
Randomization as Mitigation of Directed Timing
Inference Based Attacks on Time-Triggered
Real-Time Systems with Task Replication∗

Kristin Krüger1, Nils Vreman2, Richard Pates2, Martina Maggio2,3,
Marcus Völp4, and Gerhard Fohler1

1 Department of Electrical and Computer Engineering, Technische Universität
Kaiserslautern
Kaiserslautern, Germany
(krueger,fohler)@eit.uni-kl.de

2 Department of Automatic Control, Lund University
Lund, Sweden
(nils.vreman,richard.pates,martina.maggio)@control.lth.se

3 Department of Computer Science, Saarland University
Saarland Informatics Campus, Saarbrücken, Germany
maggio@cs.uni-saarland.de

4 SnT - Université du Luxembourg
Esch-sur-Alzette, Luxembourg
marcus.voelp@uni.lu

Abstract
Time-triggered real-time systems achieve de-

terministic behavior using schedules that are con-
structed offline, based on scheduling constraints.
Their deterministic behavior makes time-triggered
systems suitable for usage in safety-critical envir-
onments, like avionics. However, this determinism
also allows attackers to fine-tune attacks that can
be carried out after studying the behavior of the sys-
tem through side channels, targeting safety-critical
victim tasks. Replication – i.e., the execution of
task variants across different cores – is inherently
able to tolerate both accidental and malicious faults
(i.e. attacks) as long as these faults are independent
of one another. Yet, targeted attacks on the timing
behavior of tasks which utilize information gained

about the system behavior violate the fault inde-
pendence assumption fault tolerance is based on.
This violation may give attackers the opportunity
to compromise all replicas simultaneously, in par-
ticular if they can mount the attack from already
compromised components. In this paper, we ana-
lyze vulnerabilities of time-triggered systems, focus-
ing on safety-certified multicore real-time systems.
We introduce two runtime mitigation strategies to
withstand directed timing inference based attacks:
(i) schedule randomization at slot level, and (ii)
randomization within a set of offline constructed
schedules. We evaluate these mitigation strategies
with synthetic experiments and a real case study
to show their effectiveness and practicality.

2012 ACM Subject Classification Computer systems organization - Real-time systems, Security and
privacy - Operating systems security, Software and its engineering - Scheduling, Computer systems
organization - Redundancy
Keywords and phrases real-time systems, time-triggered systems, security
Digital Object Identifier 10.4230/LITES.xxx.yyy.p
Received Date of submission. Accepted Date of acceptance. Published Date of publishing.

Editor LITES section area editor

∗ This work is partially supported by: (i) the EC through H2020 grant 871259, ADMORPH, (ii) funded by
the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 432878494, and (iii) FNR by
FNR-Core Jr. Project HyLIT - CS18/IS/12686210. Nils Vreman, Richard Pates, and Martina Maggio are
members of the ELLIIT stategic research area at Lund University.

© Kristin Krüger, Nils Vreman, Richard Pates, Martina Maggio, Marcus Völp, and Gerhard Fohler;
licensed under Creative Commons License CC-BY

Leibniz Transactions on Embedded Systems, Vol. XXX, Issue YYY, pp. 1–29
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LITES.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lites
http://www.dagstuhl.de

2 Randomization as Mitigation of Attacks on TT Real-Time Systems with Replication

1 Introduction

In the past, real-time systems security had been given little thought, primarily because systems
were closed, ran on specialized hardware, and had limited access from the outside. This has changed
in the past decade due to the growing need for connectivity, computing power, the shift from
single to multi- and many-core architectures, and software-component reuse (e.g., from federated
avionics architectures to Integrated Modular Avionics (IMA) [56]). These trends result in a general
increase of complexity, in particular at real-time application level, with the entailed increase of the
likelihood of vulnerabilities going undetected, even in well-tested software. Consequently, real-time
system designers must now anticipate the risk of hackers trying to compromise components and
being partially successful in this task. Security has become a primary concern during system design
and deployment, not only to prevent unauthorized information disclosure, but also to prevent
malicious exploitation of vulnerabilities [54]. This is especially true for systems in safety-critical
environments, thus for the majority of real-time systems.

Real-time systems provide deterministic and dependable behavior, both in the value-domain
and in the timeliness of responses. To achieve IEC 61508 or ISO 26262 compliance [19,21], industry
employs time-triggered real-time systems which, in addition to guaranteeing that deadlines will be
met, provide determinism in the sense that it is known which task executes at any given point in
time. Unfortunately, the very essence of this determinism opens threat vectors that attackers can
exploit to harm the system and the environment in which it operates. Aside from inheriting all
classic security concerns related to providing correct, trustworthy results, real-time systems must
also produce these results in time. Attackers may exploit this property by delaying the execution
of individual tasks in targeted time-domain attacks. Moreover, the traditional means for tolerating
accidental faults, for example active replication [10,14,20] or their counterparts for intentionally
malicious faults [2, 28, 40], which require only a majority of components to work correctly, are not
immune against time-domain attacks. Such attacks constitute a common mode fault against which
replication does not protect, even if replicas are diversified (e.g., through n-version programming).

In general, attacks on the timing of tasks are more effective the more information adversaries
obtain about the system and its schedule. Adversaries may fine-tune attacks to precise points
in time and thus remain stealthy to evade detection and act when the attack is most effective.
For such attacks, time-triggered systems appear the perfect target due to their deterministic
schedules. On the other hand, this determinism seems to be the perfect protection as tasks can
only execute during predefined time windows which do not overlap with other tasks execution.
However, this perception hinges on the assumption of perfect isolation, which is brittle as long as
tasks are analyzed only according to their specified behavior (e.g., when determining cache-related
preemption delays) and as long as isolation remains imperfect. We therefore have to agree with
Yoon et al. [58] in their conclusion that time-triggered scheduling is inherently vulnerable to timing
inference based attacks.

In this article, we consolidate the findings of three independent works [25, 27, 53] of the
authors into a comprehensive analysis of the vulnerabilities and countermeasures of time-triggered
systems against timing interference based attacks. We investigate how adversaries can exploit
vulnerabilities in an accomplice task to prepare and execute targeted attacks to singleton and
replicated critical subsystems. Based on this analysis, we propose two basic strategies to mitigate
attacks:
1. online randomization of the time-triggered schedule while preserving all timing constraints
2. random online selection of offline-prepared time-triggered schedules at hyperperiod boundaries.
These results, in particular the second, are formalized by constructing schedule sets of minimal
size that achieve the highest possible upper-approximated entropy. Through this formalization,

K. Krüger, N. Vreman, R. Pates, M. Maggio, M. Völp, and G. Fohler 3

we were able to conclude the effectiveness of online randomization in preventing adversaries from
mounting targeted attacks. Moreover, we were able to conclude that a set of 100 offline computed
schedules suffices for our second mitigation strategy. We have evaluated our approach using
synthetic task sets and the ROSACE real-world case study.

In addition to already published results, this article extends our mathematical foundation from
implicit to constrained deadline task sets (although the bound for the latter is not tight). The
extension is purely theoretical, but shows that constrained deadlines reduce the achievable upper-
approximated entropy (because they limit the amount of randomization that can be introduced in
the system). The article also presents the results of an upper-approximated entropy limitation
analysis for the ROSACE case study. This last result demonstrates that entropies close to the
theoretical optimum can be achieved with realistic task sets that do not necessarily have the ideal
parameter distribution for this optimum.

Section 2 introduces our system model. Section 3 describes our attacker model. We present
two mitigation strategies in Section 4. In Section 5, we discuss inherent limitations of schedule
diversity and randomization. We discuss attack vectors and mitigations strategies in a multicore
system with task replication in Section 6. In Section 7, we evaluate our strategies using two sets of
experiments: synthetic task sets and a real-world case study. We discuss our findings and explore
limitations that are due to the implementation in embedded systems. Section 8 shows related
work. Finally, we conclude our work in Section 9.

2 System model

We analyze a time-triggered real-time system implemented on a multicore platform, following a
partitioned schedule. For each core, a local schedule is constructed offline and then adjusted online
as discussed in Section 4. We assume the schedules have been validated. Precautions such as
authenticated boot are in place to ensure that the validated schedule is correctly deployed to the
real-time system. A real-time operating system is present, which we assume to be correct. That is,
we do not consider bare metal real-time implementations. Safety-critical tasks are replicated and
replicas are distributed across cores to benefit from improved resilience should one core fail. The
implementation of these replicas follows an implementation diversification approach to increase
system dependability. We assume the system is configured to be able to tolerate up to f faults of
arbitrary kind simultaneously and focus in this work on what is required to tolerate time-domain
attacks in addition. That is, our approach is equally applicable to systems prepared for tolerating
accidental faults or maliciously induced (value-domain) faults and for tolerating crash as well as
Byzantine faults. The replication degree, i.e. the number n of replicas required to achieve the
mentioned fault tolerance, depends on this fault model, on the achieved system synchrony and on
the kind of agreement, e.g. single value versus interval mid point. Again, our approach is prepared
for any combination of the above. We therefore assume what the above models have in common,
namely that no more than f replicas fail simultaneously and that replicas fail independently in
the value-domain. We shall see that, without further precautions, a general fault independence
requirement can no longer be maintained in the presence of time-domain attacks.

The scheduler on each core has access to a global time base typical for time-triggered systems.
We consider global time adequately protected and divide it into slots of the same size, which are
the granule for job preemption. Our focus lies on CPU-level scheduling, hence we do not consider
time-triggered networks or communication channels. Moreover, we assume a purely time-triggered
system without asynchronous event activation.

For each core c, we are given a task set T c = {τ c1 , τ c2 , . . . , τ cm} of mc periodic tasks. Each task

4 Randomization as Mitigation of Attacks on TT Real-Time Systems with Replication

τ ci is defined as the tuple τ ci = {eci , tci , dci}, where eci is the worst-case execution time of the task1 ,
tci is the task activation period, and dci is the task (relative) deadline. Throughout the rest of the
paper, we assume that dci ≤ tci , adopting the constrained deadline task model.

We define the time interval between task release and task deadline as this task’s execution
window. We denote with U c the task set utilization for core c, i.e., U c =

∑mc

i=1
ec

i/tci . We assume
that the task set is schedulable; ergo, there exists a resource distribution such that each task
meets its corresponding deadline. We denote with `c the hyper-period of the task set for core c,
i.e., the least common multiple lcm(·) of the task periods, `c = lcm(tc1, . . . , tcm).

We now look at a specific core c.2 A schedule sc for the task set in core c is a sequence of `c
elements, that contains numbers in the set {0, 1, . . . ,mc}, a number j ∈ {1, . . . ,mc} denotes the
execution of task τ cj . Assigning a given task to an element means selecting which task is executed
on core c for the corresponding time slot. Choosing j = 0 represents the execution of the idle task,
meaning keeping the processor in the idle state. We denote the idle task with τ c0 = {ec0, tc0, dc0}
and we determine its characteristics based on the characteristics of the task set. In particular,
tc0 = dc0 = `c, and ec0 = `c (1− U c).

Formally,

sc = (s1, s2, . . . , s`c) ; scj ∈ {0, 1, . . . ,mc}. (1)

We denote with scj the value of the element in position j, i.e., the task that is executed according
to the schedule sc in the j-th time unit. Given that the task set T c is schedulable, we can safely
assume that sc respects the constraints that for each task and each activation, the schedule assigns
to each task the required amount of execution time before the corresponding task deadline.

3 Threat Model and Vulnerability Analysis

In this section, we first describe our threat model, highlighting in particular the assumptions we
make on the attacker and how he or she is constrained by time-triggered systems. After that, we
analyze the vulnerabilities present in time-triggered systems.

3.1 Threat Model
We assume attackers are able to successfully infiltrate the system through undetected vulnerabilities.
Less stringent evaluation requirements make non real-time tasks as well as not safety-critical
tasks primary targets. In particular, we assume that critical tasks are sufficiently shielded against
direct attacks which requires attackers to find a pathway through less critical tasks. Firewalls and
gateways in autonomous vehicles and planes support this assumption. Even though we assume
intrusion detection [8, 32,35,60], hardening mechanisms and other defenses against the common
attack vectors (e.g. DoS attacks) are in place, we acknowledge that these techniques are imperfect
and compromises may go undetected.

