
Testing Self-Adaptive Software
with Probabilistic Guarantees on Performance Metrics

Claudio Mandrioli
claudio.mandrioli@control.lth.se

Lund Univeristy
Sweden

Martina Maggio∗

maggio@cs.uni-saarland.de
Saarland University

Germany

ABSTRACT

This paper discusses the problem of testing the performance of the

adaptation layer in a self-adaptive system. The problem is notori-

ously hard, due to the high degree of uncertainty and variability

inherent in an adaptive software application. In particular, provid-

ing any type of formal guarantee for this problem is extremely

difficult. In this paper we propose the use of a rigorous probabilistic

approach to overcome the mentioned difficulties and provide proba-

bilistic guarantees on the software performance. We describe the set

up needed for the application of a probabilistic approach. We then

discuss the traditional tools from statistics that could be applied to

analyse the results, highlighting their limitations and motivating

why they are unsuitable for the given problem. We propose the use

of a novel tool ś the scenario theory ś to overcome said limitations.

We conclude the paper with a thorough empirical evaluation of

the proposed approach, using two adaptive software applications:

the Tele-Assistance Service and the Self-Adaptive Video Encoder.

With the first, we empirically expose the trade-off between data

collection and confidence in the testing campaign. With the second,

we demonstrate how to compare different adaptation strategies.

CCS CONCEPTS

· Software and its engineering → Empirical software vali-

dation; Software testing and debugging; · Social and profes-

sional topics→ Software selection and adaptation.

KEYWORDS

Testing, Self-Adaptive Software, Autonomous Systems

ACM Reference Format:

Claudio Mandrioli and Martina Maggio. 2020. Testing Self-Adaptive Soft-

ware with Probabilistic Guarantees on Performance Metrics. In Proceed-

ings of the 28th ACM Joint European Software Engineering Conference and

Symposium on the Foundations of Software Engineering (ESEC/FSE ’20), No-

vember 8ś13, 2020, Virtual Event, USA. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3368089.3409685

∗Also with Lund Univeristy.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7043-1/20/11. . . $15.00
https://doi.org/10.1145/3368089.3409685

1 INTRODUCTION

Software systems are affected by uncertainty that alters their be-

haviour and can render their performance unpredictable. Adapta-

tion layers were introduced in software as a viable solution to deal

with performance fluctuations and minimise the effect of uncon-

trolled changes [17, 18, 57]. This makes software self-adaptive. The

idea behind self-adaptive software is to have a layer responsible

for observing behavioural changes and taking counteractions. This

can guarantee more stable and predictable software performance

in terms of non-functional software behaviour [28, 48], e.g., lower

response times, or higher reliability.

Adaptation can be implemented using different methodologies;

some of them provide guarantees based on formal models [29, 34,

48], others are empirically proven effective [23, 49, 60]. In both cases

there is a need for appropriate performance testing of the system

composed of the software and its adaptation layer. The presence

of an adaptation layer opens up the possibility that in the same

exact condition the software will behave differently, depending on

its past behaviour and accumulated knowledge. It is necessary to

conduct empirical validation of satisfactory behaviour to verify the

correctness of the system and adaptation-layer implementation [69].

In addition, it is important to quantify the achievable performance.

In general, testing is a crucial aspect of software development.

For self-adaptive software, the testing process is complicated by

the presence of the adaptation layer [7, 10, 33, 62]. Self-adaptive

systems testing is intrinsically hard, due to the extreme variability

and uncertainty involved in the software execution [5, 8, 20, 62].

In fact, the adaptation layer explicitly reacts to the uncertainty,

and may influence it for the future. This creates a loop around the

software [57]. In the context of uncertainty and adaptation, this

paper’s challenge is to achieve and maintain formal guarantees on

non-functional aspects of the software execution, such as reliability

and response times.

Research Challenges: The adaptation layer and the presence of

uncertainty impose specific challenges for testing. Triggered by

the environmental variability, the adaptation generates changes

in the system - and this changing nature makes it difficult (and

in many cases impossible) to exhaustively guarantee its correct

behaviour [27, 47, 50, 62, 65, 68]. The adaptation also creates a

difficulty in the performance quantification and in determining the

testing sufficiency and effectiveness [20, 62].

As an example, consider testing a web-application that can run

on different servers with different and time-varying performance

results. Not all of the servers can provide the same reliability. The

adaptive layer should choose dynamically which server to use, in

order to maximise the overall reliability. In general, it is not possible

to guarantee that the application is always reliable, since any server

1002

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3368089.3409685
https://doi.org/10.1145/3368089.3409685

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA Claudio Mandrioli and Martina Maggio

uncertainty

Software

Adaptation

layer

Test

outcomes

collection

Scenario

theory

fe
ed
b
ac
k

ad
ap
ta
ti
o
n

performance

parameter

Performance

bound

Testing

confidence

System under test

Test inputs

Test outcome

Result of testing campaign

Figure 1: Overview of the proposed approach.

may fail. Also, the actual reliability will depend significantly on the

specific servers, and on their performance. As a consequence, when

testing the system, any evaluation of its reliability is heavily affected

by the specific test cases. Determining which tests are sufficient

and when it is possible to stop the testing process becomes chal-

lenging. To be precise, this paper addresses the following research

challenges [20, 62]:

• CH1: Definition of what type of guarantees can be given for

self-adaptive software.

• CH2: Quantification of the mentioned guarantees.

• CH3: Quantification of the testing sufficiency and effective-

ness (or testing adequacy).

Contribution: In this paper we address the three mentioned

research challenges by leveraging a rigorous probabilistic ap-

proach [9, 22]. The probabilistic approach is beneficial in two ways:

(i) it allows the efficient exploration of large input and configura-

tion spaces [54], and (ii) it can provide a quantification of its own

adequacy. In the field of probability theory, the testing adequacy is

called confidence.

As discussed in the research challenges above, the uncertain

nature of self-adaptive systems does not allow for the definition

of strict guarantees. This limitation mainly arises from the large

(and possibly infinite) number of combinations of inputs that can

be provided to the system [20, 62]. Despite this, we need to test

self-adaptive systems when said variability is present, in order to

trigger the adaptive behaviour. Leveraging a probabilistic approach,

the uncertainty and variability can efficiently be explored using

randomised inputs, independent of their size [22, 54]. As a con-

sequence, the measured performance metric must be treated as a

random quantity, and requires statistical evaluation. We therefore

enter the domain of probabilistic guarantees [1, 9].

In this work, we focus on the evaluation of probabilistic bounds

for a given performance metric. Our aim is testing what is the

value of this performance parameter that the adaptive software

can guarantee in the majority of its execution environments. We

formally define majority in a probabilistic fashion, e.g., that a given

performance bound will hold in 99% of the execution instances. We

also quantify the confidence that we can claim, i.e., the adequacy

of our testing campaign. High confidence means a high probability

that we performed a sufficient number of randomly generated tests

to sustain our claim. In some sense, this is analogous to a cover-

age criterion ś a reference for choosing when to stop the testing

campaign.

We discuss traditional tools from statistics and highlight their

limitations for testing self-adaptive software. We overcome these

limitations using a tool called scenario theory [12]. The scenario

theory was developed in the field of robust control but can actually

be applied to a very general class of problems. In this paper we show

how to apply it to the problem of testing self-adaptive software.

Experimental Evaluation: To support our claims, we use our

methodology to test the behaviour of two self-adaptive software

applications: the Tele-Assistance System [70], and the Self-Adaptive

Video Encoder [44]. We show how our methodology can be used to:

(i) rigorously quantify the adaptation performance, (ii) evaluate the

trade-off between the number of performed tests and the confidence

in the testing campaign, and (iii) compare adaptation strategies.1

Paper Structure: In Section 2 we provide an overview of our pro-

posed testing approach. Section 3 discusses related work. Section 4

presents our methodology and describes how it overcomes the

limitations of classical statistical testing. Section 5 presents ex-

perimental results, and Section 6 describes the limitations of our

proposal. Finally, Section 7 concludes the paper.

2 APPROACH OVERVIEW

In this section we provide an overview of our testing approach

(shown in Figure 1). In particular, we discuss: (i) the definition of test

inputs, (ii) the definition of the test outcome, and (iii) the evaluation

of the results of the testing campaign. In Section 4 we discuss in detail

how to apply the scenario theory to evaluate the test outcomes and

obtain the performance bound and testing confidence.

The objective of our testing campaign is to empirically provide

guarantees on the system behaviour. These guarantees should be

general and independent from the specific test cases. Practically, we

want independence from the variability and uncertainty that affects

the executed tests. We obtain this by performing different random

tests, each of which represents a possible system realisation. We

then statistically evaluate the results of the testing campaign.

Each of the test cases is defined by randomly picking a possible

instance of the system (e.g., for the web-application in the intro-

duction, by picking servers with some given reliability values). We

randomly select the test inputs (Figure 1). For example, if our adap-

tive system has to recognise server failures in a web-application, we

define test cases in which the servers fail at random points in time.

1The implementation of the experiments presented in the paper is publicly available
and has been reproduced through the conference artifact review process https://github.
com/ManCla/ESEC-FSE-2020 [45].

1003

https://github.com/ManCla/ESEC-FSE-2020
https://github.com/ManCla/ESEC-FSE-2020

Testing Self-Adaptive Software ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

If the performance evaluation is carried out rigorously, it provides

a result independent from the specific failure times observed in the

different test cases.

The randomly selected test inputs are fed into the system under

test, as described by the arrow connecting the test inputs and the

system under test in Figure 1. In order to evaluate the effectiveness

of the adaptation strategy, we define a performance parameter. The

performance parameter is a quantity that (i) can be measured from

the execution of a test case, and (ii) is higher or lower, according to

the degree at which the adaptation strategy has achieved its goals.

In the web-application case mentioned above, this parameter could

be, for example, the average time spent recovering from server

failures over the whole test duration. The key intuition is that this

performance parameter is itself a random variable [9], and we can

therefore use tools from statistics to deduce properties of its value.

We collect the outcomes of the tests and evaluate them using the

scenario theory. By leveraging this theory we obtain probabilistic

bounds on the chosen performance metric and a testing confidence.

The probabilistic bounds are in the form of a minimum performance

that is guaranteed in a high percentage of the cases. The testing

confidence is instead given as a probability. To be precise, the con-

fidence is the probability that we have missed relevant test cases

that would have changed the obtained bound. Continuing with the

example above, we would obtain a bound like łthe time it takes to

recover from a server failure is on average less than 42 seconds in

97% of the cases, with a 95% confidencež. This means that we have

a 100 − 95 = 5% probability of having missed a relevant test case.

