸︸ ︷[
5 0
1 7

] K2︷ ︸︸ ︷[
−4 0
−3 7

]
02×2 02×2 02×2

 . (27)616

We can test that in absence of deadline misses, when the controller is implemented with LET617

(i.e., with one-step delay), the system preserves stability. We now move on to investigate618

the stability property of the system when some deadlines are missed. Table 2 presents a619

summary of the results we obtained.620

10The constants used for the calculations are: R = 0.025 [Ohm], ωel = 6283.2 [rad/s], Ld = 0.0001 [ht],
Lq = 0.00012 [ht].

11While Tustin’s method introduces frequency distortion, the method is what is currently applied in our
industrial case study. Similar results can be obtained with the exact matrix exponential, changing the
discretisation command parameters in the Matlab code.
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Table 2 Stability Results for the Electric Steering Application

Misses Stability Lower Bound Upper Bound

Zero&Kill ∞ 3 0.997713 0.997713
Zero&Skip-Next 1 3 0.892575 0.892575

2 3 0.892575 0.892575
3 3 0.892575 0.892575
4 3 0.892575 0.892575
5 3 0.892575 0.892575
6 3 0.892575 0.892575
7 3 0.892575 0.892575
8 3 0.900922 0.900922
9 3 0.912902 0.912902

10 3 0.938565 0.938565
11 3 0.940823 0.940823
12 3 0.942610 0.942610
13 3 0.951092 0.951092
14 3 0.962846 0.962846
15 3 0.973776 0.973776
16 3 0.983954 0.983954
17 3 0.993436 0.993436
18 7 1.002273 1.002273

Zero&Queue(1) 1 3 0.925966 0.925966
2 7 1.001620 1.001620

Hold&Kill 1 3 0.892575 0.892575
2 3 0.938332 0.938332
3 7 1.073542 1.073542

Hold&Skip-Next 1 3 0.968574 0.968574
2 7 1.107390 1.107390

Hold&Queue(1) 1 7 1.423968 1.423968

The zero&kill strategy presents a special property. Using this strategy, the closed-loop621

system is always going to be stable, regardless of the number of deadlines that are missed.622

In fact, using the joint spectral radius, it is possible to prove that the system that switches623

between AH and AM is always stable, when the matrices are the ones identified in Section 4624

for zero&kill. This special property comes from the fact that the open-loop system is stable625

and control is applied only using fresh measurements (assuming that the kill procedure is able626

to rollback the system to a clean state). The fact that AM and AH are stable individually627

is not enough to guarantee stability, but all of their combinations prove to be contractions,628

making the switching system stable as well. Notice that this is not generalisable, but only629

due to the properties of the particular system we are controlling – in fact, this is not true630

for the the second-order system example above. For this specific system, this tells us that631

implementing a clean rollback is very beneficial, and goes a long way to ensure fault tolerance.632

However, it is not always possible to implement a clean rollback with the given hardware633

and software setup.634

When zero is paired with skip-next, old measurements of the state are used when a635

recovery hit happens. This means that the system can be unstable even though the behaviour636
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is similar to the zero&kill strategy one. In fact, differently from zero&kill, the system is637

not able to tolerate an infinite number of misses. We then ask how many many consecutive638

deadline misses the system experience without violating the stability property. As reported in639

Table 2, both the lower-bound and the upper-bound on the joint spectral radius are less than640

1 for a system that experiences up to 17 consecutive misses. However, with 18 consecutive641

misses the closed-loop system becomes provably unstable (lower-bound above 1).642

This result means that if the controller can miss 18 deadlines in a row, then the delay643

introduced between the sensing and the actuation is harmful for the system and can cause644

instability. In this case, there is at least one sequence of deadline misses (which satisfies the645

condition that there cannot be more than 18 consecutive misses) that leads to instability.646

In this case, it is certain that the closed-loop switching system is unstable. Notice that647

the harmful sequence does not necessarily have to be a repetition of 18 misses and 1 hit,648

but can be a combination of different terms (for example it could happen that due to the649

time constant of the system missing 16 deadlines, hitting 2 of them, and then missing 18650

would cause instability). For this particular case, however, it is simple enough to check that651

the spectral radius of the closed-loop matrix with 18 misses and 1 hit is above 1 and this652

immediately means that the sequence of 18 misses and 1 hit destabilises the system (although653

it might not be the only one).654

If we pair zero with queue(1), the results differ dramatically. The number of matrices in655

the set Σ used to compute the joint spectral radius increases, and there is a combination of656

events (specific number of misses, recovery, and recovery with immediate information) that657

can lead to instability even when just 2 consecutive deadlines are missed. This immediately658

tells us that using the queue(1) strategy is a bad idea for this system and should be avoided.659