Of particular concern to us are stealthy attackers [6, 7] that continue normal operation of the
compromised tasks while gathering timing information about other, critical tasks. The knowledge
about the timing of critical tasks allows to determine the point in time when a directed attack
is most effective, e.g., immediately before a safety-critical victim task is run. Possible targets

1 To guarantee the correct execution of the task set, we ensure that a time equal to the worst-case execution
time is assigned to each task in each of the execution periods (i.e., to each job of each task). This means that
the time budget is allocated to the task even when the job completes its execution early.

2 In the following, when it is clear from the context that we talk about one specific core (and in particular in
Section 5), we will drop the superscript c and use T , τi, ei, ti, di, U , `, s and sj .

K. Krüger, N. Vreman, R. Pates, M. Maggio, M. Völp, and G. Fohler 5

of such attacks in time-triggered systems are the low-level control loops. Destabilizing these
components (e.g., by increasing the dead time or by introducing jitter in the control cycle) may
provoke critical failure modes and thus result in a continuous denial of service [55], or worse,
unsafe control decisions.

The timing information required for coordinating such a stealthy attack can be inferred via
side channels constructed using shared resources like cache 3 or memory, or through covert timing
channels, such as the scheduling-covert-channel described by Boucher et al. [5].

While there exist mitigation strategies for closing side channels (for example in the real-time
context, the works of Völp et al. [52] or Mohan et al. [36] on fixed-priority schedulers), these methods
are incomplete. Additionally, systematically closing all side channels typically entails significant
performance overheads, e.g. when flushing caches prior to scheduling a lower classified task [17].
Meltdown [30] and Spectre [22] are recent examples demonstrating the difficulty of identifying and
closing such channels in sufficiently complex architectures. Exploiting non-architectural channels
(e.g., cache allocation) as communication medium, Meltdown and Spectre extract confidential
information from speculative processor state, breaking security on most Intel and many high-end
ARM and AMD processors. While real-time systems traditionally avoid such complex hardware,
their future integration in real-time system-on-chip, e.g., for meeting the extended demand of
autonomous driving functionalities, cannot be excluded.

We assume the real-time system features isolation mechanisms for enforcing the schedule of
tasks and for limiting direct access to the memory of other tasks. Real-time operating systems
(RTOS) that feature memory isolation support this assumption unless attackers are able to
penetrate the operating system. For the purpose of this paper, we assume the deployed RTOS
excludes the possibility of OS penetration.

One immediate consequence of this isolation assumption is that when the attacker has infiltrated
the system, he or she is inherently constrained by properties of the system and its architecture
for subsequent attacks on more critical tasks. In time-triggered systems, table-driven scheduling
prevents influencing other tasks, e.g. by manipulating the execution time of a compromised task.
That is, in contrast to event-triggered scheduling, each task is confined to its execution window
and thus the actual task execution time has no influence on subsequent tasks. Time-triggered
systems therefore provide temporal isolation of CPU time irrespective of the actual behavior of
tasks and without having to revert to timing leak transformations as described for example by
Völp et al. [52]. Additionally, messages are only accepted during a certain time window, i.e., if
they are timely.

Operating system enforced schedules combined with the assumed impenetrability of the OS
ensure that the attacker can neither directly influence the scheduler nor can he or she read the
offline constructed scheduling tables. Instead, the attacker has to infer the current schedule from
observations he or she makes about the system behavior. As we show in Section 3.2, schedules
typically carry too little information to remain secure over extended periods of time even if this
information is leaked only over low bandwidth channels. Furthermore, we assume that the global
clock remains under exclusive control of the operating system and that it cannot be affected by
the attacker.

Even though time-triggered systems eliminate CPU time as shared resource over which
information can be leaked and through which other tasks may be influenced, other resources
remain through which attackers may gain information and through which they can impact the

3 Depending on the system configuration, both data and instruction caches may exhibit similar channels or
interference possibilities (e.g., instruction cache evictions to maintain inclusiveness in the last-level cache).
We shall therefore not further distinguish the type of cache.

6 Randomization as Mitigation of Attacks on TT Real-Time Systems with Replication

timing behavior of other tasks. One prominent example of such a resource is the processor cache,
which healthy tasks leave behind in a predictable state but which compromised tasks can put into
a state that may not have been anticipated when computing the worst-case execution time of
subsequent tasks.

The use of time-triggered systems imposes further limitation on attackers. For example, side
channels and covert channels can only be constructed over explicitly or implicitly shared resources,
most of which time-triggered systems already multiplex with the table driven schedule in a manner
that is agnostic to the behavior of executing tasks. Access controls and partitioning techniques
like cache coloring [29] or bank coloring [59] further constrain the attacker. However, each such
countermeasure negatively impacts system performance and they are generally not complete.

For example Bechtel et al. [3] demonstrate a Denial-of-Service attack in caches that are not
prepared for partitioning and that therefore retain shared resources (e.g., for cache-miss handling).
Once exhausted by the attacker’s accomplice task, these resources are no longer available to the
victim, stalling its execution until all outstanding write-backs are handled. The authors only
consider the accomplice and victim task to be present, both running on different cores and - except
sharing the cache - are isolated from each other. However, usually there are multiple tasks running
in a real-time system and the attacker may not hit the victim in all cases without previously
aligning the execution of the two. If the attacker has inferred the schedule instead, he or she
is able to discern the best point in time to attack (e.g. right before the victim task runs). The
attacker can remain stealthy until the time of attack has come when the victim is most vulnerable.

In addition to the above, as we show in greater detail in Section 3.2, mitigating attacks
may require avoiding tempting optimizations such as bounding the delay a task can impose
through the cache by evaluating their execution patterns. Designers may be tempted to implement
optimizations for the sake of increasing performance while neglecting security.

In summary, we assume an attacker who has infiltrated non-critical tasks of the system and
wants to infer timing information (i.e. the system schedule) in order to mount a directed attack
against a critical victim task.

3.2 Vulnerability Analysis
One of the main vulnerabilities of a time-triggered system lies in its deterministic behavior. The
schedule is the same offline constructed schedule for every hyperperiod. For each point in time,
the task executing is known. An attacker who listens to the schedule over a side channel is able
to reconstruct the schedule in reasonable time even when the channel has low bandwidth. The
schedule comprises only a few bytes of information, thus even with a very low channel bandwidth
of, for example, 1 byte per second the schedule is found out in a matter of a few minutes. As
we show in Section 7.2.3, an offline schedule of a real-world system can consist of just 52 bytes.
Through the aforementioned channel, the attacker would know the schedule after one minute.
Therefore, we reason that timing information can be inferred and focus on mitigating directed
attacks under this assumption.

Another vulnerability of real-time systems in general is that worst case execution time (WCET)
derivation does not take malicious behavior into account. WCET estimated through simulation of
the expected behavior of the system does not account for malicious behavior. If a task is infiltrated
at runtime and, as shown in [3], starts accessing the cache to create maximum interference for the
next task execution, the tasks simulated worst case does not account for this malicious behavior
if this behavior is not encountered during uncompromised execution. Prior research on abstract
interpretation WCET derivation claims the assumption of cold caches is too pessimistic for a real
system and shows methods to achieve tighter and less pessimistic WCET bounds [18], [11]. Such
optimizations based on assumptions on task behavior increase the severity of this vulnerability.

K. Krüger, N. Vreman, R. Pates, M. Maggio, M. Völp, and G. Fohler 7

We have to choose WCET estimates in a way such that they also account for malicious behavior
and we have to check the impact of performance optimizations on security.

Another countermeasure, typically applied for accidental faults, but found to be effective
also against malicious faults aims to limit attacks only to up to f out of n replicas of critical
services. This is achieved by tolerating the attack through the remaining n− f replicas operating
in consensus (e.g., triple-modular redundant systems [20] tolerate one fault with n = 3 replicas).
The condition for such replicated systems to work is a synchronchonous invocation with the
same (sensor) value such that healthy instances produce the same result in a timely manner,
which forms the majority decision to apply. Assuming synchrony (i.e., reliable time), Byzantine
fault tolerant state machine replication (BFT-SMR) [2, 28, 40] relaxes the first assumption of
synchronous identical invocation at the cost of having to execute an initial agreement phase on a
singular value or a vector median point (excluding up to f outliers on both ends) [33].

Given that replicas should operate on the same data to produce (at least approximately) the
same results, it is tempting to schedule them as a gang in the same slots on all cores they span.
However, as we shall see in more detail in Section 6, this optimization is brittle and may lead to
attacks. We shall see in particular that some attacks, like the above cache DOS attack by Bechtel
et al. [3], bear the potential to cause common mode timing faults in all replicas simultaneously.

In the next section, we show mitigation strategies for directed attacks which prevent an attacker
from exploiting the vulnerability which results from not taking malicious behavior into account.

4 Mitigation Strategies

An attacker’s goal is to predict as precisely as possible when a victim task gets scheduled
immediately after a compromised task to then mount a directed attack. Our primary mitigation
strategy is therefore to impede predictions about the point in time when the victim is executed.
While we do not prevent timing inference, i.e. we assume the attacker may gain information about
the schedule, we are able to counter predictions by changing the points in time when tasks are
executed at runtime. For this purpose, we present two strategies to mitigate directed attacks in
this section. The first strategy takes an offline constructed time-triggered schedule as input and
randomizes the schedule online at job-level while maintaining deadline constraints. The second
strategy consists of a set of offline precomputed schedules one of which is randomly chosen at the
end of each hyperperiod during runtime. Both strategies are presented in [27] and are implemented
on each core of the system.

4.1 Slot-level Online Randomization
This mitigation strategy impedes the ability of an attacker to make predictions by randomizing
job execution in a time-triggered system at runtime. Schedules for time-triggered systems are
typically constructed offline [9], where real-time constraints are resolved and represented in a
scheduling table. If not handled properly, online randomization may violate deadline constraints.
Therefore, our approach analyzes the scheduling table offline and maps timing constraints of
jobs onto execution windows. Execution windows are time intervals defined by the earliest start
time of a job and its deadline. Each task has to finish execution within its execution window.
Proper handling and, possibly, modification of execution windows solves precedence constraints.
Additionally, if one of the goals of the system is to achieve low jitter, we can reduce the size of
execution windows accordingly.

During runtime, we randomize job execution within their respective execution windows. While
we confine jobs to their execution windows, they still share the same processor so we also
have to guarantee that their execution does not lead to a deadline miss of other jobs. Slot

8 Randomization as Mitigation of Attacks on TT Real-Time Systems with Replication

shifting is a scheduling algorithm which introduces the concept of spare capacities to ensure
timely execution [12]. We adopt this concept to guarantee task execution within their respective
execution windows even though the scheduling decision is randomized.

4.1.1 Background
Slot shifting uses a discrete time model [24], where the time interval which separates two successive
events (i.e. the granularity of the system) is called a slot [42]. We analyze the time-triggered
schedule and its task set offline to determine available leeway and unused resources in the schedule
for subsequent online adjustment. In order to track the available leeway of jobs in each execution
window, a capacity interval is created for each distinct deadline in the system. Jobs with the same
deadline belong to the same capacity interval. The start of a capacity interval Ij , start(Ij), is
defined as the maximum of the earliest start time est(Ij) of jobs τi in this interval and of the end
of the previous, i.e. preceding, capacity interval:

start(Ij) = max(end(Ij−1), est(Ij)), where est(Ij) = min(est(τi)) ∀τi ∈ Ij (2)

The end of the capacity interval is determined by the common deadline of all τi ∈ Ij . If needed,
empty capacity intervals without assigned jobs are created to fill gaps between capacity intervals
with assigned jobs. Figure 1 shows an example job set derived from an offline schedule with
earliest start times esti, worst case execution times Ci and deadlines di. We derive the presented
schedule in Section 4.1.3. In the schedule presented in Figure 1, i denotes the idle task. The
schedule does not represent a hyperperiod as this is not necessary for illustratory purposes. The
algorithm operates the same whether considering the hyperperiod or not.

i
0

i
1

τ1
2

τ1
3

i
4

τ2
5

τ3
6

τ3
7 8

? ? ?