If the confidence is not sufficient, the scenario theory allows the

testing engineer to directly compute how many additional tests are

needed to increase it to the desired level.

3 RELATED WORK

This section discusses how this work is connected to the existing

research literature. To start, we present related work in the software

testing research field. Then we present the traditional statistical

tools used to extract probabilistic properties from test outcomes.

3.1 Testing of Adaptive Systems

Our work connects to different areas of the existing software testing

literature: (i) testing of self-adaptive and context-aware systems,

(ii) testing in the presence of environmental dependencies, (iii) fuzz

testing, and (iv) testing for probabilistic guarantees.

The problem of testing an adaptive software ś in some cases also

called context-aware software [47, 66] ś is not a new challenge for

the software testing community [20, 62]. We split the work that

addresses the testing of self adaptive software in design-time and

run-time approaches. For self-adaptive software, the design-time

approaches include SIT [51] and TestDAS [59]. SIT [51] proposes a

test case generation technique for self-adaptive applications. The

sampling of the input space is based on an interactive model of the

application that is being tested. TestDAS [59] focuses on triggering

the adaptations during the test cases. It leverages models of the

software behaviour that are defined in advance by the programmer.

Context-aware software is close to self-adaptive software, and there

is a significant amount of work addressing the problem of testing

context-aware applications [46, 47, 66, 72]. The self-adaptive (or

context-aware) software observes the execution environment and

selects actions to be performed based on the result of the observa-

tion phase. The research effort for context-aware software goes in

the direction of generating test cases that trigger the context-aware

software layer [46, 47, 72]. In [72], automatically generated bigraphs

are used to model the interactions between the environment and

the software, and to generate the test cases. In [46] the authors

propose a framework for automatically generating test cases with

high-level test data.

Our proposal is different from previous work on context-aware

and self-adaptive software testing, since in our case the interaction

with the environment only needs a probabilistic characterisation,

and no further modelling effort. Moreover, in our contribution, the

number of test cases does not depend on how the interaction with

the environment is performed. This is important since it allows our

method to scale with the amount of interaction between software

and environment.

The literature on software testing also includes efforts to develop

run-time testing methodologies for adaptive software [18, 38, 53].

Generally speaking, there is a need to develop models for verifi-

cation and validation at run-time [18]. This need is caused by the

ever-changing nature of the environment the adaptive software op-

erates in. We describe our approach for design-time testing, but in

principle2 the resulting method can be applied during the run-time

execution of the software application, since it only requires data

collection and analysis. A clear difference between our work and

the related literature is that we develop a probabilistic approach.

In our work, we use statistical tools to evaluate the performance

of the adaptation layer of a self-adaptive software, independently

from changes in the environment. Previous work also addressed the

problem of testing a software regardless of its environmental depen-

dencies [4, 35]. These works aim at decoupling the tests outcomes

from such dependencies. To test the adaptation layer, we need to

preserve the dependency on the environment, since it triggers the

need for adaptation. However, we aim at obtaining an evaluation

that is general with respect to the environment changes.

The approach we propose in this paper is based on random sam-

pling of the system inputs and environment scenarios. This practice

is known to the software testing community [3, 16], and is often

called fuzz testing [9, 64, 71, 73]. The literature focuses on using ran-

dom generation for achieving adequate exploration of the software

behaviour, e.g., code coverage [64]. We take inspiration from fuzz

testing, and use random sampling with two different objectives: (i)

decoupling given inputs or environmental scenarios from perfor-

mance parameters that indicate how well the adaptation layer is

performing, and (ii) obtaining a probabilistic characterisation of

the performance metric.

Probabilistic guarantees have been explored [36, 37, 56]. In some

cases this exploration targeted approximate computing [5, 21, 22,

41], which is not the subject of this study. Some existing work target

service-oriented software architectures [13] and how to combine

the probabilistic guarantees given by the different services to obtain

guarantees for the complete system [37, 56]. However, no priorwork

2The requirement to apply our approach at run-time is that the run-time tests are
considered random independent tests. Testing the system continuously might not
guarantee independence. This can be solved (for example) by introducing a delay
between consecutive tests.

1004

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA Claudio Mandrioli and Martina Maggio

targets dynamic behaviour (i.e., behaviour that changes during the

execution of the software, as it is the case with the adaptation layer)

and adaptive software, which is the focus of our work.

3.2 Tools from Statistics

In this section, we recall traditional tools from statistics, that could

be used to analyse the result of tests and provide statistical guar-

antees on the software behaviour. In particular, we discuss the

limitations of existing methods that we aim to overcome.

Monte Carlo Sampling (MC): Monte Carlo (MC) methods [54]

use repeated random sampling and simulation to numerically pre-

dict the value of parameters. The parameters are unknown, and

usually no exact analysis can be carried out (for example because

there are too many random variables, i.e., too much uncertainty).

Nowadays, MCmethods are employed inmany different fields, from

optimisation [55] to decision making [39]. MC methods leverage

the Central Limit Theorem [40] as a main mathematical result. The

theorem discusses the mean of a random variable with an arbitrary

probability distribution, under the assumption that the variance

of the distribution is finite. The theorem states that, if one draws

infinitely many samples from the random variable, the distribution

of the arithmetic mean of the samples asymptotically converges to a

normal distribution, regardless of the original variable distribution.

The application of MC approaches allows to conduct an arbitrary

number 𝑛 of tests and measure the random variable 𝑋 , obtaining a

set of outcomes {𝑥1, . . . , 𝑥𝑛}. Then it is possible to determine the

mean value 𝑥 as the arithmetic average of the tests outputs,

𝑥 =
1/𝑛

∑𝑛

𝑖=1
𝑥𝑖 . (1)

The computed arithmetic mean 𝑥 is also a random variable. The

Central Limit Theorem guarantees that its distribution converges

to a normal distribution for increasing 𝑛, i.e., 𝑥 ∼ N(𝐸 [𝑋], 𝜎2/𝑛),

where 𝐸 [𝑋] is the expected value of the random variable 𝑋 and 𝜎2

is the variance of𝑋 . When𝑛 is big enough, the observed mean value

converges to the actual expected value for the quantity of interest.

This result is well-known in statistics and it holds irrespective of

the specific software application under test. In fact, convergence

is guaranteed independently from the probability distribution of

the performance metric. However, there is no general result on the

speed of the convergence and it is therefore application-dependant.

WithMC sampling, the significance of the test results and the choice

of 𝑛 is therefore left as an arbitrary choice to the testing engineer.

The confidence in the final result is dependant on the variance 𝜎2

defined above. This quantity is unknown and has to be estimated,

adding one degree of uncertainty to the testing process.

MC methods have found limited use in the context of software

testing [42, 61]. None of these works focuses on the testing of

self-adaptive software. In [61] MC methods are used to test the

reliability of a software system, while [42] generally discusses how

MC methods can be applied to software testing.

Extreme Value Theory (EVT): The Extreme Value Theory [19]

(EVT) studies a random variable around the tails of its distribution.

It could therefore be used when we specifically want to analyse the

software’sworst-case behaviour, e.g., what is the maximummemory

occupation of a program. The theory is nowadays widely adopted

to study rare phenomena such as earthquakes, quantitative risks in

finance, but also extreme events in engineering [15, 58].

The role of the Central Limit Theorem for MC sampling is taken

by the FisherśTippettśGnedenko Theorem [30] for the EVT. The

FisherśTippettśGnedenko theorem defines the family of distribu-

tions to which the maximum value of a set of samples converges.

The family of distributions is called the Generalised Extreme Value

Distribution [19]. To apply EVT, we can look at a set of data (in

our case the performance parameters obtained from the test cases)

and extract a set of samples that belong to the tail of the dataset ś

i.e., a set of maxima. We then fit the the Generalised Extreme Value

Distribution to the extracted maxima. In this way, we can obtain a

probability distribution for the extreme value of the performance

metric that could be observed in future executions of the system.

EVT presents similar limitations compared to MC ap-

proaches [25]. EVT uses an arbitrary number of samples from the

distribution of interest. Moreover, the choice of which and how

many samples can be considered as the maxima is also arbitrary.

There are also no results on the rate of convergence of the samples

to the Generalised Extreme Value Distribution. In general, this con-

vergence is known to be slow since it requires several observations

of events belonging to the tail of the distribution, and therefore

intrinsically rare. Finally, as MC, EVT requires finite variance of

the parameter that is sampled.

4 METHODOLOGY

In this section, we describe our approach to obtain probabilistic

guarantees and its theoretical underpinning.

4.1 Limitations of Traditional Statistics

In Section 3.2 we described the traditional tools from statistics that

could be used to obtain probabilistic guarantees when testing self-

adaptive software: MC and EVT. Both those methodologies suffer

from limitations that make them inconvenient for analysing the

results of the testing campaign ś i.e. being used in place of the

łScenario theoryž block in Figure 1. These limitations are: (i) arbi-

trary choice of testing parameters, (ii) unknown, case-dependent,

testing confidence (or testing adequacy), and (iii) assumption that

the variance of the measured quantity is finite.

MC and EVT use an arbitrary number of samples for the desired

estimation. The MC approach assumes that the set of samples is

large enough that the Central Limit Theorem holds [54], and the

EVT similarly relies on the convergence of the maxima samples

to the Extreme Value Distribution [26]. Unfortunately, in both the

theories, there is no general way to define how many samples are

needed to achieve convergence.

The impossibility of quantifying the convergence to the Gauss-

ian and Extreme Value Distributions has another relevant impli-

cation for the testing problem. If the desired testing confidence is

not reached, it is impossible to quantify how many extra tests are

needed to reach it. In other words, we cannot know a priori how

the confidence will change when performing one extra test.

Another assumption needed by both EVT and MC sampling is

that the performance parameter has finite variance. In practice, this

means that either the probability of it being infinite must be very

low, or that the parameter can only take finite values. Suppose we

1005

Testing Self-Adaptive Software ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

are trying to assess the worst-case execution time of a software

function. The presence of a bug could cause the processor to stall

and the function to never terminate. As long as the occurrence of

this bug is sporadic, it is possible to use EVT and MC to determine

metrics on the execution time. However, if the bug is triggered more

often, the (higher) probability of an infinite execution time would

prevent us from applying EVT and MC methods. Some commonly

used engineering solutions can enforce finite variance in given

performance parameters. An example of this is the presence of

timeouts. Introducing a timeout does not help overcoming the

limitation. In fact, the test that resulted in a timeout does not provide

a sample of the possible performance of the system (i.e., conveys

less information than its number-based counterpart, resulting only

in a ‘timeout reached’ outcome). Merging this information in the

statistical evaluation is non-trivial, and could even be detrimental

and hide behaviours of the system.