When the control signal is held, the kill strategy guarantees stability for 2 deadline misses,660

while a third potential miss makes the system provably unstable. The skip-next strategy,661

paired with hold, can tolerate one miss, but a second one makes the system unstable. The662

queue(1) strategy cannot even tolerate a single miss.663

From this experimental campaign, we can conclude that for this system kill is working664

better than any other system-level strategy, and zero works better than hold in terms of665

guaranteeing the system stability. We can also conclude that while queuing a task when a666

previous one is executing could improve the control performance, the risk of harming the667

system is much higher. We advocate that performing the analysis presented in this paper668

can give important runtime information to determine how robust control systems are to669

temporary faults and problems.670

6 Related Work671

Studying the non-ideal behaviour that emerges from the implementation and execution of672

control systems is an important problem for practical applications of control. Control tasks673

for example may have variable periods and may require to be executed with different rates674

depending on the operating conditions [4]. Also, late information can affect the system’s675

performance [24,30,31,37], especially for networked systems. These timing effects are usually676

characterised as independent events with stochastic distributions [13], or using worst case677

bounds [2, 15]. Control researchers proposed deadline-aware design methods to guarantee678

stability [5, 29] and improve the control performance [38]. Sinopoli et al. [40] proposed679

an optimal control design for networked system leveraging the probability of packet losses.680

Lincoln and Cervin [28] proposed a design tool for optimal controllers in the presence of681

probabilistic delays, that can be exploited for LET design setting the delay to one period.682
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In many circumstances, the control designer can usually trade off computing time and683

accuracy [39]. In some cases, an inaccurate and faster solution that can be executed at a684

faster rate is preferable to an accurate and precise solution that can only be executed at a685

slower rate [23]. However, it is extremely hard in practice to guarantee that the delays will686

never exceed the control period.687

These types of systems have been studied both from the schedulability perspective [43] and688

using model checking [12]. The performance cost of deadline misses was investigated [34, 44],689

together with the role of the strategy used to handle the misses [33, 41, 42]. All these papers690

used the m-K model, starting from the assumption that windows of hits and misses have to691

be analysed in order to determine the behaviour of the system. We build on the previous692

literature to determine how the implementation is going to react to missed deadlines, both in693

terms of selection of the control signal [29] and in terms of management of the job that misses694

its deadline [33]. There are some important differences between [33] and the contribution695

of this paper: [33] presents a control design technique to guarantee probabilistic robustness696

to deadline misses, on the contrary we assume that the controller is already designed and697

executes without any change and we demonstrate an analysis method to guarantee exactly698

that the controller tolerates (in terms of stability) a maximum number of consecutive misses.699

In this work we showed that it may not be necessary to study windows of hits and misses.700

We argue that before looking at the m-K model representation, which is harder to analyse,701

one should check the stability of the 〈m〉 model. If the 〈m〉 is stable, there is no need702

to include complex window-based analysis — it happens quite often that the information703

needed to study the stability of the closed-loop systems is already contained in the number704

of consecutive deadline misses.705

Ghosh et. al. [16] studied how to design control systems in the presence of faults that cause706

them to miss at most n deadlines, providing a synthesis method to achieve fault-tolerance –707

without specifying how the system is going to react to the misses (e.g., kill or skip-next).708

Here we take a different perspective and want to validate the behaviour of a control system709

(in terms of stability) when deadlines are missed, including the deadline management strategy710

from a system and implementation perspective.711

7 Conclusion712

In this paper we revisited the weakly hard real-time model for control tasks. We formalised713

the problem of determining the stability of the closed-loop system in the presence of a given714

number of consecutive misses that the controller task can experience. With the number715

of consecutive deadline misses, we derived stability criteria for systems where the deadline716

miss is handled in different ways, both from the perspective of the control signal applied717

(either zeroing or holding the previous value of the control signal) and with respect to the718

management of the task that misses the deadline (that can be either killed or allowed to719

continue in the subsequent control period). We solved this problem using a mathematical720

tool called joint spectral radius, for the computation of which open-source toolboxes are721

available. We applied our analysis to two different examples: an unstable system and an722

industrial application for electric steering. In both cases, we showed the limitations of the723

controller implementations that miss a given number of deadlines.724

In the future, we plan to look at applying the joint spectral radius analysis to systems725

specified using the m-K model. This is particularly challenging, because there is no direct726

mapping between the potential sequences of hits and misses and a set of matrices. Furthermore,727

we want to investigate the performance of controllers that experience deadline misses.728
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