6 6
� -I1 � -I2 �-I3 τi esti di Ci

τ1 0 4 2
τ2 0 7 1
τ3 4 8 2

Figure 1 Job set and capacity intervals derived from offline schedule

Three distinct deadlines exist for that job set, thus at least three capacity intervals have to
be created. The first interval I1 starts at 0 and ends at the deadline of its assigned set of jobs
{τ1}, which is 4. The job assigned to next interval, τ2, shares the earliest start time of τ1, but
according to Equation 2, a capacity interval is not allowed to start before the end of the previous
interval. Note that capacity intervals do not overlap, while execution windows may. Thus, I2
starts at 4 and ends at the deadline of its assigned set of jobs {τ2}, which is 7. We create interval
I3 accordingly. We show the resulting capacity intervals together with an exemplary schedule in
Figure 1.

The spare capacity sc(Ij) of a capacity interval Ij is equal to the amount of free slots in Ij .
sc(Ij) is defined as the interval length minus the sum of worst case execution times Ci of all its
jobs τi minus slots borrowed from the succeeding interval (denoted as negative spare capacity),
see Equation 3 below.

sc(Ij) = |Ij | −
∑
τi∈Ij

Ci + min (sc(Ij+1), 0) (3)

Spare capacities are calculated starting from the latest capacity interval in the hyperperiod
to the earliest. Borrowing occurs in those cases where the current capacity interval provides
insufficient slots to accommodate all its jobs, which results in a negative spare capacity (I3 in

K. Krüger, N. Vreman, R. Pates, M. Maggio, M. Völp, and G. Fohler 9

Figure 2). Capacity intervals with a negative spare capacity borrow the needed amount of slots
from the preceding interval. Negative spare capacities do not necessarily imply infeasibility in the
scheduling sense. Spare capacities are a means to track “free” slots in a capacity interval. We
show the resulting offline calculated spare capacities (for time t=0) in Figure 2 of Section 4.1.3,
where we present the calculation of spare capacities using Equation 3.

If we have calculated all spare capacities, the first capacity interval has a non-negative spare
capacity provided the task set is schedulable. A task set is schedulable when its utilization is
equal to or less than one since we consider each core of a partitioned multicore system separately.
Positive spare capacities represent the amount of unused resources and leeway [12] of an interval
which can be given to other tasks with overlapping execution windows to adjust the schedule. Such
adjustments may require updating spare capacities. At runtime, we update the spare capacities
after each slot to reflect the impact of scheduling decisions on the availability of “free” slots.

We consider three different cases for spare capacity updates:
1. No job executes in a given slot. In this case we have to decrease the spare capacity of the

current capacity interval by one.
2. A job executes which belongs to the current capacity interval. In this case the spare capacity

of the current interval does not change because the WCET of this job is already considered.
3. A job executes which belongs to a later capacity interval. In this case the current interval’s

spare capacity needs to be decreased by one, but executing the job ahead of time frees resources
in its assigned interval. We can therefore increase the spare capacity of the job’s interval by
one. If this capacity increase happened on a negative spare capacity (i.e., the job’s interval
is borrowing from another capacity interval), we also increase the spare capacity from the
interval from which it borrows, as it needs to lend one slot less. Cascaded borrows are resolved
recursively in a similar fashion.

The original slot shifting algorithm in [12] and [42] further integrates aperiodic tasks into a
time-triggered schedule. In this paper, we only adopt the concept of capacity intervals and spare
capacities to guarantee timely execution of periodic jobs within their execution windows without
violating constraints of other jobs. Thus, our offline algorithm needs to create only one table with
execution windows and a second one with capacity intervals and their respective spare capacities.
For our online randomizing scheduler, we update the spare capacities at runtime to keep track of
scheduling decisions.

4.1.2 Slot-Level Randomization of Jobs

Our first attack mitigation strategy is to randomize job execution at runtime. Therefore, at the
beginning of each slot, we invoke the online scheduler to select the next job from all tasks in
the ready queue at random. We consider the idle task to be part of the ready queue in order to
allow for more permutations of the schedule. Even though we select tasks randomly, we have
to guarantee that no scheduled job violates the deadline constraints of other jobs. Thus, before
taking a scheduling decision, we check if the spare capacity of the current capacity interval is
greater than zero. If this condition is fulfilled, any job is allowed to run, as sufficient time remains
in the current and later intervals such that no job misses its deadline. In other words, as long as
the schedule has leeway, each ready job has the same probability of getting selected for a slot.
Otherwise, if the spare capacity of the current interval drops to zero, there is no more leeway to
schedule arbitrary jobs. However, because we have already considered jobs of the current capacity
interval in the spare capacity computation and because all such jobs share the same deadline,
we can still randomize their execution. That is, in the case of zero leeway, the online scheduler

10 Randomization as Mitigation of Attacks on TT Real-Time Systems with Replication

randomly selects among the jobs of the current capacity interval. After the job has run during its
assigned slot, we update spare capacities as shown in Section 4.1.1.

Combining time-triggered scheduling with our slot-level randomization impedes online pre-
dictions about the schedule. Since the scheduler randomly selects the next job at runtime,
predictions about which job runs next are not possible as long as execution windows allow for
leeway. Furthermore, time-triggered scheduling inherently confines application-level leakage to
shared resources which are held across slots [51]. An investigation of leakage countermeasures
for such resources is out of the scope of this paper. While our randomization algorithm does not
allow for slot-level determinism typical for time-triggered systems, it still allows for execution
window determinism [13].

4.1.3 Example
Let us illustrate the proposed scheduling algorithm for our example jobset depicted in Figure 1.
First, we have to calculate the initial spare capacities of the capacity intervals. Starting at the last
capacity interval, I3, its spare capacity is the difference between the interval length of 1 and the
worst case execution time of its assigned jobs, τ3, which results in a spare capacity of −1. I2 has
an interval length of 3, from which we substract the worst case execution time of τ2 (i.e., C2 = 1)
and the slots borrowed by the preceding interval I3 (by adding sc(I3) = −1), which results in a
spare capacity of 1. We calculate the spare capacity of I1 accordingly. Figure 2 shows the resulting
spare capacities in the column for time t = 0.

time t 0 1 2 3 4 5 6 7 8
sc(I1) 2 2 1 0 0 0 0 0 0
sc(I2) 1 1 1 2 2 1 1 0 0
sc(I3) -1 -1 -1 -1 -1 -1 0 0 0

τ1
0

i
1

τ2
2

τ1
3

i
4

τ3
5

i
6

τ3
7 8

? ? ?

6 6
� -I1 � -I2 �-I3

Figure 2 Left: Spare Capacities of I1, I2 and I3 over time, Right: Randomized Schedule

At time t = 0, the scheduler sees that the spare capacity of the current interval I1 is positive
and picks τ1 randomly for the first slot at t = 0 from the list of ready jobs τ1, τ2, plus the idle job
i. As τ1 executes within its own interval, the current spare capacity does not change and remains
positive. The idle job i is selected to execute during the next slot starting at t = 1, necessitating a
decrease of the spare capacity by one. τ2 is randomly selected for time t = 2. τ2 does not execute
within its own capacity interval, therefore we reduce sc(I1) by one and increase sc(I2) by one,
since τ2 belongs to interval I2 and I2 does not borrow from I1. sc(I1) = 0 at t = 3 constrains
the online scheduler to select from the set of jobs {τ1} that belong to I1. τ3 becomes active at
time t = 4 and is selected to execute at time t = 5 after picking the idle thread to run at t = 4.
This is valid, as sc(I2) is positive, and thus we reduce sc(I2) by one and increase the capacity
interval of τ3, I3, by one. However, at this time, I3 is still borrowing one slot from I2. τ3 executed
prior to its own capacity interval, thus I3 needs to borrow one slot less from I2 and therefore
we increase sc(I2) by one, resulting in no change of sc(I2). In summary, sc(I2) stays at 1 and
sc(I3) is increased by one. We show further exemplary scheduling decisions and the resulting
spare capacity updates in Figure 2.

4.2 Offline Schedule-Diversification
The second mitigation strategy we investigate in this work precomputes multiple schedules
offline and switches between them randomly at hyperperiod boundaries during runtime. Resolving
scheduling constraints offline ensures lower runtime overheads, but increases the chance of attackers

K. Krüger, N. Vreman, R. Pates, M. Maggio, M. Völp, and G. Fohler 11

to guess the schedule and launch directed attacks. For example, repeating the same offline
computed schedule several times allows an attacker to infer the schedule, as illustrated in [36], and
to coordinate directed attacks from compromised tasks scheduled later in the same hyperperiod or
in subsequent hyperperiods. To partially mitigate this threat vector, we randomly switch schedules
at the end of each hyperperiod. As a consequence, even when the attacker is able to recognize
different schedules and has enough memory available to store them, the more schedules have been
generated, the harder it is for the attacker to recognize which schedule has been chosen for the
current hyperperiod and the less time remains to perform a directed attack. In particular, if the
attacker is not able to identify the current schedule in time for his attack, the attacker misses the
opportunity to perform a directed attack. Additionally, carefully created execution windows solve
deadline and precedence constraints.

We show in Section 7.2.5 that computing and storing all possible, feasible schedules in memory
is impractical. However, in non-embedded systems (e.g., SCADA), we foresee the continuing
generation of schedules in a non real-time subsystem (e.g., in a sufficiently protected external
control station) and an update of the set of schedules downloaded to the real-time device. This
way, once a new set of schedules has been produced (possibly by recombining precomputed and
stored schedules), the real-time device can switch to the new set at the end of the hyperperiod.
Double buffering, signing and encryption of schedules ensures that the current set of schedules
remains valid while the system validates the confidentiality and integrity of the new schedules
(e.g., in a background task). Irrespective of update possibilities, the selected subset of schedules
out of the set of all feasible schedules for a given task set should impede directed attacks as much
as possible. We present two criteria to select subsets that complicate directed attacks in addition
to guaranteeing deadlines and respecting task precedence constraints.

4.2.1 Random Selection

For the sake of low implementation complexity, the subset can be selected randomly. That is,
schedules are created randomly and checked to meet all scheduling constraints. The schedules
fulfilling this requirement form the set of schedules for the system. Schedule creation is stopped
after a certain number of feasible schedules has been constructed. We recommend this method for
large subsets, when enough memory is provided to store a large number of different schedules.
If the subset is large enough, the random selection process provides a set of schedules with a
schedule entropy close to the set of all feasible schedules. Other criteria impose more constraints
on the selection process and therefore increase its complexity.

4.2.2 Schedule Entropy

Another criterium for schedule selection is schedule entropy as presented in [58]. This metric
makes use of an approximation of the Shannon entropy and can be used to quantify the diversity
between schedules. Using an entropy-like function, we can quantify what is the diversity of a set
of schedules and then we can compute the set of schedules that maximizes the diversity. This
allows us to randomly pick a schedule in this set and give the attacker the least possible amount of
information (because from the outside, the task set execution would seem as diverse as possible).

Clearly, deadline and period constraints limit the amount of diversity that can be achieved. In
Section 5 we investigate the fundamental limitations to the achievable diversity that are imposed
by the task set characteristics.

12 Randomization as Mitigation of Attacks on TT Real-Time Systems with Replication

5 Fundamental limitations to diversity and randomization

In this section, we analyze the schedule of each core separately. For each of them, our final
objective is to determine a set K of k schedules that is as diverse as possible, keeping k as small
as possible. What we are trying to assess is how effective is the randomization, given that the
schedules should respect the time constraints. We are then trying to determine how diverse can a
generic set of schedules be, given the constraint that it preserves the deadlines of all the tasks in
the task set.

The diversity of the set of selected schedules K can be measured in different ways. The authors
of [58] propose the use of entropy-like functions to measure the diversity of the schedule set, the
slot entropy and the upper-approximated entropy. In the following, we are going to borrow these
definitions to evaluate the schedule set diversity. We first define the slot count Cj,i,K, as the
number of occurrences of a task i in a given scheduling slot j in the set K, and then use that to
formally define the slot entropy Hj(K) and the upper-approximated entropy H̃(K). We denote
with φ(x) the function

φ(x) =
{

0 x ≤ 0
−x · log2(x) x > 0

.