Our proposal overcomes these limitations by formulating the

testing problem as an infinite optimisation problem and solving it

using the scenario theory.

4.2 Scenario Theory for Software Testing

The scenario approach [12] was developed in the field of robust

control [31]. However, it is more generally applicable than control

design. It provides a method to solve infinite convex optimisation

problems. Infinite convex optimisation problems are a class of opti-

misation problems that appear frequently in robust control design.

However, they are also classically found in other fields, such as

decision making, finance, and management [11, 52]. The contribu-

tion of this paper is the formulation of the testing problem with

the scenario approach and the study of the results that can be ob-

tained for self-adaptive software. We will show that this allows us

to overcome the research challenges presented in Section 1 .

In our testing problem, we want to find bounds for a perfor-

mance parameter of an adaptive system (i.e., of the software and

a given adaptation strategy implemented on top of it). In general,

finding a safe and very pessimistic bound on what the software

can achieve is trivial. The interesting question is how much we

can move this bound toward higher performance. This problem

can be formulated as: we would like to maximise the value of the

performance parameter that we can safely guarantee when using a

given adaptation algorithm.

The evaluation of this performance bound can therefore be seen

as an optimisation problem. Solving optimisation problems means

finding the extreme value of a quantity, either the highest or the

lowest possible. In the following sections we introduce optimisation

problems, the scenario theory, and how they can be used to bound

the performance of a self-adaptive software.

Optimisation Problems: Optimisation problems are defined by:

(i) one or more decision variables, (ii) a cost function, and (iii) a

set of constraints. The decision variables are the quantities we can

choose and change. The cost function is the quantity we would like

to maximise or minimise, and it should be a function of the deci-

sion variables. The constraints are statements about the decision

variables that we want our final solution to satisfy. An example of

a problem that can be formulated as an optimisation problem is the

travelling salesman problem [2]. A salesman needs to determine a

route to visit a given number of cities, minimising the travelling

distance. The decision variables are the segments to add to the path

(from one city to the next), the cost function is the total travelled

distance, and the constraint is that all the cities in the given list are

visited at least once.

In our proposed testing methodology the decision variable is

the worst-case performance of the adaptation strategy (i.e. the best

value of the performance metric that we can safely guarantee), the

cost function is the worst-case performance itself, and each of the

test outcomes is a constraint. The performance bound evaluation

therefore becomes the following optimisation problem: maximise

the performance that can always be guaranteed, under the constraint

that it cannot exceed what is experienced in the conducted tests.

Being even more practical and using the web application ex-

ample from Section 1, suppose we want to provide guarantees on

its maximum response time thanks to the adaptation strategy. We

conduct a certain number 𝑛 of tests. Each test is composed of ser-

vicing 1000 requests in random execution instances of the overall

system, and monitoring their response times. We record the average

response times in the vector r = {𝑟1, 𝑟2, . . . , 𝑟𝑛}. Where 𝑟𝑖 is the

average response time of the web application for the 1000 requests

of the 𝑖 − 𝑡ℎ test. These values are constraints on what the software

can achieve. We then take the maximum element of the vector as

our worst-case performance metric,𝑤max = max{𝑟1, 𝑟2, . . . , 𝑟𝑛}. If

we tested all the possible execution cases, we could then say that we

guarantee that the response time will be lower than the maximum

value𝑤max. However, for self-adaptive software the set of possible

execution cases is likely infinite.

Ideally, if we could perform an infinite number of tests, we would

test the system in every possible situation. In this way, we could

obtain an exact evaluation of the worst case behaviour of the system.

In practice, this is apparently not achievable, and we have to rely

on only a finite number of tests. Despite this, when the number of

tests is sufficiently large, it will still provide significant information

about the general case.

Infinite Optimisation Problems: If we cast our (ideal) testing

problem into an optimisation problem, we would have infinite con-

straints (the infinite test cases). For our web application example

this would mean performing an infinite number of tests and ob-

taining the real bound.3 Unfortunately, solving an optimisation

problem with an infinite set of constraints is not always possible

(or desirable). Similarly, in our testing problem, we cannot perform

infinite tests.

Scenario theory: The scenario theory [12] addresses the problem

of solving an infinite optimisation problem while accounting only

for a finite number of the constraints. The theory provides proba-

bilistic guarantees on the generality of the solution. The scenario

3Solving an optimisation problem with an infinite number of constraints can also be
seen as robustly solving an uncertain optimisation problem. In an uncertain optimisa-
tion problem, the constraints belong to a given set (in our case infinite) but it is not
known which of them we have to account for. Solving the problem robustly means
finding a solution that accounts for all the possible constraints in the infinite set. This
ensures that the solution satisfies all the constraints that are relevant for the problem,
even though they are only a subset of the infinite set. Analogously, finding a bound
on the performance of an uncertain system (like adaptive ones) means looking for a
performance that we can always guarantee despite the different possible realisations
of the system.

1006

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA Claudio Mandrioli and Martina Maggio

approach is used to solve infinite optimisation problems. The ap-

proach is to transform the infinite-sized problem into a finite-sized

problem by randomly sampling a finite number of constraints from

the infinite set of possible ones. Then, it is possible to solve the

optimisation problem accounting only for the finite set of sampled

constraints. The scenario theory allows then to quantify the un-

certainty and the guarantees that are lost by only considering the

finite set.

In the testing of our web application, this corresponds to ob-

taining the probabilistic guarantee that the average response time

is lower or equal to 𝑤max in a high percentage of the cases. This

means that, with high probability, the future executions of the web

application would not result in a higher average response time, i.e.,

P(𝑟𝑚 ≤ 𝑤max | 𝑚 > 𝑛) = 𝑝𝑤 ≈ 1.

Using the scenario theory, we can compute the probability 𝑝𝑤
that the solution ś computed using the finite set ś does not satisfy all

the constraints in the possibly infinite set. For our testing problem,

this means that we evaluate the worst-case performance using only

a finite number 𝑛 of test results. We then compute the probability

that the obtained worst-case value𝑤max holds for all of the infinite

tests that we could possibly run ś i.e., we compute the probability

that in future tests we would obtain a worse value than𝑤max, which

is obtained using the first 𝑛 tests, i.e., that ∃𝑚 > 𝑛 | 𝑤𝑚 > 𝑤max.

In our specific optimisation problem for testing, we have only

one decision variable (the evaluation of our worst-case). We now

state the relevant result of the scenario theory in that case.4 We

denote with 𝜀 the probability of observing (in future executions) a

performance value that is worse than the observed worst-case up to 𝑛

tests (i.e., 𝜀 = 1 − 𝑝𝑤). In the original optimisation framework this

is the probability of not satisfying all the infinite constraints.

Using the scenario theory, we can evaluate the probability that,

in our 𝑛 test cases, we could have missed a test case with a worse

performance than the obtained bound. We call this probability 𝛽 and

it is computed from 𝜀 and 𝑛 as

(1 − 𝜀)𝑛 = 𝛽. (2)

In the original optimisation problem, 𝜀 quantifies the probability

that a new (randomly picked) constraint taken from the infinite

set would invalidate the solution found using the finite set. In our

testing analogy, 𝜀 is a quantification of how tight we want our

bound to be. Choosing a lower probability 𝜀 means having a tighter

bound, and choosing a higher value means that we allow for higher

risk of not having observed the true worst-case. We remark that

we can arbitrarily choose 𝜀, but this will result in different degrees

of confidence 𝛽 that we can have in the obtained result.

The probability 𝛽 can be seen as a quantification of how confident

we are of our testing campaign result. A lower value of 𝛽 implies

that we are more confident and a higher value represents a higher

probability that the final result is not correct. A tighter worst-case

bound (lower 𝜀), in fact, results in a higher 𝛽 , a higher probability

that we could have łmissedž a relevant test case (constraint) in

our sampling. In this sense, 𝛽 can be seen as a coverage parameter,

since it quantifies our confidence of having explored enough of the

possible instances of the self-adaptive software behaviour.

4We omit the complete formula for an arbitrary number of decision variables, since it
is not of interest in our case.

−1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

Performance

𝑝
(P
er
fo
rm

an
ce
)

0

2

4

6

𝜀 = probability

of observing a

number worse

than the current

worst-case (risk)

𝛽 = probability that one

of the 𝑛 tests should

have been in the 𝜀 region,

1 − 𝛽 : probability of 𝜀 being

the true value of the risk

N
u
m
b
er

o
f
te
st
o
u
tc
o
m
es

Figure 2: Graphical representation of the scenario parame-

ters 𝜀 and 𝛽 . In this case poor performance of the system

is captured by high values of the performance parameter

while low values correspond tomore desirable performance.

Figure 2 shows a graphical interpretation of the probabilities 𝜀

and 𝛽 . The dashed line shows the true and unknown probability dis-

tribution of the performance parameter. The histogram represents

the observations that we obtained when measuring the perfor-

mance of the system in our tests (i.e., our test results). The red

bar indicates the worst case obtained during the testing campaign.

The red area has size 𝜀, i.e., 𝜀 is the probability that in the future

we will experience a worst performance than the observed worst-

case. Here, 𝛽 is the probability that ś assuming that 𝜀 is the correct

area ś we would not have observed a test case in the 𝜀 area during

our 𝑛 observations. For example, if we had more test results, these

could or could not be lower than the observed worst-case. In any

case, with more observations, we are able to: (i) tighten the bound

(i.e., decrease 𝜀), (ii) increase the confidence (i.e., decrease 𝛽), or

(iii) do both things to a lesser extent. Without running additional

tests, we can tighten the bound at the cost of losing confidence

in it. Alternatively, we could loosen the bound and increase our

confidence.

We highlight that the theory does not require any prior knowl-

edge on the probability distribution of the performance metric (i.e.,

on the dashed line in Figure 2). This is the strength of scenario

theory with respect to the traditional methods that require assump-

tions on this probability distribution (e.g., its variance being finite).

We also remark that the test cases have to be randomly generated

(or taken from the execution of the software in different scenarios).