I Definition 1. Given a set of k valid schedules K = {s(1), s(2), . . . , s(k)} for the task set T , the
j-th time unit, and the i-th task τi, we define the slot count Cj,i,K as a function that counts
the occurrences of the task i in the given position j in the set K. Using the square brackets as
the Iverson brackets — that evaluates to 1 if the proposition inside the bracket is true, and to 0
otherwise — we can then write Cj,i,K as

Cj,i,K =
∑
s(q)∈K

[
s

(q)
j = i

]
=

k∑
q=1

[
s

(q)
j = i

]
. (4)

Using the slot count, we can now formally write the slot entropy and the upper-approximated
entropy according to the definitions given in [58].

I Definition 2. The slot entropy Hj(K) can be written as a function of the tasks found in slot j,
i.e.,

Hj(K) =
m∑
i=0

φ

(
Cj,i,K

k

)
=

m∑
i=0
−
Cj,i,K

k
· log2

Cj,i,K

k
. (5)

I Definition 3. The upper-approximated entropy is the sum of all the slot entropies in the
hyper-period, i.e.,

H̃(K) =
∑̀
j=1

Hj(K) =
∑̀
j=1

m∑
i=0
−
Cj,i,K

k
· log2

Cj,i,K

k
. (6)

Now we can formally state the objective of minimizing the information that can be extracted
from the system by observing its schedule. Given a task set T and the set of all valid schedules S,
what is the smallest subset of S that maximizes the upper-approximated entropy?

Mathematically, this problem can be written as the following optimization problem.
I Problem 4. Given a task set T and a valid set of schedules S, solve

K∗ = arg min
K⊆S

|K| s.t. H̃(K) = max
L⊆S

H̃(L).

K. Krüger, N. Vreman, R. Pates, M. Maggio, M. Völp, and G. Fohler 13

Here L is any generic subset of S, and we search for the set K with the minimum cardinality that
achieves the maximum upper-approximated entropy. This problem consists of two main aspects.
First we must determine the maximum upper-approximated entropy; that is we must solve

H̃∗ = max
L⊆S

H̃(L).

Then we must find the smallest subset K∗ ⊆ S with upper-approximated entropy H̃(K∗) = H̃∗.
Problem 4 could be approached by an exhaustive search. If one evaluated the upper-

approximated entropy for every element in the power set of S, the optimal solution to Problem 4
could be obtained by choosing the smallest subset that achieves H̃∗. However since the cardinality
of S is typically large, this will be infeasible in practice. Such an approach is also naïve. Afterall
it seems improbable that the solution to Problem 4 would have cardinality one, so we could rule
those subsets out of our exhaustive search.

One natural question then arises: Are there any fundamental limits on the achievable maximum
upper-approximated entropy or the cardinality of K? The remainder of this section is devoted to
answering this question. We show that the properties of the task set T impose fundamental limits
both on H̃∗, and on the cardinality of the subsets that can achieve this bound.

The fact that each task in the task set T must be executed with a certain frequency imposes a
fundamental limit on the maximum upper-approximated entropy. The intuitive explanation for
this is as follows. It is our objective to select a set of schedules that minimizes the information that
an attacker can obtain by observing the execution of any individual task. We therefore want it to
appear as if each task was allocated randomly to each given slot. However we cannot necessarily
make this allocation appear random with equal probability, because we are required to execute
tasks for given time units a certain number times in each hyper-period and only in the first time
units in the period, to meet a given deadline. Therefore the best we can do is make each task
appear random with probability specified by its relative frequency in the hyper-period and not
after its deadline is expired. The entropy of the corresponding random variable then specifies an
upper bound on the upper-approximated entropy of any set of schedules K ⊆ S.

I Theorem 5. Given any schedule set K ⊆ S for a constrained deadline taskset,

H̃(K) ≤ ` ·
m∑
i=0

di

ti
· φ (ei/di) =: H̃ub (7)

Proof. The proof hinges on three key observations. The first is that since the function φ(x) =
−x · log2(x) is continuous and concave for all x > 0, given any set of positive weights aj ≥ 0,

∑̀
j=1

ajφ

(
Cj,i,K

k

)
≤

∑̀
j=1

aj

φ

(∑`
j=1 ajCj,i,K/k∑`

j=1 aj

)
. (8)

The second is that the i-th task can only be active during the first di slots of the task period ti.
Therefore since φ (0) = 0,

φ

(
Cj,i,K

k

)
= Ij,iφ

(
Cj,i,K

k

)
, (9)

where Ij,i = 1 if mod (j − 1, ti) < di, and Ij,i = 0 otherwise (i.e. Ij,i indicates whether the i-th
task can be active in slot j). By setting aj ≡ Ij,i, together (8)–(9) imply that

∑̀
j=1

φ

(
Cj,i,K

k

)
≤

∑̀
j=1

Ij,i

φ

(∑`
j=1 Cj,i,K/k∑`

j=1 Ij,i

)
. (10)

14 Randomization as Mitigation of Attacks on TT Real-Time Systems with Replication

The final observation is that

∑̀
j=1

Cj,i,K

k
= `

ei

ti
,
∑̀
j=1

Ij,i = `
di

ti
. (11)

These relations follow from the fact that K contains k valid schedules (i.e. task i is given ei slots
per period ti, and can only be active in the first di slots). Substituting (11) into (10) shows that

∑̀
j=1

φ

(
Cj,i,K

k

)
≤

(
`
di

ti

)
φ

(
ei
di

)
.

The result follows by summing over all the tasks (c.f. the definition of the upper-approximated
entropy). J

I Remark. Notice that in the case of an implicit deadline taskset (di = ti∀i), the condition of the
theorem simplifies to

H̃(K) ≤ ` ·
m∑
i=0

φ (ei/ti) . (12)

We now present two corollaries that link the upper-approximated entropy to aggregate charac-
teristics of the taskset, i.e., the number of tasks and the utilisation.

I Corollary 6. Given any schedule set K ⊆ S,

H̃(K) ≤ −` · log2 (1/(1 + m)) . (13)

Proof. Knowing that ei/ti > 0, φ(ei/ti) = −ei/ti · log2(ei/ti) is continuous and concave. This implies
that 1/(m + 1)

∑m
i=0 φ(ei/ti) ≤ φ (1/(m + 1)

∑m
i=0

ei/ti). This gives us

m∑
i=0

φ(ei/ti) ≤ (m+ 1)φ (1/(m + 1)) = −m+ 1
m+ 1 · log2 (1/(m + 1)) .

J

The expression in Equation (13) is not always reachable, depending on the characteristics of the
task set. This leads us to consider the task set characteristics. In particular, we can compute a
bound that takes into account the utilization U of the task set, leading to the following corollary.

I Corollary 7. Given any schedule set K ⊆ S,

H̃(K) ≤ ` · {−(1− U) · log2(1− U)− U · log2(U/m)}. (14)

This corollary can be proven by splitting the contribution of the idle task and the regular tasks
in the taskset. The contribution of the idle task to the upper-approximated entropy is equal to
` · {−(1− U) · log2(1− U)}. The maximum value for the upper-approximated entropy is reached
when the utilizations of the tasks allow them to be evenly distributed. The contribution of each of
them is then −` · U/m · log2(U/m). Deriving the expression in Equation (14) allows us also to study
when we can be closer to the bound in Equation (13) — and when can we expect to reach the
maximum upper-approximated entropy for a set of m tasks, depending on the task characteristics.
With respect to the utilization U =

∑m
i=1

ei/ti, the upper approximated entropy can reach its
maximum when the utilization of the system is equal to U = m/(1 + m).

K. Krüger, N. Vreman, R. Pates, M. Maggio, M. Völp, and G. Fohler 15

We will now show that a given schedule set K ⊆ S can only achieve an upper-approximated
entropy of H̃ub (from Equation (7)) if all the tasks have implicit deadlines and the cardinality of
K is at least

`

gcd(ei/ti · `)
.

This is important, since it shows that if we want to achieve the upper bound on the upper-
approximated entropy from Theorem 5, we must enforce di = ti∀i and use a schedule set of at
least the size given above.

I Theorem 8. Given any schedule set K ⊆ S for a constrained deadline taskset, if there exists a
task p such that dp < tp then the inequality in Equation (7) is strict. Furthermore, if all the tasks
have implicit deadlines (di = ti∀i) and

|K| < `

gcd (ei/ti · `)
,

then the inequality in Equation (7) is strict.

Proof. The upper-approximated entropy is the sum of the contribution of each slot. Therefore, to
achieve the upper bound H̃ub, we should maximize all the summands – i.e., the contribution to
the upper-approximated entropy of each slot should be maximized.

It follows from Jensen’s inequality and Equation (11) that the inequality in Equation (8) is
strict unless

Cj,i,K/k = α (15)

for all j such that Ij,i = 1 (reusing the notation of the proof of Theorem 5). The constant α can
be found using Equations (10)–(11). In particular, Equation (10) implies that

∑̀
j=1

Cj,i,K/k = α
∑̀
j=1

Ij,i = α`
di
ti

=⇒
Equation (11)

α = ei
di

Since every task is active in the first slot, this implies that the inequality in Equation (7) is strict
unless

C1,i/k = ei
di
. (16)

To prove the first part of the theorem, suppose that di < ti for some i. Now assume that
Equation (16) holds. This implies that

m∑
i=0

C1,i/k =
m∑
i=0

ei
di
> 1.

However
∑m
i=0 C1,i = k, since every slot in the schedule set is assigned to one task. This is a

contradiction.
To prove the second part, now suppose that di = ti for all i. The contribution of each task to

the slot entropy should then be equal to the task utilization ei/ti – notice that this includes the idle
task. To find a lower bound for k, we can then look at a single slot j. In fact, additional slots will
only potentially increase the number of schedules needed to achieve higher upper-approximated
entropy. We can then formulate the problem of finding |K∗| = k∗ as an optimization problem.

min
k∈Z+

Cj,i,K∈Z+

k s.t. Cj,i,K =
ei

ti
· k, ∀i ∈ {0, . . . ,m}. (17)

16 Randomization as Mitigation of Attacks on TT Real-Time Systems with Replication

This means that we have a positive integer number of schedules in the set K that allows Cj,i,K (the
number of times task i appears in slot j in set K) to be positive a integer number for each task i.
We perform a variable substitution and define y = `/k. Minimizing k now becomes equivalent
to maximizing y. Relaxing temporarily the requirement that k be an integer, the problem in
Equation (17) is reformulated as

max
Cj,i,K∈Z+

y s.t. Cj,i,K =
ei

ti
·
`

y
, ∀i ∈ {0, . . . ,m}. (18)

The solution to the problem in Equation (18) is that y should be equal to the greatest common
divisor of the utilizations multiplied by the hyper-period, y = gcd(ei/ti · `), which yields to

k∗ =
`

gcd (ei/ti · `)
. (19)

For this to be the solution of the optimization problem in Equation (17), k∗ must be an integer
number. Because the utilizations of the task set (including the idle task) sum to one,

∑m
i=0

ei/ti = 1,
the constraint for the idle task in the optimization problem of Equation (18) can also be written as

Cj,0,K =
(

1−
m∑
i=1

ei

ti

)
·
`

y
=
(
`

y
−
`

y
·
m∑
i=1

ei

ti

)
.

The solution of problem (18) ensures that `
y ·
∑m
i=1

ei/ti ∈ Z+ due to the m constraints for the
(non idle tasks in the) task set. The value of `/y (equal to k∗) must then be a positive integer
number. This implies that the solution of the problem in Equation (18) is also a solution of the
problem in Equation (17) and k∗ ∈ Z+. J

I Corollary 9. A simple modification of the proof of Theorem 8 shows that for any K ⊆ S, if

|K| mod `

gcd(ei/ti · `)
6= 0,

then H̃(K) < H̃ub. This means that the cardinality of K must be a multiple of `
gcd(ei/ti·`) in order

to achieve the bound in Theorem 8.

6 Extension to replicated systems on multicores

So far, we have assumed that accomplices of attackers are limited to the tasks of non-critical
subsystems. Through the use of replication, we can consider stronger adversaries, capable of
compromising also up to f replicas of an n-fold replicated critical subsystem. This leads to the
following additional attack vectors:
AV1: A compromised task or replica attacks the task executing next on the same core.
AV2: A compromised task or replica attacks replicas executed in parallel on another core.
AV3: A combination of both attack vectors AV1 and AV2, i.e., attacks are mounted from one

core shortly before a replica is run on another core.

The challenge with AV2 and AV3 lies in ensuring that at most f replicas can be affected
in any cycle required to rejuvenate all n replicas, returning them to a healthy state [45,46]. In
particular in real-time systems, where results must be timely, systematic delays of more than
f replicas (minus those already compromised) may turn out fatal, as this allows compromised
but timely replicas and consequently the attacker to gain control. Extending offline and online
schedule-diversification allows us to protect against the above threat vectors.

K. Krüger, N. Vreman, R. Pates, M. Maggio, M. Völp, and G. Fohler 17

6.1 Offline Schedule-Diversification
Offline schedulers posess the advantage to solve complex constraints before runtime. In addition
to the deadline constraints already discussed in Section 4.1.1 (and possibly further constrains to
accomodate for precedence or jitter), we shall impose as constraint that at the end of each slot,
no two cores switch to the same job. This way, schedules across cores are diverse and we mitigate
AV2, by avoiding replica execution at the same time.

However, the offline constructed schedule still provides the determinism an attacker can exploit
for AV1 and AV3. As the constructed schedules are diverse, each cores RTOS stores all schedules.
The RTOS instances on these cores switch at the end of the hyperperiod to another schedule in
an offline defined, deterministic way, such that each core executes a different schedule. This still
provides deterministic execution to the attacker, however the window of repetition, that is, the
size of the hyperperiod is larger.

Alternatively, the scheduler may choose the next schedule at the end of the hyperperiod at
random. If the set of diverse schedules is diverse enough, the possibility of retrieving information
using the schedule is low. In addition, if the upper-approximated entropy bound given by
Equation (7) is reached for the set of schedules that is used for schedule diversification, it is
possible to state that there is no additional diversity that can be added by varying the schedule.

Cores may execute the same schedule at the same time and thus replicas may be executed in
parallel, but the attacker is not able to rely on this possibility in a deterministic fashion.

6.2 Online Slot-Level Randomization
Online slot-level randomization, as discussed in Section 4.1.2, prevents predictions about the
points in time when replicas are executed in parallel or on other cores and thus mitigates all
attack vectors, AV1 to AV3. The attacker is unable to predict system behavior and cannot rely
on deterministic assumptions to coordinate his or her attack. This strategy prevents the stealthy
attack we consider for all three attack vectors.

6.3 Combining Offline and Online Strategies
In this approach, we combine both strategies presented in Section 6.1 and Section 6.2. First
we create non-overlapping execution windows of replicas offline, i.e., replica execution windows
are restricted not to overlap each other to fulfill this constraint. As consequence, the replicas
have different earliest start times and deadlines on each core. This constraint eliminates AV2,
where replicas are scheduled at the same time. Then, during runtime, we use slot-level online
randomization to prevent predictions and thus eliminate attack vectors AV1 and AV3 enabled
by a deterministic schedule. Compared to the pure online approach presented in Section 6.2,
the combined strategy never schedules replicas in parallel. However, depending on the task set,
the restriction of replica execution windows may leave few leeway in the schedule for the online
randomization algorithm.

7 Experiments

We evaluate our mitigation strategies and insights on schedule entropy with experiments. First,
we present a search algorithm that generates a set of schedules for each synthetic task set under
the constraint that it maximizes the task sets upper-approximated entropy. We investigate the
limits on randomization and entropy through the achievable entropy and its variance. Second, we
employ the ROSACE case study [38] to evaluate our attack mitigation strategies. The ROSACE

18
R
andom

ization
as

M
itigation

of
A
ttacks

on
T
T

R
eal-T

im
e
System

s
w
ith

R
eplication

0 0.2 0.4 0.6 0.8 1

1

2

3
m = 2, 100.0%

H̃ub/`

− log2 (1/(1 + m))
−{(1− u) · log2(1− u) + u · log2(u/m)}

0 0.2 0.4 0.6 0.8 1

1

2

3
m = 3, 100.0%

0 0.2 0.4 0.6 0.8 1

1

2

3
m = 4, 99.7%

0 0.2 0.4 0.6 0.8 1

1

2

3
m = 5, 97.4%

0 0.2 0.4 0.6 0.8 1

1

2

3
m = 6, 95.2%

0 0.2 0.4 0.6 0.8 1

1

2

3
m = 7, 92.8%

0 0.2 0.4 0.6 0.8 1

1

2

3
m = 8, 89.5%

utilization
0 0.2 0.4 0.6 0.8 1

1

2

3
m = 9, 89.0%

utilization
0 0.2 0.4 0.6 0.8 1

1

2

3
m = 10, 88.0%

utilization

Figure 3 Average slot entropy of random sets composed of m tasks with m ∈ {2, . . . , 10} and maximum hyperperiod ` = 100.

K
.K

rüger,N
.V

rem
an,R

.Pates,M
.M

aggio,M
.V

ölp,and
G
.Fohler

19

0 0.2 0.4 0.6 0.8 1

1

2

3
m = 2, 100.0%

H̃ub/`

− log2 (1/(1 + m))
−{(1− u) · log2(1− u) + u · log2(u/m)}

0 0.2 0.4 0.6 0.8 1

1

2

3
m = 3, 82.4.0%

0 0.2 0.4 0.6 0.8 1

1

2

3
m = 4, 66.7%

0 0.2 0.4 0.6 0.8 1

1

2

3
m = 5, 52.5%

0 0.2 0.4 0.6 0.8 1

1

2

3
m = 6, 44.6%

0 0.2 0.4 0.6 0.8 1

1

2

3
m = 7, 38.4%

0 0.2 0.4 0.6 0.8 1

1

2

3
m = 8, 31.8%

utilization
0 0.2 0.4 0.6 0.8 1

1

2

3
m = 9, 28.7%

utilization
0 0.2 0.4 0.6 0.8 1

1

2

3
m = 10, 24.7%

utilization

Figure 4 Average slot entropy of random sets composed of m tasks with m ∈ {2, . . . , 10} and maximum hyperperiod ` = 500.

20 Randomization as Mitigation of Attacks on TT Real-Time Systems with Replication

case study provides task set parameters for a safety-critical real-time system of an aircraft called
the longitudinal flight controller. We provide an analysis of runtime overhead and memory cost.

7.1 Synthetic Task Sets
In order to investigate the limits on schedule randomization and schedule entropy presented in
Section 5, we implemented a search algorithm based on constraint optimization that generates a
set of schedules maximizing the upper-approximated entropy for a given task set.4

We looked at each core separately and tested the algorithm with synthetic task sets, composed
of n tasks with n ∈ {2, . . . , 10} and maximum hyperperiod ` ∈ {100, 200, 300, 400, 500}. For each
of the possible combinations, we generated 1000 task sets using an extension of the UUniFast
algorithm [4], that allows us to control the maximum hyperperiod. We randomized the periods ti of
each task, and imposed an implicit deadline constraint ti = di,∀i ∈ {1, . . . , n}. We computed the
upper-approximated entropy H̃ub, for the task set according to Theorem 5. We then computed the
average contribution of each slot H̃ub/`, to be able to compare task set with different hyperperiods.
Finally, we ran our algorithm to generate the schedule set K, with the lowest cardinality k∗ given
by Theorem 8.

In principle, the algorithm could run for a long time to find the maximum. There is also
the possibility that the maximum is not reachable with any schedule set that satisfies all the
constraints (in our experimental campaign, we did not encouter such a set, but our theoretical
results do not exclude this possibility). Therefore, we limited the duration and allowed a budget
of 60 minutes to compute the schedule set.

We define the algorithm accuracy as the percentage of task sets for which the algorithm found
an optimal schedule set. In Figures 3 and 4, we show the results for the cases with ` = 100
and ` = 500 respectively. In particular, we show the average contribution of each slot to the
upper-approximated entropy H̃ub/`. In each plot, we write the number of tasks m and the
algorithm accuracy.

The dots in the Figures 3 and 4 show the tight bounds and the achievable entropy, while the
dashed line represents the (non-tight) bound discussed in Corollary 7, Equation (14). As can be
seen, for some of the task sets, the constraints imposed by the execution times and the periods
allow the upper-approximated entropy to reach this bound, but in other cases the bound presented
in Theorem 5 is tighter. One can also notice that the variance of the achieved upper-approximated
entropy increases when the utilization increases. This is because a higher utilization introduces
tighter constraints on the achievable entropy.

Another important result is the fact that the upper-approximated entropy reaches the maximum
bound discussed in Corollary 7 for m/(m + 1). The implication of this is that from a security
perspective the optimal system utilization is m/(m + 1). This is very important for determining
critical system parameters like the task set utilization for security-aware embedded and real-time
systems.

Finally, the yellow solid lines represent the (non-tight) bound introduced by Corollary 6. In
most cases, this bound is unreachable, due to the constraints introduced by the tasks characteristics.

7.2 Real-world case study (ROSACE)
We evaluated our two directed attack mitigation strategies presented in Section 4 using the
ROSACE case study [38]. ROSACE is a practical, real-world example of a real-time system in a

4 The code for the algorithm is available at https://gitlab.control.lth.se/NilsVreman/rand-sched, together with
the full set of results.

K. Krüger, N. Vreman, R. Pates, M. Maggio, M. Völp, and G. Fohler 21

Airplane & Environment

Vz_control altitude_hold h_filter

az_filter

Vz_filter

q_filter

Va_filterVa_control

50Hz 50Hz

50Hz

100Hz

100Hz

100Hz

100Hz

100Hz

Figure 5 Longitudinal flight controller design

safety-critical avionics environment. Pagetti et al. [38] carried out a case study of a longitudinal
flight controller of an aircraft. The longitudinal flight controller helps the pilot to accurately track
altitude, vertical speed and airspeed of the aircraft. Pagetti et al. describe two control loops: the
V a_control loop handles airspeed control by maintaining the desired airspeed V a; the second
control loop — altitude control — combines altitude_hold and V z_control. First, altitude_hold
translates altitude commands to vertical speed commands. Then, V z_control tracks the vertical
speed V z of the aircraft. Both control loops are fed with filtered data: h, az and q for altitude,
vertical acceleration and pitch rate, respectively. Vertical airspeed V z and true airspeed V a are
also inputs to the control loops. We show the design of the controller in Figure 5.

According to Pagetti et al. [38], the closed-loop system with continuous-time controllers can
tolerate delays of up to roughly 1 second before destabilizing. To preserve stability as well as to
increase performance, Pagetti et al. chose lower sampling periods of 50 Hz for the digitalization
tasks of the three controller blocks and 100 Hz for the filter tasks which feed the data to the
controller. Pagetti et al. derived worst case execution times of all tasks using a measurement-based
approach by measuring the repeated execution of a task in isolation. The granularity the authors
chose for the measuring clock was 100µs, thus the worst case execution times for the tasks shown
are the same as they presumably finished execution in that granule. Table 1 shows the task set
with implicit deadlines for the longitudinal flight controller. In this work, we do not consider
environment simulation tasks as they are not part of the controller but only of the test environment.

We construct the execution windows of all tasks from the task set in Table 1. Schorr [42]
suggests 200,000 clock cycles as slot shifting slot length. The processor cores in ROSACE run at
1.2GHz, which results in 167 µs for 200,000 clock cycles. We choose 200 µs as slot length to evenly
divide the task periods into slots. Task execution is non-preemptive, as the worst case execution
times are smaller than the slot length. Table 2 shows the resulting execution windows.

7.2.1 Runtime Overhead for Slot-Level Randomization

Our slot-level randomization algorithm is based on Schorr’s [42] slot shifting algorithm. Schorr
measured the runtime overhead of the unmodified slot shifting algorithm on a cycle-accurate
ARM quadcore simulator — MPARM — with ARM7 cores running at 200 Mhz, 8kB 4-way set
associative L1 cache, 8kB direct mapped L1 instruction cache, 1MB core-private memory and
1MB shared memory. Schorr provided minimum and maximum runtimes of all parts of the slot
shifting algorithm for single core execution. Using the timing measurements of [42], shown in

22 Randomization as Mitigation of Attacks on TT Real-Time Systems with Replication

Taskname Frequency WCET
Vz_control 50Hz 100µs
Va_control 50Hz 100µs
altitude_hold 50Hz 100µs
h_filter 100Hz 100µs
az_filter 100Hz 100µs
Vz_filter 100Hz 100µs
q_filter 100Hz 100µs
Va_filter 100Hz 100µs

Table 1 Flight controller task set [38]

Name Start End WCET
h_filter 0 50 1
az_filter 0 50 1
Vz_filter 0 50 1
q_filter 0 50 1
Va_filter 0 50 1
h_filter 50 100 1
az_filter 50 100 1
Vz_filter 50 100 1
q_filter 50 100 1
Va_filter 50 100 1
altitude_hold 0 100 1
Vz_control 0 100 1
Va_control 0 100 1
Table 2 Execution windows in terms of slots

Table 3, we approximate the runtime overhead of slot-level randomization, when executed on the
same processor.