This is what guarantees the probabilistic characterisation. It could

be argued, in fact, that what is actually used is only the test case

where the system exposed the worst behaviour, and therefore this

one is the only test case of interest. But identifying the testing con-

ditions that expose the worst case might be not be straightforward

and could require a greater effort than running a number of ran-

domly generated test cases. In other cases, instead, the worst-case

performance could be a trivial, arbitrarily bad performance. For

example, the worst case response time of a web service will be

infinite if all the servers become unavailable. Differently, we ask

1007

Testing Self-Adaptive Software ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

instead the following question: given a number of tests we ran on

the real system, what is the average response time that we can

guarantee in 99% of the cases? We argue that this probabilistic char-

acterisation of self-adaptive software is (i) simpler to achieve and,

(ii) more interesting than its deterministic counterpart. Therefore,

when taking the probabilistic approach, even though a new test

might not change the worst-case bound, it is still valuable because

it increases the reliability and confidence in the obtained bound.

This probabilistic characterisation of the guarantees specifically

addresses the research challenge CH1. Our argument is that, since

deterministic guarantees cannot be given for adaptive systems, we

should aim for probabilistic ones. Within the choice of probabilistic

guarantees we have then addressed the other two research chal-

lenges. In fact, we have showed how to apply scenario theory for

quantifying the system performance and testing confidence. Re-

spectively, 𝜀 quantifies the probabilistic bound on the performance

(CH2), and 𝛽 quantifies the testing adequacy (CH3).

5 EXPERIMENTS

This section aims at validating the proposed methodology. Our

approach is designed to: (i) provide formal probabilistic guarantees

from experiments (CH1), (ii) allow us to perform a fair comparison

of different adaptation strategies (CH2), (iii) quantify the trade-off

between the number (and cost) of experiments and the obtained

probabilistic confidence (CH3).

The proposed methodology is application independent. We

highlight this strength presenting experimental data from well-

established adaptive software with different application domains:

healthcare and video processing. In particular, in Section 5.1 we

show how the methodology exposes the trade-off between the num-

ber of performed tests and the obtained probabilistic confidence

using a simulation tool for the Tele Assistance Service (TAS) [6, 70].

This shows how we have addressed the research challenges CH1

and CH3. In Section 5.2 we discuss how the methodology can

be used to compare different adaptation strategies using the Self-

Adaptive Video Encoder (SAVE) [44]. Our approach allows us to

address the research challenge CH2.

5.1 Data vs. Confidence Trade-Off

Aim: The aim of this set of experiments is to show the value of

the proposed methodology in quantifying the trade-off between

the number of performed tests and the testing confidence. We

directly connect the amount of collected experimental data with

the probabilistic testing confidence (CH3). The scenario theory

offers guarantees on the software performance level, also for test

cases that have not been explicitly executed (CH1).

Self-Adaptive Software: TAS is a service-oriented software appli-

cation that provides care and assistance to elderly people that suffer

from chronic diseases [6]. The software [70] periodically monitors

patients conditions using sensors and activates a chain of services

invocations. First, the patient conditions are sent to an Analysis

Service, that inspects the data and determines the next steps to be

taken for the patient well-being. The outcome of the analysis is one

of the following: (i) do nothing, (ii) invoke a Drug Service that will

compute a new medicine dosage, or (iii) invoke an Alarm Service

that will dispatch an ambulance.

0 100 200 300 400 500

0

1

2

3

𝜀: probability
of obtaining a

worse result than
the measured
worst case

1 − 𝛽 : probability
of 𝜀 being correct

Test (𝑛)

W
o
rs
t
C
as
e

0

0.01

0.02

0.03

C
o
n
fi
d
en
ce

Measured worst case

𝛽 : Confidence with 𝜀 = 0.05

𝛽 : Confidence with 𝜀 = 0.04

𝛽 : Confidence with 𝜀 = 0.03

𝛽 : Confidence with 𝜀 = 0.02

𝛽 : Confidence with 𝜀 = 0.01

Figure 3: Measured worst case and confidence level varying

the number of performed tests.

Each service can be realised by multiple service providers, po-

tentially doing different computations that follow the same spec-

ification and interface. During the execution of the software, the

selection of which provider to invoke to obtain a given function-

ality introduces an element of choice in the management of each

request. Service providers have different properties; e.g., quality

of the service, availability, success rate, and failure probability. In

our experiments we focus on service rate and availability in the

presence of failures, i.e., the number of requests processed per time

unit and the probability of serving incoming request successfully.

The presence of different service providers and variety of po-

tential needs for each request introduces the need to adapt the

software behaviour to the current operating conditions. Adapta-

tion strategies were introduced with the aim of selecting given

services based on properties to be enforced for the overall system,

e.g., [14, 24, 43, 60]. In our experiments, the adaptation strategy

should recognise the service providers with higher service rates and

prioritise them when distributing the requests. Also, since services

might not always be available, the adaptation layer should avoid

submitting requests to unavailable service providers.

To identify the best choices, the adaptation layer stores one

number per service provider, called weight. For all the alternatives,

the weight is initialised to 1 and incremented or decremented (using

a fixed step equal to 50 in our experiments) based on the service

performance. For each successfully processed request, the weight

increases, and for each failed invocation the weight decreases. We

further introduce a timeout and reset the weight to 1 if the service

invocation failed for all the requests sent in the timeout interval.

When distributing the requests, the weights are used to define

a probability distribution over the different providers of a given

service. The probability distribution can be obtained by normalis-

ing each of the weights over their overall sum. The requests are

distributed according to this probability distribution. We limit the

weights to an interval between 1 and 1000. This avoids that overly

positive weights attract all the requests. In the same way, negative

1008

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA Claudio Mandrioli and Martina Maggio

weights imply that the service provider is never chosen, making it

impossible to recover even in case of potentially correct operation.

Test Design: We use the TAS case study to highlight the trade

off between data and confidence, i.e., how the exploration of the

system’s behaviour improves with the increasing number of tests.

The definition of which inputs should be randomised is critical for

the correct coverage of the system’s behaviour. Here, we randomise:

(i) the requests profile, i.e., the number of incoming requests; (ii) the

workloadmix, i.e., the type of incoming requests; (iii) the availability

of the different service providers, i.e., a provider being reachable

or not; and (iv) the reliability of the service providers, i.e., request

processing may fail due to internal reasons.

We can use one or more performance parameters, depending on

the specific software and on what are the aspects that we want to

test. The performance parameter should be representative of the be-

haviour of the adaptation layer. Practically, this means that it should

enable the distinction of whether the adaptation layer worked well

for the specific test case, or not. In the TAS case we want to build a

system that is robust to the occurrence of failures. We choose as

performance parameter the average number of attempts needed for

a request to be correctly handled. Lower numbers indicate better

adaptation, 1 being the best possible value (often not achievable).

Results: Figure 3 shows the evolution of our quantities of inter-

est when we perform an increasing number of tests. In particular,

it shows: (i) the worst experienced average number of attempts

needed per request (using the left y-axis), and (ii) the confidence 𝛽

in the test outcome for different values of 𝜀 (using the right y-axis).

In the figure, we highlight with circle markers the newly experi-

enced worst cases. The worst case is monotonically increasing with

the number of conducted experiments. For example, in test #226, the

average number of attempts per request to complete the TAS cycle

is 2.081. This is a new worst case, as the previously experienced

value was 1.8479 (from test #117).

The probability of not performing a relevant test (i.e., a test that

would lead to a different worst case) is monotonically decreasing

with the number of performed experiments. Analogously, a higher

number of test cases is leading to a higher test coverage. Despite

an unchanged worst case, between tests #117 and test #226, our

confidence in the experimental results grew (lower values of 𝛽).

Decreasing the value of 𝜀 means being more conservative with

our evaluation. The non-solid lines show the confidence 𝛽 with

smaller values of 𝜀 (up to 1%). Many more experiments are needed

to obtain the same level of confidence when a smaller 𝜀 is selected.

Finally, using the scenario theory, we can state:

Based on the results of 𝑛 = 500 tests, requests sent to TAS (with

the described adaptation strategy) will not need more than

2.081 attempts on average to complete (despite service failures)

with probability 1 − 𝜀 = 0.98. This statement is correct with

probability 1 − 𝛽 = 0.99996.

This performance is apparently strongly dependant on the chosen

adaptation strategy. More interestingly, it does not depend on the

specific values of the quantities that have been randomised for the

test case generation. Conversely, we could determine the number

of tests to be performed based on the desired 𝜀 and 𝛽 values:

Given the desired probabilistic guarantees of confidence of 1 −

𝛽 = 0.99996 and a bound that holds in 98% of the cases, we

perform 𝑛 = 500 tests. In our case, the 500 tests indicate that in

the worst case 2.081 attempts are needed on average per request.

Suppose that we could afford to conduct only 𝑛 = 250 tests. In

Figure 3 we can see that the measured worst case is the same as

the complete test campaign. However, keeping 1 − 𝜀 = 0.98, we

could only claim a lower confidence in our test findings:

Based on the results of 𝑛 = 250 tests, requests sent to TAS (with

the described adaptation strategy) will not need more than

2.081 attempts on average to complete (despite service failures)

with probability 1 − 𝜀 = 0.98. This statement is correct with

probability 1 − 𝛽 = 0.9936.

Vice versa, we could also determine the larger bound 𝜀 that we need

to accept for if we wanted the same confidence 1 − 𝛽 = 0.99996 for

250 experiments. In this case we would obtain 1 − 𝜀 = 0.9603.

5.2 Adaptation Strategies Comparison

Aim: The aim of this second set of experiments is to show the use

of the proposed methodology for the comparison of different adap-

tation strategies. We run the tests and quantify the performance for

each case (CH2). The formal quantification allows us to compare

in a fair way the different proposals. Moreover, we also show the

application of the scenario theory for testing with different and

conflicting adaptation requirements (CH1). To further emphasise

the validity of the proposed methodology, in this section we run

the tests using the real software, rather than a simulation tool.

Self-Adaptive Software: SAVE [44] is a video encoding tool that

aims at automatically achieving the desired size compression of a

video stream whilst preserving as much as possible of its content.

We target video broadcasting services, where multiple videos are

streamed with a fixed amount of bandwidth and unpredictable

demands. We also assume that the video content is not known a

priori and is expected to change over time. The need for adaptation

arises from the strong dependence of the encoding performance on

the specific content of the video.

The adaptation strategy should leverage the frame characteristics

to autonomously find an effective combination of encoding param-

eters. For each frame, the adaptation layer selects: (i) the quality

parameter that specifies the compression density. It ranges between

1 and 100, where 100 preserves all frame details and 1 produces the

highest compression; (ii) the sharpen parameter, which specifies

the size of a sharpening filter to be applied to the image. The filter

size ranges between 0 and 5 where 0 indicates no sharpening; (iii)

noise correction, which specifies the size of a noise reduction filter,

also between 0 and 5. High filtering should in general generate a

more uniform image, making it simpler to compress.