Function Min Max
update spare capacity (upsc) 2,655 10,145
update ready list (upready) 3,500 9,115
next job selection (sel) 1,850 2,350
ISR overhead (ISR) 2,560 3,120

Table 3 Minimum and maximum runtime overhead per slot for single core execution in ns [42]

Slot-level randomization invokes the same functions to update spare capacities and the ready
list. The cost of the function to update spare capacities increases with the number of intervals
due to cascaded borrowing in the worst case. However, according to the slot shifting algorithm
as explained in Section 4.1.1, only 2 intervals are created for the presented task set. Hence,
the costs of both functions remain the same. The interrupt service routine (ISR) overhead is
architectural and hence should not change for an implementation of slot-level randomization in the
same operating system. Randomization is not part of slot shifting and as such not covered by the
above measurements. As calculating random numbers for each slot is independent of parameters
like the number of tasks or intervals, we assume a constant per slot overhead. Moreover, assuming
an O(1) get_length implementation of the ready list, pruning random values to a list index
remains a constant operation.

We calculate the maximum runtime overhead as:

tov,rand,max = randmax + upsc,max + upready,max + selmax + ISRmax (20)

Accordingly, the minimum runtime overhead results in:

tov,rand,min = randmin + upsc,min + upready,min + selmin + ISRmin (21)

Using the measurements from Table 3 for equation 20 and assuming randmax = 5, 000ns, the
maximum runtime overhead results in tov,rand,max = 29, 730ns, which is around 3 percent of the

K. Krüger, N. Vreman, R. Pates, M. Maggio, M. Völp, and G. Fohler 23

assigned slot size of 1ms in [42]. Keeping in mind that ROSACE uses 6 times faster cores than [42]
and that execution time does not scale exactly linear with processor speed, we can approximate
the runtime overhead for ROSACE. Therefore, we divide these values by 5 for a core with 1.2 Ghz
and approximate the maximum runtime overhead for ROSACE to be tov,rand,max = 6, 000ns.

Under the assumption that randmin = 2, 000ns, the minimum runtime overhead results in
tov,rand,min = 12, 565ns, which is around 1.3 percent of the slot size in [42]. Dividing these values
by 5 as explained earlier, we approximate the minimum runtime overhead for ROSACE to be
tov,rand,min = 2, 500ns.

7.2.2 Runtime Overhead for Offline Precomputed Schedules
The runtime overhead for offline precomputed schedules is lower than that of scheduling algorithms
which have to take more complex decisions online, which we also prove in this section. Again we
can make use of the overhead measurements done in [42], which we show in Table 4.

Function Min Max
next job selection (sel) 1,850 2,350
ISR overhead (ISR) 2,560 3,120

Table 4 Minimum and maximum runtime overhead for single core execution in ns [42]

At runtime, the scheduler performs a table lookup to select the next job after each slot. In
constrast to the slot-level randomization scheduling algorithm, the overhead only consists of the
next job selection and the interrupt service routine. At the end of the hyperperiod, we select the
next offline precomputed schedule randomly. We calculate best and worst case runtime overhead
for selecting a precomputed schedule in MPARM as shown below.

tov,prec,max = randmax + selmax + ISRmax = 10470ns (22)
tov,prec,min = randmin + selmin + ISRmin = 6410ns (23)

Using the same estimation on the execution time of the randomization function for the ROSACE
case study as in Section 7.2.1, best and worst case approximated overhead results in 1300 ns and
2100 ns, respectively. Thus, around 1 percent of the chosen slot size is used for scheduling for
both ROSACE and on the ARM simulator MPARM.

7.2.3 Memory Cost for Offline Precomputed Schedules
Each precomputed schedule needs to be stored in memory. For ROSACE, we can build an offline
schedule in the same way as shown in Table 2. Each task has its own task ID, an entry for the
start and end of the execution of its instance, and a fourth entry for its worst case execution
time. The difference between start and end time must be equal to its worst case execution time
and the execution windows for different jobs must not overlap. Table 5 shows an example for a
precomputed time-triggered schedule.

ID 0 1 2 3 4 0 1 2 3 4 5 6 7
Start 1 8 22 33 35 51 58 66 67 71 80 88 94
End 2 9 23 34 36 52 59 67 68 72 81 89 95
WCET 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 5 Exemplary precomputed time-triggered schedule for ROSACE

24 Randomization as Mitigation of Attacks on TT Real-Time Systems with Replication

Assuming each entry has the size of 1 byte, a single schedule with this information needs
13 ∗ 4 = 52 bytes of memory. Theorem 8 and Corollary 9 state that we need only k∗ schedules to
achieve the maximum diversity. In the case of ROSACE, this number is 100. Thus, we are able to
calculate the total memory cost to store all these schedules, which amounts to 100 ∗ 52 = 5200
bytes. This example also shows that the memory cost scales linearly with the number of tasks
involved. Each instance of a periodic task, i.e. each job adds 4 entries to this table.

7.2.4 Upper-approximated Entropy Analysis
Here we derive the actual numbers for the ROSACE case study, determining the limitations of
the achievable upper-approximated entropy. We first look at the specifics of the given task set,
and all the individual task utilizations, using Theorem 5. Then we look at a generic task set with
the same utilization as the ROSACE utilization and apply the results of Corollary 7. Here, we see
how ROSACE compares with other task sets with the same utilization (unsurprisingly, ROSACE
does not have the “perfect” workload distribution to achieve the highest entropy). Notice that our
solution is optimal in the space of solutions that satisfy the ROSACE schedulability.

Using a slot length of 200µs, we can compute the hyperperiod ` = 100 slots and the minimum
number of schedules k∗ needed to achieve the maximum value of the upper-approximated entropy
according to Equation (18), which amounts to 100 schedules. We use the tool presented in
Section 7.1 to generate a set of 100 schedules that achieves the maximum upper-approximated
entropy. The generated set reaches a value of H̃∗ = 93.8495, which is the optimal value that can
be reached for the characteristics of the given task set. This means that each of the schedule
slots contributes with a diversity of 0.9385. This number is, again, optimal with respect to the
utilizations and periods of the task set of this specific case study.

We now turn to the question how good the given scenario performs in terms of diversity
compared to what is possible for task sets of the same utilization. For that, we can look at
Corollary 7. The maximum upper-approximated entropy contribution per slot is 0.9474, given by
Equation (14). This means that the distribution of the tasks that we find in our scenario is very
close to the optimum that can be achieved at the given utilization level.

7.2.5 Discussion
Real-time systems are often implemented as embedded systems. As such, they are not only subject
to size, weight and power considerations, but also have only limited memory available. Low
memory cost and low computation overhead become even more important for these constrained
systems. We will analyze our mitigation methods with respect to these constraints.

Slot-level randomization proves to be practical, as the approximated overhead in Section 7.2.1
shows. In the worst case, slot-level randomization uses less than 3 percent of the slot for scheduling.
Precomputing offline schedules can further reduce this overhead to roughly 1 percent of the slot
size, but physical memory capacity limits the number of offline precomputed schedules that can be
stored in a system. In general, it is possible to offload scheduling tables to secondary storage by
accepting an increase of scheduling overhead while loading the selected scheduling table from this
memory. However, we know from Theorem 8 and Corollary 9 that we need only k∗ schedules to
achieve the maximum diversity and we are able to calculate this number. In the case of ROSACE,
we need 100 schedules to achieve maximum diversity, which amounts to 5200 bytes of required
memory storage (see Section 7.2.3 for details).

As we mentioned in Section 3.2, an attacker might identify a small number of schedules after
several minutes or a few hours even for side channels with low bandwith. The attacker might
even be able to derive a minimal set of schedules that achieves maximum diversity, as scheduling

K. Krüger, N. Vreman, R. Pates, M. Maggio, M. Völp, and G. Fohler 25

parameters might be known, derived from system observation or reverse engineered. However,
this set is not unique, i.e. different sets of schedules are able to achieve maximum diversity. Even
under the assumption that the attacker is able to store a huge number of schedules, the higher the
number of precomputed schedules, the longer it takes for the attacker to be sure which schedule is
used. Updating the stored scheduling tables partially mitigates the threat that the attacker might
eventually identify the schedule in time. The threat is fully mitigated with slot-level randomization,
which we recommend in general, due to the comparable overhead, and for systems with strict
memory constraints.

In order to show how many possible schedules slot-level randomization covers, we calculate
the total number of possible feasible schedules for the task set presented in Table 2. For each
execution window, the binomial coefficient

(
n
k

)
calculates the number of possibilities to execute

the task in different slots, where n is the window size and k the worst case execution time, both
quantified in slots. The binomial coefficients of neighbouring and overlapping execution windows
are multiplied with each other. If execution windows overlap, we subtract the worst case execution
time of tasks belonging to execution windows whose binomial coefficients are already accounted for
in the equation (“preceding” binomial coefficients) from the window size. Thus, we calculate the
number of possible feasible schedules for the presented task set as shown below. On the left side
of the equation, the binomial coefficients of the five tasks with periods of 50 slots are calculated
two times, because the hyperperiod results in 100 slots. Their combined worst case execution time
of 10 slots is then substracted from the execution window sizes of the tasks with a period of 100
slots.[(

50
1

)(
49
1

)(
48
1

)(
47
1

)(
46
1

)]2
×
(

90
1

)(
89
1

)(
88
1

)
= 4.56× 1022 (24)

4.56× 1022 schedules with 52 bytes require 281 bytes of storage, so we can safely conclude that it
is infeasible to track or store all possible schedules in terms of memory space and computation
time needed. Positive spare capacities, i.e. leeway in the schedule, are key for a high number of
distinct feasible schedules.

8 Related Work

Security is a major concern for real-time and control systems [15,16,48–50,57]. Modern embedded
systems are vulnerable to many different security threats [23, 39], one of them being side-channel
attacks [47]. Side-channel attacks are based on attackers gathering knowledge about a system,
and exploiting this knowledge to influence its behavior [1, 34,41,44,47]. For example, recently, a
team of researchers showed that it is possible to retrieve the engine speed from the frequency of
execution of its control task [31]. In general an attacker knowing the schedule of an embedded
control system can infer that the controller is sending a control signal to a plant periodically in
predictable time slots. It can then use this knowledge to jam the network only when the control
signal is being transmitted. Reducing the need for the attacker to be active also reduces the
possibility of detecting the ongoing attack.

Several security solutions exist which prevent information leakage in real-time systems. For
example, Völp et al. [52] prevent timing leaks in fixed-priority schedulers by exploiting the idle
task to mask early stops or blocks of a high priority task such that a low priority task always
has the same view of the high priority task. Naturally, time-triggered systems do not require
this modification since no two tasks coexist in the same time window on the same processor.
In [36], Mohan et al. focus on the problem of information leakage over shared resources. They
define security levels for tasks and prevent undesirable information flow between tasks of different

26 Randomization as Mitigation of Attacks on TT Real-Time Systems with Replication

security levels by flushing the resource. Further, they discuss the integration of security constraints
into the design of fixed-priority schedulers. In contrast to [52] and [36], we consider time-triggered
systems which have no concept of task priority. Additionally, we do not focus on preventing timing
channels or information leakage. In fact, we assume timing information, in particular task set
parameters, may be inferred.

One of the logical countermeasures against this type of attacks is to impede the information
gathering phase. In particular, an attacker that observes the execution of the real-time system
should not be able to get timing information beneficial for an attack. However, classical scheduling
algorithms are designed exactly for predictability and repeatability. Schedules (for periodic task
sets) usually repeat after a predetermined amount of time. This is precisely what gives an attacker
the ability to observe the system and infer knowledge. An observer collecting information for
long enough can then infer the pattern and rely on the real-time systems predictability for a
directed attack. Schedule randomization was proposed [58] to defend real-time systems against
side-channel attacks. During the execution of the system, as long as deadline constraints are not
violated, the next task is picked randomly from the ready queue. The schedule is either generated
online [27,58], or selected from a set of pre-generated schedules [26,27]. For embedded systems,
the overhead of online generation can be avoided if it is possible to compute and store a schedule
set with acceptable diversity [26].