For each frame the adaptation layer measures size and quality

and selects the encoding parameters accordingly, using its own

algorithm. The size is measured in bytes and the quality is mea-

sured using the Structural Similarity (SSIM) index [74]. This index

is a unitless metric that ranges between 0 and 1 and quantifies

the similarity between the original and the encoded frame (high

1009

Testing Self-Adaptive Software ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

index meaning high similarity). The measurements are used to eval-

uate the size error and the SSIM error as differences between the

measured values and the desired ones.

We compare four different adaptation strategies, two from the

original artifact [44] and two developed specifically for this work:

• Random: this adaptation strategy (from the original artifact)

selects random encoding parameters. We use it as a baseline

for our evaluation.

• Model Predictive Control (MPC): this adaptation strategy

(from the original artifact) exploits model predictive control

algorithm [32]. It solves a model-based optimisation problem

for each frame and uses the result to determine the encoding

parameters for the next frame. For our tests, we used the

tuning parameters from the original publication [43].

• Integral: we developed an heuristic adaptation strategy, in-

spired by control theory principles. Here, the size error is

used to choose the quality parameter. If the size is larger

than the desired one, the quality parameter is reduced by 5.

If smaller, the quality is increased by 5. The SSIM index de-

termines the choice of noise and sharpen filter radius. Both

are increased by 1 if the quality is more than desired, and re-

duced otherwise. From an analytical perspective, the errors

are integrated to perfect the encoding parameters choice.

• 𝜖-Greedy: this adaptation strategy is based on the homonym

machine-learning algorithm [63]. More specifically it be-

longs to the class of reinforcement learning algorithms. It al-

ternatively leverages two adaptation approaches: (i) a greedy

approach that exploits the knowledge of the best parame-

ters already encountered with probability 1 − 𝜖 , and (ii) a

random approach that explores new possible choices, by

randomly selecting new parameters with 𝜖 probability. The

performance of a given choice of parameters is quantified

based on the errors and normalised by the desired values.

Higher similarity and lower size are desired, inducing errors

that are close to zero. The greedy approach chooses the set

of parameters that is associated to the lowest performance

value. We use 𝜖 = 0.2.

Test Design: In SAVE, adaptation takes place along a stream of

frames, i.e. the feedback from one frame is used to improve the

encoding of the next frame. To capture the behaviour of the adapta-

tion strategy, each test should be an adequately long video, in which

changes occur, triggering the need for adaptation. We would like

to evaluate the performance of the different adaptation strategies

independently from the content of the processed videos.

According to the proposedmethodology, we define a set of videos

that can be considered a random sample, with respect to their

content. Here, we used the User Generated Content dataset from

Youtube [67]. This dataset is representative of videos uploaded by

users to Youtube. The videos are classified in categories and we

focused on the sport category, because, due to the ever-changing

scene, these are usually the most difficult to encode for real-time

streaming and will expose the most of the adaptation strategy

properties. The database contains 160 sport videos.

The adaptation strategy tries to achieve multiple objectives (a

given size of the encoded frames, and a given content loss) at the

same time. To capture the results obtained for both objectives, we

define two different performance parameters, used to measure the

outcome of the tests. The encoding performance on a single frame

is directly quantified as the errors on: (i) the encoding size and (ii)

the SSIM. For performance evaluation, we only consider relevant

the cases in which the size is larger than the desired value or the

quality is lower than the setpoint.

Intuitively, the size error is a problem when the images require

more bytes than desired, and the SSIM quality is a problemwhen the

image has less information than desired. We therefore evaluate the

performance over a video of an adaptation strategy as the average

of the size and SSIM errors weighted with the REctified Linear Unit,

𝑟𝑒𝑙𝑢 (·) function. The 𝑟𝑒𝑙𝑢 (·) function returns 0 for negative inputs

and leaves the input unchanged for positive values. The complete

formula for the performance parameters is shown in Equation (3),

where 𝑆𝑆𝐼𝑀𝑣 and 𝑆𝐼𝑍𝐸𝑣 are the integrated errors on the video 𝑣 ,

𝑆𝑆𝐼𝑀𝑠𝑝 and 𝑆𝐼𝑍𝐸𝑠𝑝 are respectively the SSIM and size setpoints,

𝑆𝑆𝐼𝑀𝑖 and 𝑆𝐼𝑍𝐸𝑖 are the SSIM and size of the 𝑖-th frame and 𝑛𝑓 is

the number of frames in the video.

𝑆𝑆𝐼𝑀𝑣 = (1/𝑛𝑓) ·
∑

𝑖
𝑟𝑒𝑙𝑢 (𝑆𝑆𝐼𝑀𝑠𝑝 − 𝑆𝑆𝐼𝑀𝑖),

𝑆𝐼𝑍𝐸𝑣 = (1/𝑛𝑓) ·
∑

𝑖
𝑟𝑒𝑙𝑢 (𝑆𝐼𝑍𝐸𝑖 − 𝑆𝐼𝑍𝐸𝑠𝑝) .

(3)

In our evaluation, we use a SSIM reference of 0.9, preserving most

of the content in the videos, and a frame size reference of 70% of

the size of a frame randomly picked from the uncompressed video.

The choice of having per-video references for the size is driven by

the strong dependence of the frame size on the specific video.

Results: We ran the 160 encoding tests with each adaptation strat-

egy. For each video 𝑣 , we computed the two performance parame-

ters 𝑆𝑆𝐼𝑀𝑣 and 𝑆𝐼𝑍𝐸𝑣 defined in Equation (3). The histograms in

Figure 4 show the results of the tests.5 The dashed grey lines mark

the average performance for both similarity index and size, and the

red dotted lines highlight the worst case experienced during the

tests. Tables 1 and 2 respectively show the performance parameters

for the SSIM and frame size.

The number of performed tests 𝑛 = 160 allows for the scenario

parameters 𝜀 = 0.03 and 𝛽 = 0.008. As for the TAS case study, this

is not the only possible choice and a tighter bound could be traded

for lower confidence (e.g. 𝜀 = 0.01 and 𝛽 = 0.04) or vice versa

(e.g. 𝜀 = 0.05 and 𝛽 = 0.0003). Apparently, the two quantities hold

equally for each of the tested adaptation strategies.

For the size performance, the MPC adaptation strategy vastly

outperforms all the other strategies. This is achieved at the price of

a SSIM adaptation performing worse than the Random strategy ś

i.e. the baseline. This is consistent with the adaptation objectives

stated in the design of the strategy, where the size compression

was considered the main objective [43]. The Integral adaptation

achieves the complementary result with respect to the MPC strat-

egy. It presents good performance (among the strategies studied

here) from the point of view of the SSIM but exposes the worse

performance for what concerns the size. This can be attributed to

the decoupled approach between the adaptation objectives pursued

with this adaptation. Size and quality are not really decoupled (al-

though the adaptation strategy treats them as such) and cannot

5In the figure, we enforce the same scales for the axes to ease the comparison between
the different plots. This results in hiding part of the plot of the size performance for
the Integral strategy.

1010

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA Claudio Mandrioli and Martina Maggio

Table 1: SSIM performance [adimensional].

Mean Std Max

Random 0.0710 ±0.0054 0.3251

MPC 0.1145 ±0.0068 0.4565

Integral 0.0315 ±0.0029 0.1685

Greedy 0.0135 ±0.0018 0.1777

Table 2: Size performance [bytes].

Mean Std Max

Random 8806 ±1033 82488

MPC 492 ±94 8718

Integral 126373 ±13942 992342

Greedy 1885 ±318 35191

0 0.1 0.2 0.3 0.4 0.5
0
20
40
60
80

Avg 0.0710, Max 0.3251

R
a
n
d
o
m

#
o
f
T
es
ts

0 50000 100000 150000 200000
0
20
40
60
80

Avg 8806, Max 82488

0 0.1 0.2 0.3 0.4 0.5
0
20
40
60
80

Avg 0.1445, Max 0.4565

M
P
C

#
o
f
T
es
ts

0 50000 100000 150000 200000
0
20
40
60
80

Avg 492, Max 8718

0 0.1 0.2 0.3 0.4 0.5
0
20
40
60
80

Avg 0.0315, Max 0.1685

In
te
g
ra
l

#
o
f
T
es
ts

0 50000 100000 150000 200000
0
20
40
60
80

Avg 126373, Max 992342

0 0.1 0.2 0.3 0.4 0.5
0
20
40
60
80

Avg 0.0135, Max 0.1777

Performance Metric: SSIM

𝜖
-G

re
e
d
y

#
o
f
T
es
ts

0 50000 100000 150000 200000
0
20
40
60
80

Avg 1885, Max 35191

Performance Metric: Frame Size [bytes]

Figure 4: SAVE adaptation over the Youtube dataset with different techniques: Random, MPC, Integral, and 𝜖-Greedy.

effectively be treated separately. The machine-learning based ap-

proach, 𝜖-greedy, achieves good performance for both parameters.

The SSIM performance is comparable to the one of the Integral

adaptation and the size performance is in the order of the tens of

kilobytes. This latter performance parameter can be considered

small with respect to the biggest frames in the dataset, whose size

is a few gigabytes. The 𝜖-Greedy adaptation strategy proves there-

fore to be the best one at simultaneously achieving both adaptation

objectives. This can be attributed to the exploration of the possible

combinations of encoding parameters and the coupled feedback

used for the two objectives.

Our testing methodology guarantees that the comparison be-

tween the different adaptation strategies is fair, thanks to the rig-

orous quantification of the obtained bounds. In particular, for the

𝜖-Greedy algorithm, the scenario theory ensures that with a proba-

bility of 1 − 𝜀 = 0.97 we will not observe: (i) an error worse than

0.1777 for the SSIM performance parameter, and (ii) an error worse

than 35191 Kb for the size performance parameter (see Equation 3

for the performance definitions). The confidence in our test cam-

paign is of 1 − 𝛽 = 0.992. If there was need to tighten the bound or

increase the confidence in the test campaign, the scenario theory

would directly provide the extra number of test cases needed.

We close the discussion on the obtained result by highlighting the

difference between worst-case and average-case metrics. Analysing

the average case (as would be done for example by classical Monte

Carlo approaches) for the results in Figure 4, one would conclude

that the Random adaptation strategy actually performs more or

less as well as the others. However, this is not at all true for the

worst-case metrics, which clearly expose the trade-off between

size and quality and the difference between having an adaptation

strategy that targets one or both these quantities and picking the

next frame configurations at random.