Nasri et al. [37] analyze the conditions for successful time-domain attacks, concluding the
difficulty of mounting such attacks in event-triggered systems. While it is true that some of these
attacks can be difficult to mount for a generic system, the predictable schedule of time-triggered
systems makes them more vulnerable. The attacks are simpler to carry on and can be more
disruptive.

Two examples for state-of-the-art research deal with security for time-triggered communication.
In [43], Skopik et al. introduce a security architecture for time-triggered communication which
adds device authentication, secure clock synchronization and application level security. Wasicek
et al. [54] investigate the security of time-triggered transmission channels and shows how an
authentication protocol secures these channels without violating timeliness properties. In our work,
we do not consider intended communication channels for infering timing information, but instead
focus on covert or side channels and the implication of attackers learning timing information to
coordinate their attacks.

9 Conclusion

In this paper we analyzed vulnerabilities of time-triggered systems with respect to timing-inference
based directed attacks, presented two mitigation strategies and analyzed the randomness of
schedules. The deterministic behaviour of time-triggered systems allows attackers to infer timing
information over side channels and precisely target victim tasks. Worst case execution time
assumptions, on which schedules are based, do not take malicious behaviour into account. As
the schedule of a time-triggered system comprises only a few bytes, it can be inferred by an
attacker over side-channels. In order to prevent attackers from predictions about the point in
time when a certain task is executed, we presented two mitigation strategies for directed attacks.
First, we introduced slot-level randomization, which impedes predictions about the schedule by
selecting the next job at random. We employ concepts of slot shifting to allow randomization of
a time-triggered schedule without violating deadlines. Secondly, we proposed online selection of
offline precomputed schedules for mitigation of directed attacks. At runtime, a schedule from a
precomputed set of schedules is randomly selected at the end of each hyperperiod. We showed
how to compute the minimum number of schedules needed to achieve the maximum schedule

K. Krüger, N. Vreman, R. Pates, M. Maggio, M. Völp, and G. Fohler 27

diversity and devised an algorithm to find these schedules. As a first step, we tested our algorithm
with synthetic task sets and presented results regarding achievable entropy respecting varying
hyperperiods and utilization levels. Then, we evaluated our mitigation strategies with respect
to overhead and memory cost with a practical, real-world case study of a safety-critical flight
controller. Slot-level randomization has a runtime overhead of around 3 percent of the slot in the
worst case, which makes it suitable for practical use. Scheduling precomputed schedules reduces
the worst case runtime overhead to around 1 percent of the slot size, but is more costly in terms
of memory. A single schedule for the case study has a size of 52 bytes, but the total number of
feasible schedules lies in the magnitude of 1022. Out of this large amount of schedules, only 100
are needed to achieve the optimal upper-approximated entropy. Thus, both mitigation strategies
proved to be practical. Attackers could still try to launch undirected attacks, but they will be
easier to detect this way.

Acknowledgements We want to thank the reviewers for their helpful comments which greatly
improved this paper. We are also gratefully indebted to Florian Heilman, Gautam Gala, Luiz
Maia and Alexandre Venito from TU Kaiserslautern for their comments on an earlier version of
this paper. Their insights and expertise assisted research, however, any errors found are our own.

References
1 Dakshi Agrawal, Bruce Archambeault, Josyula

Rao, and Pankaj Rohatgi. The EM side-channel(s).
In 4th International Workshop on Cryptographic
Hardware and Embedded Systems, CHES, 2002.
doi:10.1007/3-540-36400-5_4.

2 Amotz Bar-Noy, Danny Dolev, Cynthia Dwork,
and H. Raymond Strong. Shifting Gears: Chan-
ging Algorithms on the Fly to Expedite Byzantine
Agreement. Inf. Comput., 97(2):205–233, 1992.
doi:10.1016/0890-5401(92)90035-E.

3 Michael G. Bechtel and Heechul Yun. Denial-of-
service attacks on shared cache in multicore: Ana-
lysis and prevention. In 2019 IEEE Real-Time
and Embedded Technology and Applications Sym-
posium (RTAS), 2019. doi:10.1109/RTAS.2019.
00037.

4 Enrico Bini and Giorgio Buttazzo. Measuring
the performance of schedulability tests. Real-
Time Systems, 30(1-2), May 2005. doi:10.1007/
s11241-005-0507-9.

5 Peter K. Boucher, Raymond K. Clark,
Ira B. Greenberg, E. Douglas Jensen, and
Douglas M. Wells. Toward a Multilevel-
Secure, Best-Effort Real-Time Scheduler,
pages 49–68. Springer Vienna, Vienna, 1995.
doi:10.1007/978-3-7091-9396-9_8.

6 Luis Brandao and Alysson Bessani. On the Reliab-
ility and Availability of Systems Tolerant to Stealth
Intrusion. In 5th Latin-American Symposium on
Dependable Computing (LADC’11), Brazil, April
2011. doi:10.1109/LADC.2011.27.

7 Luis Brandao and Alysson Bessani. On the Re-
liability and Availability of Replicated and Re-
juvenating Systems under Stealth Attacks and
Intrusions. Journal of the Brazilian Computer
Society, 18:61–80, March 2012. doi:10.1007/
s13173-012-0062-x.

8 Xi Chen, Juejing Feng, Martin Hiller, and Vera
Lauer. Application of software watchdog as a de-

pendability software service for automotive safety
relevant systems. In 37th Annual IEEE/IFIP
International Conference on Dependable Systems
and Networks (DSN), 2007. doi:10.1109/DSN.
2007.14.

9 Silviu S. Craciunas and Ramon Serna Oliver. SMT-
based Task- and Network-level Static Schedule
Generation for Time-Triggered Networked Sys-
tems. In Proceedings of the 22Nd International
Conference on Real-Time Networks and Systems,
RTNS ’14, pages 45:45–45:54, New York, NY, USA,
2014. ACM. doi:10.1145/2659787.2659812.

10 Joanne Bechta Dugan and Randy Van Buren. Reli-
ability evaluation of fly-by-wire computer systems.
Journal of Systems and Software, 25(1):109–120,
1994. doi:10.1016/0164-1212(94)90061-2.

11 Christian Ferdinand and Reinhard Wilhelm. Effi-
cient and precise cache behavior prediction for real-
time systems. Real-Time Systems, 17(2):131–181,
Nov 1999. doi:10.1023/A:1008186323068.

12 G. Fohler. Joint scheduling of distributed com-
plex periodic and hard aperiodic tasks in statically
scheduled systems. In Proceedings 16th IEEE Real-
Time Systems Symposium, pages 152–161, Dec
1995. doi:10.1109/REAL.1995.495205.

13 Gerhard Fohler. Advances in Real-Time Systems,
Chapter Predictably Flexible Real-time Scheduling.
SPRINGER, 2012.

14 Alain Girault, Hamoudi Kalla, and Yves Sorel.
An active replication scheme that tolerates fail-
ures in distributed embedded real-time systems. In
Design Methods and Applications for Distributed
Embedded Systems, pages 83–92. Springer, 2004.
doi:10.1007/1-4020-8149-9_9.

15 Monowar Hasan, Sibin Mohan, Rodolfo Pellizzoni,
and Rakesh B. Bobba. A design-space exploration
for allocating security tasks in multicore real-time
systems. In Design, Automation & Test in Europe,
DATE, 2018. doi:10.23919/DATE.2018.8342007.

https://doi.org/10.1007/3-540-36400-5_4
https://doi.org/10.1016/0890-5401(92)90035-E
https://doi.org/10.1109/RTAS.2019.00037
https://doi.org/10.1109/RTAS.2019.00037
https://doi.org/10.1007/s11241-005-0507-9
https://doi.org/10.1007/s11241-005-0507-9
https://doi.org/10.1007/978-3-7091-9396-9_8
https://doi.org/10.1109/LADC.2011.27
https://doi.org/10.1007/s13173-012-0062-x
https://doi.org/10.1007/s13173-012-0062-x
https://doi.org/10.1109/DSN.2007.14
https://doi.org/10.1109/DSN.2007.14
https://doi.org/10.1145/2659787.2659812
https://doi.org/10.1016/0164-1212(94)90061-2
https://doi.org/10.1023/A:1008186323068
https://doi.org/10.1109/REAL.1995.495205
https://doi.org/10.1007/1-4020-8149-9_9
https://doi.org/10.23919/DATE.2018.8342007

28 Randomization as Mitigation of Attacks on TT Real-Time Systems with Replication

16 J.M. Hendrickx, K.H. Johansson, R.M. Jungers,
H. Sandberg, and K.C. Sou. Efficient computa-
tions of a security index for false data attacks in
power networks. IEEE TAC, 59(12):3194–3208,
2014. doi:10.1109/TAC.2014.2351625.

17 W. M. Hu. Lattice scheduling and covert chan-
nels. In Proceedings 1992 IEEE Computer Society
Symposium on Research in Security and Privacy,
pages 52–61, May 1992. doi:10.1109/RISP.1992.
213271.

18 B. K. Huynh, L. Ju, and A. Roychoudhury. Scope-
aware data cache analysis for wcet estimation. In
2011 17th IEEE Real-Time and Embedded Techno-
logy and Applications Symposium, pages 203–212,
April 2011. doi:10.1109/RTAS.2011.27.

19 Functional Safety of Electrical/Electronic/Pro-
grammable Electronic Safety-related Systems.
Standard, International Electrotechnical Commis-
sion, 2010.

20 Rolf Isermann, Ralf Schwarz, and Stefan Stolzl.
Fault-tolerant drive-by-wire systems. IEEE Con-
trol Systems, 22(5):64–81, 2002. doi:10.1109/MCS.
2002.1035218.

21 Road vehicles – Functional safety. Standard, Inter-
national Organization for Standardization, 2011.

22 P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss,
W. Haas, M. Hamburg, M. Lipp, S. Mangard,
T. Prescher, M. Schwarz, and Y. Yarom. Spectre
attacks: Exploiting speculative execution. In 2019
IEEE Symposium on Security and Privacy (SP),
pages 1–19, 2019. doi:10.1109/SP.2019.00002.

23 Paul Kocher, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan
Mangard, Thomas Prescher, Michael Schwarz, and
Yuval Yarom. Spectre attacks: Exploiting specu-
lative execution. meltdownattack.com, 2018. URL:
https://spectreattack.com/spectre.pdf.

24 H. Kopetz. Sparse time versus dense time in dis-
tributed real-time systems. In [1992] Proceedings
of the 12th International Conference on Distrib-
uted Computing Systems, pages 460–467, Jun 1992.
doi:10.1109/ICDCS.1992.235008.

25 Kristin Krüger, Gerhard Fohler, Marcus Völp, and
Paulo Esteves-Verissimo. Improving security for
time-triggered real-time systems with task replic-
ation. In 24th IEEE International Conference on
Embedded and Real-Time Computing Systems and
Applications, August 2018. doi:10.1109/RTCSA.
2018.00036.

26 Kristin Krüger, Marcus Völp, and Gerhard Fohler.
Improving security for time-triggered real-time sys-
tems against timing inference based attacks by
schedule obfuscation. In Work-in-Progress Pro-
ceedings of the 29th Euromicro Conference on
Real-Time Systems, ECRTS, 2017.

27 Kristin Kruger, Marucs Völp, and Gerhard Fohler.
Vulnerability analysis and mitigation of directed
timing inference based attacks on time-triggered
systems. In Euromicro Conference on Real-Time
Systems, ECRTS, 2018. doi:10.4230/LIPIcs.
ECRTS.2018.22.

28 Leslie Lamport, Robert E. Shostak, and Mar-
shall C. Pease. The Byzantine Generals Problem.
ACM Trans. Program. Lang. Syst., 4(3):382–401,
1982. doi:10.1145/357172.357176.