6 LIMITATIONS

The proposed approach has three main limitations. The first one is

rooted in the definition of the testing of an adaptive system. The

need for adaptation in a system rises from limited knowledge of

the operational environment. This generates an intrinsic limitation

to the definition of test cases, since the software, as a requirement,

should adapt to new unforeseen circumstances. On the other side

the testing process is only as effective as the test cases are represen-

tative of the real use case. These two objectives of the introduction

of adaptation and rigorous definition of test cases are colliding [5].

The software engineer needs to synthesise a definition of the set of

tests that adequately covers the adaptation use cases. However, the

adaptive layer programmer has an interest in leaving the use cases

as undefined as possible, for generality. In the TAS example, we

would like the adaptation layer to handle general providers failures.

However, this also means that (for proper testing) we need to define

possible service failure patterns.

1011

Testing Self-Adaptive Software ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

The second limitation arises from the interpretation of the per-

formance parameters as random variables. This is the key to exploit

random sampling and to leverage the different theories that are

based on probability theory. Achieving unbiased random sampling

can be challenging, especially when randomness cannot be quanti-

fied. The testing engineer must select a significant and relevant set

of samples, e.g., sport videos with random content to test SAVE.

A last limitation arises from the need to conduct many tests to

achieve high confidence. This is in fact time-consuming and the

process needs to be automated. On the other side, the number of

needed tests is known a priory and allows for timely allocation of

the resources. Also, within scenario theory the confidence grows

exponentially with respect to the number of tests, avoiding the

uncontrolled łexplosionž of the number of tests to be executed.

7 CONCLUSIONS

In this paper we addressed the problem of testing the performance

of a self-adaptive software system. Conventional testing techniques

are limited in the guarantees they provide, due to the adaptation

presence. The presence of adaptation makes this problem challeng-

ing, due to the need to test the system in the presence of uncertainty.

We proposed a probabilistic framework and leveraged the sce-

nario theory, a tool from robust control that was originally intended

for the design of control systems in the presence of uncertainty.

We reinterpreted the scenario theory results in light of our soft-

ware testing problem. This allows us to provide formal probabilistic

guarantees on the adaptation performance. Moreover, our method

provides a probabilistic quantification of the testing adequacy, that

can be used for the evaluation of testing coverage.

Finally, we empirically evaluated the effectiveness of our ap-

proach using two self-adaptive applications. We showed the trade-

off between the experimental campaign volume and the confidence

that can be obtained, and also demonstrated how to formally com-

pare different adaptation strategies.

ACKNOWLEDGMENTS

This work was partially supported by the Wallenberg AI, Au-

tonomous Systems and Software Program (WASP) funded by the

Knut and Alice Wallenberg Foundation. The project has received

funding from the European Union’s Horizon 2020 research and inno-

vation programme under grant agreement No 871259 (ADMORPH).

The responsibility for the content remains with the authors.

REFERENCES
[1] Yaser S. Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin. 2012. Learning

From Data. AMLBook.
[2] D.L. Applegate, R.E. Bixby, V. Chvátal, and W.J. Cook. 2011. The Traveling

Salesman Problem: A Computational Study. Princeton University Press. https:
//books.google.se/books?id=zfIm94nNqPoC

[3] Andrea Arcuri and Lionel Briand. 2011. Adaptive Random Testing: An Illusion
of Effectiveness?. In Proceedings of the 2011 International Symposium on Software
Testing and Analysis (Toronto, Ontario, Canada) (ISSTA ’11). ACM, New York, NY,
USA, 265ś275. https://doi.org/10.1145/2001420.2001452

[4] Andrea Arcuri, Gordon Fraser, and Juan Pablo Galeotti. 2014. Automated Unit
Test Generation for Classes with Environment Dependencies. In Proceedings of
the 29th ACM/IEEE International Conference on Automated Software Engineering
(Vasteras, Sweden) (ASE ’14). ACM, New York, NY, USA, 79ś90. https://doi.org/
10.1145/2642937.2642986

[5] R. I. Bahar, U. Karpuzcu, and S. Misailovic. 2019. Special Session: Does Approxi-
mation Make Testing Harder (or Easier)?. In 2019 IEEE 37th VLSI Test Symposium
(VTS). 1ś9. https://doi.org/10.1109/VTS.2019.8758649

[6] L. Baresi, D. Bianculli, C. Ghezzi, S. Guinea, and P. Spoletini. 2007. Validation of
web service compositions. IET Software 1, 6 (December 2007), 219ś232. https:
//doi.org/10.1049/iet-sen:20070027

[7] Antonia Bertolino and Paola Inverardi. 2019. Changing Software in a Changing
World: How to Test in Presence of Variability, Adaptation and Evolution? Springer
International Publishing, Cham, 56ś66. https://doi.org/10.1007/978-3-030-30985-
5_5

[8] Antonia Bertolino, Paola Inverardi, and Henry Muccini. 2003. Formal Methods in
Testing Software Architectures. Springer Berlin Heidelberg, Berlin, Heidelberg,
122ś147. https://doi.org/10.1007/978-3-540-39800-4_7

[9] Marcel Böhme. 2019. Assurance in Software Testing: A Roadmap. In Proceedings of
the 41st International Conference on Software Engineering: New Ideas and Emerging
Results (Montreal, Quebec, Canada) (ICSE-NIER ’19). IEEE Press, Piscataway, NJ,
USA, 5ś8. https://doi.org/10.1109/ICSE-NIER.2019.00010

[10] Lionel Briand, Shiva Nejati, Mehrdad Sabetzadeh, and Domenico Bianculli.
2016. Testing the Untestable: Model Testing of Complex Software-intensive
Systems. In Proceedings of the 38th International Conference on Software Engineer-
ing Companion (Austin, Texas) (ICSE ’16). ACM, New York, NY, USA, 789ś792.
https://doi.org/10.1145/2889160.2889212

[11] Giuseppe Carlo Calafiore. 2013. Direct data-driven portfolio optimization with
guaranteed shortfall probability. Automatica 49, 2 (2013), 370 ś 380. https:
//doi.org/10.1016/j.automatica.2012.11.012

[12] G. C. Calafiore and M. C. Campi. 2006. The scenario approach to robust control
design. IEEE Trans. Automat. Control 51, 5 (May 2006), 742ś753. https://doi.org/
10.1109/TAC.2006.875041

[13] G. Canfora and M. Di Penta. 2006. Testing services and service-centric systems:
challenges and opportunities. IT Professional 8, 2 (March 2006), 10ś17. https:
//doi.org/10.1109/MITP.2006.51

[14] Mauro Caporuscio, RaffaelaMirandola, and Catia Trubiani. 2017. Building Design-
time and Run-time Knowledge for QoS-based Component Assembly. Softw. Pract.
Exper. 47, 12 (Dec. 2017), 1905ś1922. https://doi.org/10.1002/spe.2502

[15] Francisco J. Cazorla, Tullio Vardanega, Eduardo Quiñones, and JaumeAbella. 2013.
Upper-bounding Program Execution Time with Extreme Value Theory. In 13th
International Workshop on Worst-Case Execution Time Analysis (OpenAccess Series
in Informatics (OASIcs), Vol. 30), Claire Maiza (Ed.). Schloss DagstuhlśLeibniz-
Zentrum fuer Informatik, Dagstuhl, Germany, 64ś76. https://doi.org/10.4230/
OASIcs.WCET.2013.64

[16] Tsong Yueh Chen, Fei-Ching Kuo, Robert G. Merkel, and T. H. Tse. 2010. Adaptive
Random Testing: The ART of Test Case Diversity. J. Syst. Softw. 83, 1 (Jan. 2010),
60ś66. https://doi.org/10.1016/j.jss.2009.02.022

[17] Betty H. Cheng, Rogério Lemos, Holger Giese, Paola Inverardi, Jeff Magee, Jesper
Andersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Giovanna
Marzo Serugendo, Schahram Dustdar, Anthony Finkelstein, Cristina Gacek, Kurt
Geihs, Vincenzo Grassi, Gabor Karsai, Holger M. Kienle, Jeff Kramer, Marin
Litoiu, Sam Malek, Raffaela Mirandola, Hausi A. Müller, Sooyong Park, Mary
Shaw, Matthias Tichy, Massimo Tivoli, Danny Weyns, and Jon Whittle. 2009.
Software Engineering for Self-Adaptive Systems. In Software Engineering for
Self-Adaptive Systems: A Research Roadmap, Betty H. Cheng, Rogério Lemos,
Holger Giese, Paola Inverardi, and Jeff Magee (Eds.). Springer-Verlag, Berlin,
Heidelberg, 1ś26.

[18] Betty H. C. Cheng, Kerstin I. Eder, Martin Gogolla, Lars Grunske, Marin Litoiu,
Hausi A. Müller, Patrizio Pelliccione, Anna Perini, Nauman A. Qureshi, Bernhard
Rumpe, Daniel Schneider, Frank Trollmann, and Norha M. Villegas. 2014. Using
Models at Runtime to Address Assurance for Self-Adaptive Systems. Springer
International Publishing, Cham, 101ś136. https://doi.org/10.1007/978-3-319-
08915-7_4

[19] Laurens de Haan and Ana Ferreira. 2010. Extreme Value Theory: An Introduction
(Springer Series in Operations Research and Financial Engineering) (1st edition.
ed.). Springer.

[20] Vânia de Oliveira Neves, Antonia Bertolino, Gugliemo De Angelis, and Lina
Garcés. 2018. Do We Need New Strategies for Testing Systems-of-systems?. In
Proceedings of the 6th International Workshop on Software Engineering for Systems-
of-Systems (Gothenburg, Sweden) (SESoS ’18). ACM, New York, NY, USA, 29ś32.
https://doi.org/10.1145/3194754.3194758

[21] Saikat Dutta, Owolabi Legunsen, Zixin Huang, and Sasa Misailovic. 2018. Testing
Probabilistic Programming Systems. In Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE
2018). Association for Computing Machinery, New York, NY, USA, 574ś586.
https://doi.org/10.1145/3236024.3236057

[22] Saikat Dutta, Wenxian Zhang, Zixin Huang, and Sasa Misailovic. 2019. Storm:
Program Reduction for Testing and Debugging Probabilistic Programming Sys-
tems. In Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing (Tallinn, Estonia) (ESEC/FSE 2019). Association for Computing Machinery,
New York, NY, USA, 729ś739. https://doi.org/10.1145/3338906.3338972

[23] Nicolas D’Ippolito, Víctor Braberman, Jeff Kramer, Jeff Magee, Daniel Sykes, and
Sebastian Uchitel. 2014. Hope for the Best, Prepare for the Worst: Multi-Tier

1012

https://books.google.se/books?id=zfIm94nNqPoC
https://books.google.se/books?id=zfIm94nNqPoC
https://doi.org/10.1145/2001420.2001452
https://doi.org/10.1145/2642937.2642986
https://doi.org/10.1145/2642937.2642986
https://doi.org/10.1109/VTS.2019.8758649
https://doi.org/10.1049/iet-sen:20070027
https://doi.org/10.1049/iet-sen:20070027
https://doi.org/10.1007/978-3-030-30985-5_5
https://doi.org/10.1007/978-3-030-30985-5_5
https://doi.org/10.1007/978-3-540-39800-4_7
https://doi.org/10.1109/ICSE-NIER.2019.00010
https://doi.org/10.1145/2889160.2889212
https://doi.org/10.1016/j.automatica.2012.11.012
https://doi.org/10.1016/j.automatica.2012.11.012
https://doi.org/10.1109/TAC.2006.875041
https://doi.org/10.1109/TAC.2006.875041
https://doi.org/10.1109/MITP.2006.51
https://doi.org/10.1109/MITP.2006.51
https://doi.org/10.1002/spe.2502
https://doi.org/10.4230/OASIcs.WCET.2013.64
https://doi.org/10.4230/OASIcs.WCET.2013.64
https://doi.org/10.1016/j.jss.2009.02.022
https://doi.org/10.1007/978-3-319-08915-7_4
https://doi.org/10.1007/978-3-319-08915-7_4
https://doi.org/10.1145/3194754.3194758
https://doi.org/10.1145/3236024.3236057
https://doi.org/10.1145/3338906.3338972

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA Claudio Mandrioli and Martina Maggio

Control for Adaptive Systems. In Proceedings of the 36th International Conference
on Software Engineering (Hyderabad, India) (ICSE 2014). Association for Comput-
ing Machinery, New York, NY, USA, 688ś699. https://doi.org/10.1145/2568225.
2568264

[24] Ross Edwards and Nelly Bencomo. 2018. DeSiRE: Further Understanding Nuances
of Degrees of Satisfaction of Non-functional Requirements Trade-off. In Proceed-
ings of the 13th International Conference on Software Engineering for Adaptive and
Self-Managing Systems (Gothenburg, Sweden) (SEAMS ’18). ACM, New York, NY,
USA, 12ś18. https://doi.org/10.1145/3194133.3194142

[25] Paul Embrechts. 2000. Extreme Value Theory: Potential And Limitations As An
Integrated Risk Management Tool. Derivatives Use, Trading and Regulation 6 (02
2000).

[26] Paul Embrechts, Thomas Mikosch, and Claudia Klüppelberg. 1997. Modelling
Extremal Events: For Insurance and Finance. Springer-Verlag, Berlin, Heidelberg.

[27] Fabiano Cutigi Ferrari, Joost Noppen, Ruzanna Chitchyan, and Awais Rashid
Lancaster. 2011. Investigating Testing Approaches for Dynamically Adaptive
Systems Work in Progress.

[28] A. Filieri, C. Ghezzi, A. Leva, and M. Maggio. 2011. Self-adaptive software meets
control theory: A preliminary approach supporting reliability requirements. In
2011 26th IEEE/ACM International Conference on Automated Software Engineering
(ASE 2011). IEEE, Lawrence, KS, USA, 283ś292. https://doi.org/10.1109/ASE.2011.
6100064

[29] Antonio Filieri, Henry Hoffmann, and Martina Maggio. 2014. Automated De-
sign of Self-adaptive Software with Control-theoretical Formal Guarantees. In
Proceedings of the 36th International Conference on Software Engineering (Hyder-
abad, India) (ICSE). ACM, New York, NY, USA, 299ś310. https://doi.org/10.1145/
2568225.2568272

[30] R.A. Fisher. 1930. The Genetical Theory of Natural Selection. OUP Oxford.
[31] B.A. Francis and P. Khargonekar. 1995. Robust control theory. Springer-Verlag.

https://books.google.se/books?id=81vvAAAAMAAJ
[32] C. E. Garcia, D. M. Prett, and M. Morari. 1989. Model Predictive Control: Theory

and Practice&Mdash;a Survey. Automatica 25, 3 (May 1989), 335ś348. https:
//doi.org/10.1016/0005-1098(89)90002-2

[33] Carlos A. González, Mojtaba Varmazyar, Shiva Nejati, Lionel C. Briand, and Yago
Isasi. 2018. Enabling Model Testing of Cyber-Physical Systems. In Proceedings of
the 21th ACM/IEEE International Conference on Model Driven Engineering Lan-
guages and Systems (Copenhagen, Denmark) (MODELS ’18). ACM, New York, NY,
USA, 176ś186. https://doi.org/10.1145/3239372.3239409

[34] Vincenzo Gulisano, Alessandro V. Papadopoulos, Yiannis Nikolakopoulos, Marina
Papatriantafilou, and Philippas Tsigas. 2017. Performance Modeling of Stream
Joins. In Proceedings of the 11th ACM International Conference on Distributed and
Event-based Systems (Barcelona, Spain) (DEBS ’17). ACM, New York, NY, USA,
191ś202. https://doi.org/10.1145/3093742.3093923

[35] Aymeric Hervieu, Benoit Baudry, and Arnaud Gotlieb. 2012. Managing Execution
Environment Variability during Software Testing: An Industrial Experience. In
Testing Software and Systems, Brian Nielsen and Carsten Weise (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 24ś38. https://doi.org/10.1007/978-3-642-
34691-0_4

[36] Robert M. Hierons and Mercedes G. Merayo. 2009. Mutation Testing from Prob-
abilistic and Stochastic Finite State Machines. J. Syst. Softw. 82, 11 (Nov. 2009),
1804ś1818. https://doi.org/10.1016/j.jss.2009.06.030

[37] San-Yih Hwang, Haojun Wang, Jian Tang, and Jaideep Srivastava. 2007. A
Probabilistic Approach to Modeling and Estimating the QoS of Web-services-
based Workflows. Inf. Sci. 177, 23 (Dec. 2007), 5484ś5503. https://doi.org/10.
1016/j.ins.2007.07.011

[38] J. Hänsel, T. Vogel, and H. Giese. 2015. A Testing Scheme for Self-Adaptive
Software Systems with Architectural Runtime Models. In 2015 IEEE International
Conference on Self-Adaptive and Self-Organizing Systems Workshops. 134ś139.
https://doi.org/10.1109/SASOW.2015.27

[39] Antonio Jiménez-Martín, Alfonso Mateos, and Sixto Ríos-Insua. 2005. Monte
Carlo Simulation Techniques in a Decision Support System for Group Decision
Making. Group Decision and Negotiation 14 (01 2005), 109ś130. https://doi.org/
10.1007/s10726-005-2406-9

[40] O. Johnson. 2004. Information Theory and the Central Limit Theorem. Imperial
College Press. https://books.google.se/books?id=r5XI8a0lYykC

[41] Keyur Joshi, Vimuth Fernando, and Sasa Misailovic. 2019. Statistical Algorithmic
Profiling for Randomized Approximate Programs. In Proceedings of the 41st Inter-
national Conference on Software Engineering (Montreal, Quebec, Canada) (ICSE
’19). IEEE Press, 608ś618. https://doi.org/10.1109/ICSE.2019.00071

[42] Brian Korver. 1994. The Monte Carlo Method and Software Reliability Theory.
[43] Martina Maggio, Alessandro Vittorio Papadopoulos, Antonio Filieri, and Henry

Hoffmann. 2017. Automated Control of Multiple Software Goals Using Multiple
Actuators. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering (Paderborn, Germany) (ESEC/FSE 2017). ACM, New York, NY, USA,
373ś384. https://doi.org/10.1145/3106237.3106247

[44] Martina Maggio, Alessandro Vittorio Papadopoulos, Antonio Filieri, and Henry
Hoffmann. 2017. Self-adaptive Video Encoder: Comparison of Multiple Adap-
tation Strategies Made Simple. In Proceedings of the 12th International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems (Buenos

Aires, Argentina) (SEAMS ’17). IEEE Press, Piscataway, NJ, USA, 123ś128. https:
//doi.org/10.1109/SEAMS.2017.16

[45] Claudio Mandrioli Martina Maggio. 2020. Artifact ESEC/FSE 2020. https:
//doi.org/10.5281/ZENODO.3896795

[46] M. A. Mehmood, M. N. A. Khan, and W. Afzal. 2018. Automating Test Data
Generation for Testing Context-Aware Applications. In 2018 IEEE 9th International
Conference on Software Engineering and Service Science (ICSESS). 104ś108. https:
//doi.org/10.1109/ICSESS.2018.8663920

[47] Zoltán Micskei, Zoltán Szatmári, János Oláh, and István Majzik. 2012. A Con-
cept for Testing Robustness and Safety of the Context-Aware Behaviour of
Autonomous Systems. In Proceedings of the 6th KES International Conference
on Agent and Multi-Agent Systems: Technologies and Applications (Dubrovnik,
Croatia) (KES-AMSTA’12). Springer-Verlag, Berlin, Heidelberg, 504ś513. https:
//doi.org/10.1007/978-3-642-30947-2_55

[48] Gabriel A. Moreno, Javier Cámara, David Garlan, and Bradley Schmerl. 2015.
Proactive Self-adaptation Under Uncertainty: A Probabilistic Model Checking
Approach. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE 2015). ACM, Bergamo, Italy, 1ś12. https://doi.org/10.
1145/2786805.2786853

[49] Gabriel A. Moreno, Alessandro V. Papadopoulos, Konstantinos Angelopoulos,
Javier Cámara, and Bradley Schmerl. 2017. Comparing Model-based Predictive
Approaches to Self-adaptation: CobRA and PLA. In Proceedings of the 12th In-
ternational Symposium on Software Engineering for Adaptive and Self-Managing
Systems (Buenos Aires, Argentina) (SEAMS ’17). IEEE Press, Piscataway, NJ, USA,
42ś53. https://doi.org/10.1109/SEAMS.2017.2

[50] Freddy Munoz and Benoit Baudry. 2009. Artificial table testing dynamically
adaptive systems. CoRR abs/0903.0914 (2009). arXiv:0903.0914 http://arxiv.org/
abs/0903.0914

[51] Yi Qin, Chang Xu, Ping Yu, and Jian Lu. 2016. SIT: Sampling-based interactive
testing for self-adaptive apps. Journal of Systems and Software 120 (2016), 70 ś
88. https://doi.org/10.1016/j.jss.2016.07.002

[52] Federico Alessandro Ramponi and Marco C. Campi. 2018. Expected shortfall:
Heuristics and certificates. European Journal of Operational Research 267, 3 (2018),
1003 ś 1013. https://doi.org/10.1016/j.ejor.2017.11.022

[53] A. Reichstaller and A. Knapp. 2018. Risk-Based Testing of Self-Adaptive Systems
Using Run-Time Predictions. In 2018 IEEE 12th International Conference on Self-
Adaptive and Self-Organizing Systems (SASO). 80ś89. https://doi.org/10.1109/
SASO.2018.00019

[54] Christian P. Robert and George Casella. 2005. Monte Carlo Statistical Methods
(Springer Texts in Statistics). Springer-Verlag, Berlin, Heidelberg.

[55] Christian P. Robert and George Casella. 2010. Monte Carlo Optimization. Springer
New York, New York, NY, 125ś165. https://doi.org/10.1007/978-1-4419-1576-4_5

[56] S. Rosario, A. Benveniste, S. Haar, and C. Jard. 2008. Probabilistic QoS and Soft
Contracts for Transaction-Based Web Services Orchestrations. IEEE Transactions
on Services Computing 1, 4 (Oct 2008), 187ś200. https://doi.org/10.1109/TSC.
2008.17

[57] Mazeiar Salehie and Ladan Tahvildari. 2009. Self-Adaptive Software: Landscape
and Research Challenges. ACM Trans. Auton. Adapt. Syst. 4, 2, Article 14 (May
2009), 42 pages. https://doi.org/10.1145/1516533.1516538

[58] L. Santinelli, Jérôme Morio, Guillaume Dufour, and Damien Jacquemart. 2014. On
the Sustainability of the Extreme Value Theory forWCET Estimation. OpenAccess
Series in Informatics 39. https://doi.org/10.4230/OASIcs.WCET.2014.21

[59] Ismayle de Sousa Santos. 2017. TESTDAS: Testing MEthod for Dynamically Adap-
tive Systems. Ph.D. Dissertation. Fortaleza, Brazil. Advisor(s) Castro Andrade,
Rossana Mariade.

[60] Stepan Shevtsov and Danny Weyns. 2016. Keep It SIMPLEX: Satisfying Multiple
Goals with Guarantees in Control-based Self-adaptive Systems. In Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (Seattle, WA, USA) (FSE 2016). ACM, New York, NY, USA, 229ś241.
https://doi.org/10.1145/2950290.2950301

[61] Harnam Singh and Preet Pal. 2013. Software Reliability Testing using Monte
Carlo Methods. International Journal of Computer Applications 69 (05 2013), 41ś44.
https://doi.org/10.5120/11834-7554

[62] Bento Rafael Siqueira, Fabiano Cutigi Ferrari, Marcel Akira Serikawa, Ricardo
Menotti, and Valter Vieira de Camargo. 2016. Characterisation of Challenges
for Testing of Adaptive Systems. In Proceedings of the 1st Brazilian Symposium
on Systematic and Automated Software Testing (Maringa, Parana, Brazil) (SAST).
Association for Computing Machinery, New York, NY, USA, Article 11, 10 pages.
https://doi.org/10.1145/2993288.2993294

[63] Richard S. Sutton and Andrew G. Barto. 1998. Introduction to Reinforcement
Learning (1st ed.). MIT Press, Cambridge, MA, USA.

[64] Porfirio Tramontana, Domenico Amalfitano, Nicola Amatucci, Atif Memon, and
Anna Rita Fasolino. 2019. Developing and Evaluating Objective Termination
Criteria for Random Testing. ACM Trans. Softw. Eng. Methodol. 28, 3, Article 17
(July 2019), 52 pages. https://doi.org/10.1145/3339836

1013

https://doi.org/10.1145/2568225.2568264
https://doi.org/10.1145/2568225.2568264
https://doi.org/10.1145/3194133.3194142
https://doi.org/10.1109/ASE.2011.6100064
https://doi.org/10.1109/ASE.2011.6100064
https://doi.org/10.1145/2568225.2568272
https://doi.org/10.1145/2568225.2568272
https://books.google.se/books?id=81vvAAAAMAAJ
https://doi.org/10.1016/0005-1098(89)90002-2
https://doi.org/10.1016/0005-1098(89)90002-2
https://doi.org/10.1145/3239372.3239409
https://doi.org/10.1145/3093742.3093923
https://doi.org/10.1007/978-3-642-34691-0_4
https://doi.org/10.1007/978-3-642-34691-0_4
https://doi.org/10.1016/j.jss.2009.06.030
https://doi.org/10.1016/j.ins.2007.07.011
https://doi.org/10.1016/j.ins.2007.07.011
https://doi.org/10.1109/SASOW.2015.27
https://doi.org/10.1007/s10726-005-2406-9
https://doi.org/10.1007/s10726-005-2406-9
https://books.google.se/books?id=r5XI8a0lYykC
https://doi.org/10.1109/ICSE.2019.00071
https://doi.org/10.1145/3106237.3106247
https://doi.org/10.1109/SEAMS.2017.16
https://doi.org/10.1109/SEAMS.2017.16
https://doi.org/10.5281/ZENODO.3896795
https://doi.org/10.5281/ZENODO.3896795
https://doi.org/10.1109/ICSESS.2018.8663920
https://doi.org/10.1109/ICSESS.2018.8663920
https://doi.org/10.1007/978-3-642-30947-2_55
https://doi.org/10.1007/978-3-642-30947-2_55
https://doi.org/10.1145/2786805.2786853
https://doi.org/10.1145/2786805.2786853
https://doi.org/10.1109/SEAMS.2017.2
https://arxiv.org/abs/0903.0914
http://arxiv.org/abs/0903.0914
http://arxiv.org/abs/0903.0914
https://doi.org/10.1016/j.jss.2016.07.002
https://doi.org/10.1016/j.ejor.2017.11.022
https://doi.org/10.1109/SASO.2018.00019
https://doi.org/10.1109/SASO.2018.00019
https://doi.org/10.1007/978-1-4419-1576-4_5
https://doi.org/10.1109/TSC.2008.17
https://doi.org/10.1109/TSC.2008.17
https://doi.org/10.1145/1516533.1516538
https://doi.org/10.4230/OASIcs.WCET.2014.21
https://doi.org/10.1145/2950290.2950301
https://doi.org/10.5120/11834-7554
https://doi.org/10.1145/2993288.2993294
https://doi.org/10.1145/3339836

Testing Self-Adaptive Software ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

[65] T. H. Tse, Sik-Sang Yau, W. K. Chan, Heng Lu, and T. Y. Chen. 2004. Testing
context-sensitive middleware-based software applications. In Proceedings - Inter-
national Computer Software and Applications Conference, Vol. 1. 458ś466.

[66] Huai Wang, W. K. Chan, and T. H. Tse. 2014. Improving the Effectiveness of
Testing Pervasive Software via Context Diversity. ACM Trans. Auton. Adapt. Syst.
9, 2, Article 9 (July 2014), 28 pages. https://doi.org/10.1145/2620000

[67] Yilin Wang, Sasi Inguva, and Balu Adsumilli. 2019. YouTube UGC Dataset
for Video Compression Research. arXiv:1904.06457 [cs.MM] https://media.
withyoutube.com/

[68] K. Welsh and P. Sawyer. 2010. Managing Testing Complexity in Dynamically
Adaptive Systems: A Model-Driven Approach. In 2010 Third International Con-
ference on Software Testing, Verification, and Validation Workshops. 290ś298.
https://doi.org/10.1109/ICSTW.2010.57

[69] Danny Weyns. 2012. Towards an Integrated Approach for Validating Qualities
of Self-Adaptive Systems. In Proceedings of the Ninth International Workshop
on Dynamic Analysis (Minneapolis, MN, USA) (WODA 2012). Association for
Computing Machinery, New York, NY, USA, 24ś29. https://doi.org/10.1145/
2338966.2336803

[70] DannyWeyns and Radu Calinescu. 2015. Tele Assistance: A Self-adaptive Service-
based System Examplar. In Proceedings of the 10th International Symposium on

Software Engineering for Adaptive and Self-Managing Systems (Florence, Italy)
(SEAMS ’15). IEEE Press, Piscataway, NJ, USA, 88ś92. http://dl.acm.org/citation.
cfm?id=2821357.2821373

[71] Kohsuke Yatoh, Kazunori Sakamoto, Fuyuki Ishikawa, and Shinichi Honiden.
2015. Feedback-Controlled Random Test Generation. In Proceedings of the 2015
International Symposium on Software Testing and Analysis (Baltimore MD USA)
(ISSTA 2015). Association for ComputingMachinery, New York, NY, USA, 316ś326.
https://doi.org/10.1145/2771783.2771805

[72] L. Yu, W. T. Tsai, Y. Jiang, and J. Gao. 2014. Generating Test Cases for Context-
Aware Applications Using Bigraphs. In 2014 Eighth International Conference on
Software Security and Reliability (SERE). 137ś146. https://doi.org/10.1109/SERE.
2014.27

[73] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and Christian
Holler. 2019. The Fuzzing Book. In The Fuzzing Book. Saarland University.
https://www.fuzzingbook.org/ Retrieved 2019-09-09 16:42:54+02:00.

[74] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. 2004. Image quality
assessment: from error visibility to structural similarity. IEEE Transactions on
Image Processing 13, 4 (April 2004), 600ś612. https://doi.org/10.1109/TIP.2003.
819861

1014

https://doi.org/10.1145/2620000
https://arxiv.org/abs/1904.06457
https://media.withyoutube.com/
https://media.withyoutube.com/
https://doi.org/10.1109/ICSTW.2010.57
https://doi.org/10.1145/2338966.2336803
https://doi.org/10.1145/2338966.2336803
http://dl.acm.org/citation.cfm?id=2821357.2821373
http://dl.acm.org/citation.cfm?id=2821357.2821373
https://doi.org/10.1145/2771783.2771805
https://doi.org/10.1109/SERE.2014.27
https://doi.org/10.1109/SERE.2014.27
https://www.fuzzingbook.org/
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861

	Abstract
	1 Introduction
	2 Approach Overview
	3 Related work
	3.1 Testing of Adaptive Systems
	3.2 Tools from Statistics

	4 Methodology
	4.1 Limitations of Traditional Statistics
	4.2 Scenario Theory for Software Testing

	5 Experiments
	5.1 Data vs. Confidence Trade-Off
	5.2 Adaptation Strategies Comparison

	6 Limitations
	7 Conclusions
	Acknowledgments
	References