29 J. Liedtke, H. Hartig, and M. Hohmuth. OS-
controlled cache predictability for real-time sys-
tems. In Proceedings Third IEEE Real-Time Tech-
nology and Applications Symposium, pages 213–
224, Jun 1997. doi:10.1109/RTTAS.1997.601360.

30 Moritz Lipp, Michael Schwarz, Daniel Gruss,
Thomas Prescher, Werner Haas, Stefan Mangard,
Paul Kocher, Daniel Genkin, Yuval Yarom, and
Mike Hamburg. Meltdown. ArXiv e-prints, Janu-
ary 2018. arXiv:1801.01207.

31 Songran Liu, Nan Guan, Dong Ji, Weichen Liu,
Xue Liu, and Wang Yi. Leaking your engine
speed by spectrum analysis of real-time schedul-
ing sequences. Journal of Systems Architecture,
2019. doi:https://doi.org/10.1016/j.sysarc.
2019.01.004.

32 Sixing Lu, Minjun Seo, and Roman Lysecky.
Timing-based anomaly detection in embedded sys-
tems. In 20th Asia and South Pacific Design
Automation Conference (ASP-DAC), 2015. doi:
10.1109/ASPDAC.2015.7059110.

33 Keith Marzullo. Tolerating failures of continuous-
valued sensors. ACM Transactions on Computer
Systems, 8(4):284–304, Nov. 1990. doi:10.1145/
128733.128735.

34 Edgar Mateos and Catherine Gebotys. A new
correlation frequency analysis of the side channel.
In Workshop on Embedded Systems Security, 2010.
doi:10.1145/1873548.1873552.

35 Robert Mitchell and Ing-Ray Chen. A survey of
intrusion detection techniques for cyber-physical
systems. ACM Computing Surveys (CSUR), 46(4),
2014. doi:10.1145/2542049.

36 Sibin Mohan, Man-Ki Yoon, Rodolfo Pellizzoni,
and Rakesh B Bobba. Integrating security con-
straints into fixed priority real-time schedulers.
Real-Time Systems, pages 1–31, 2016. doi:10.
1007/s11241-016-9252-5.

37 Mitra Nasri, Thidapat Chantem, Gedare Bloom,
and Ryan M. Gerdes. On the pitfalls and vulnerab-
ilities of schedule randomization against schedule-
based attacks. In Björn B. Brandenburg, ed-
itor, 25th IEEE Real-Time and Embedded Tech-
nology and Applications Symposium, RTAS 2019,
Montreal, QC, Canada, April 16-18, 2019, pages
103–116. IEEE, 2019. doi:10.1109/RTAS.2019.
00017.

38 C. Pagetti, D. Saussié, R. Gratia, E. Noulard,
and P. Siron. The ROSACE case study: From
Simulink specification to multi/many-core execu-
tion. In 2014 IEEE 19th Real-Time and Embedded
Technology and Applications Symposium (RTAS),
pages 309–318, April 2014. doi:10.1109/RTAS.
2014.6926012.

39 Dorottya Papp, Zhendong Ma, and Levente
Buttyan. Embedded systems security: Threats,
vulnerabilities, and attack taxonomy. In 13th An-
nual Conference on Privacy, Security and Trust,
PST, 2015. doi:10.1109/PST.2015.7232966.

40 Marshall C. Pease, Robert E. Shostak, and Leslie
Lamport. Reaching Agreement in the Presence
of Faults. J. ACM, 27(2):228–234, 1980. doi:
10.1145/322186.322188.

41 Thomas Popp, Stefan Mangard, and Elisabeth Os-
wald. Power analysis attacks and countermeasures.

https://doi.org/10.1109/TAC.2014.2351625
https://doi.org/10.1109/RISP.1992.213271
https://doi.org/10.1109/RISP.1992.213271
https://doi.org/10.1109/RTAS.2011.27
https://doi.org/10.1109/MCS.2002.1035218
https://doi.org/10.1109/MCS.2002.1035218
https://doi.org/10.1109/SP.2019.00002
https://spectreattack.com/spectre.pdf
https://doi.org/10.1109/ICDCS.1992.235008
https://doi.org/10.1109/RTCSA.2018.00036
https://doi.org/10.1109/RTCSA.2018.00036
https://doi.org/10.4230/LIPIcs.ECRTS.2018.22
https://doi.org/10.4230/LIPIcs.ECRTS.2018.22
https://doi.org/10.1145/357172.357176
https://doi.org/10.1109/RTTAS.1997.601360
http://arxiv.org/abs/1801.01207
https://doi.org/https://doi.org/10.1016/j.sysarc.2019.01.004
https://doi.org/https://doi.org/10.1016/j.sysarc.2019.01.004
https://doi.org/10.1109/ASPDAC.2015.7059110
https://doi.org/10.1109/ASPDAC.2015.7059110
https://doi.org/10.1145/128733.128735
https://doi.org/10.1145/128733.128735
https://doi.org/10.1145/1873548.1873552
https://doi.org/10.1145/2542049
https://doi.org/10.1007/s11241-016-9252-5
https://doi.org/10.1007/s11241-016-9252-5
https://doi.org/10.1109/RTAS.2019.00017
https://doi.org/10.1109/RTAS.2019.00017
https://doi.org/10.1109/RTAS.2014.6926012
https://doi.org/10.1109/RTAS.2014.6926012
https://doi.org/10.1109/PST.2015.7232966
https://doi.org/10.1145/322186.322188
https://doi.org/10.1145/322186.322188

K. Krüger, N. Vreman, R. Pates, M. Maggio, M. Völp, and G. Fohler 29

IEEE Design & test of Computers, 24(6), 2007.
doi:10.1109/MDT.2007.200.

42 Stefan Schorr. Adaptive Real-Time Scheduling and
Resource Management on Multicore Architectures.
PhD thesis, Technical University of Kaiserslautern,
March 2015. URL: https://kluedo.ub.uni-kl.
de/frontdoor/index/index/docId/4008.

43 Florian Skopik, Albert Treytl, Arjan Geven, Bernd
Hirschler, Thomas Bleier, Andreas Eckel, Chris-
tian El-Salloum, and Armin Wasicek. Towards
Secure Time-Triggered Systems, pages 365–372.
Springer Berlin Heidelberg, Berlin, Heidelberg,
2012. doi:10.1007/978-3-642-33675-1_33.

44 Joon Son and Jim Alves-Foss. Covert timing chan-
nel capacity of rate monotonic real-time schedul-
ing algorithm in MLS systems. In Communic-
ation, Network, and Information Security, 2006.
doi:10.1109/IAW.2006.1652117.

45 P. Sousa, N. F. Neves, and P. Verissimo. Proact-
ive resilience through architectural hybridization.
In ACM Symposium on Applied Computing, pages
686–690, 2006. doi:10.1145/1141277.1141435.

46 Paulo Sousa, Alysson Bessani, Miguel Correia,
Nuno Ferreira Neves, and Paulo Verissimo.
Highly Available Intrusion-Tolerant Services with
Proactive-Reactive Recovery. IEEE Transactions
on Parallel and Distributed Systems, vol. 21, no.
4, pp. 452-465, Apr. 2010., April 2010. URL:
http://www.navigators.di.fc.ul.pt/archive/
papers/ieeetpds-prrw-final-version.pdf.

47 Raphael Spreitzer, Veelasha Moonsamy, Thomas
Korak, and Stefan Mangard. Systematic classifica-
tion of side-channel attacks: A case study for mo-
bile devices. IEEE Communications Surveys and
Tutorials, 20(1), 2018. doi:10.1109/COMST.2017.
2779824.

48 A. Teixeira, I. Shames, H. Sandberg, and K.H. Jo-
hansson. Revealing stealthy attacks in control sys-
tems. In Allerton Conference on Communication,
Control, and Computing, pages 1806–1813, 2012.
doi:10.1109/Allerton.2012.6483441.

49 A. Teixeira, I. Shames, H. Sandberg, and K.H.
Johansson. Distributed fault detection and isol-
ation resilient to network model uncertainties.
IEEE Transactions on Cybernetics, 44(11):2024–
2037, Nov 2014. doi:10.1109/TCYB.2014.2350335.

50 Mankuan Vai, Roger Khazan, Daniil Utin, Sean
O’Melia, David Whelihan, and Benjamin Nahill.
Secure embedded systems. Technical report, MIT
Lincoln Laboratory Lexington United States, 2016.

51 M. Völp, B. Engel, C. J. Hamann, and H. Härtig.
On confidentiality-preserving real-time locking pro-
tocols. In IEEE 19th Real-Time and Embedded
Technology and Applications Symposium (RTAS),
April 2013. doi:10.1109/RTAS.2013.6531088.

52 Marcus Völp, Claude-Joachim Hamann, and Her-
mann Härtig. Avoiding timing channels in fixed-
priority schedulers. In Proceedings of the 2008
ACM Symposium on Information, Computer and
Communications Security, ASIACCS ’08, pages
44–55, New York, NY, USA, 2008. ACM. doi:
10.1145/1368310.1368320.

53 Nils Vreman, Richard Pates, Kristin Krüger, Ger-
hard Fohler, and Martina Maggio. Minimizing
side-channel attack vulnerability via schedule ran-
domization. In 58th IEEE Conference on De-
cision and Control (CDC), December 2019. doi:
10.1109/CDC40024.2019.9030144.

54 A. Wasicek, C. El-Salloum, and H. Kopetz. Au-
thentication in time-triggered systems using time-
delayed release of keys. In 2011 14th IEEE Interna-
tional Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing, pages
31–39, March 2011. doi:10.1109/ISORC.2011.14.

55 Armin Rudolf Wasicek. Security in Time-
Triggered Systems. PhD thesis, Technische Uni-
versität Wien, 2011.

56 C. B. Watkins and R. Walter. Transitioning from
federated avionics architectures to Integrated Mod-
ular Avionics. In 2007 IEEE/AIAA 26th Di-
gital Avionics Systems Conference, pages 2.A.1–
1–2.A.1–10, Oct 2007. doi:10.1109/DASC.2007.
4391842.

57 Steve H. Weingart. Physical security devices
for computer subsystems: A survey of attacks
and defenses. In Cryptographic Hardware and
Embedded Systems, CHES, 2000. doi:10.1007/
3-540-44499-8_24.

58 Man-Ki Yoon, Sibin Mohan, Chien-Ying Chen,
and Lui Sha. TaskShuffler: A schedule random-
ization protocol for obfuscation against timing in-
ference attacks in real-time systems. In IEEE Real-
Time and Embedded Technology and Applications
Symposium, RTAS, 2016. doi:10.1109/RTAS.2016.
7461362.

59 H. Yun, R. Mancuso, Z. P. Wu, and R. Pell-
izzoni. PALLOC: DRAM bank-aware memory al-
locator for performance isolation on multicore plat-
forms. In 2014 IEEE 19th Real-Time and Em-
bedded Technology and Applications Symposium
(RTAS), pages 155–166, April 2014. doi:10.1109/
RTAS.2014.6925999.

60 Christopher Zimmer, Balasubramanya Bhat,
Frank Mueller, and Sibin Mohan. Time-
based intrusion detection in cyber-physical
systems. In 1st ACM/IEEE International
Conference on Cyber-Physical Systems, 2010.
doi:10.1145/1795194.1795210.

https://doi.org/10.1109/MDT.2007.200
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4008
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4008
https://doi.org/10.1007/978-3-642-33675-1_33
https://doi.org/10.1109/IAW.2006.1652117
https://doi.org/10.1145/1141277.1141435
http://www.navigators.di.fc.ul.pt/archive/papers/ieeetpds-prrw-final-version.pdf
http://www.navigators.di.fc.ul.pt/archive/papers/ieeetpds-prrw-final-version.pdf
https://doi.org/10.1109/COMST.2017.2779824
https://doi.org/10.1109/COMST.2017.2779824
https://doi.org/10.1109/Allerton.2012.6483441
https://doi.org/10.1109/TCYB.2014.2350335
https://doi.org/10.1109/RTAS.2013.6531088
https://doi.org/10.1145/1368310.1368320
https://doi.org/10.1145/1368310.1368320
https://doi.org/10.1109/CDC40024.2019.9030144
https://doi.org/10.1109/CDC40024.2019.9030144
https://doi.org/10.1109/ISORC.2011.14
https://doi.org/10.1109/DASC.2007.4391842
https://doi.org/10.1109/DASC.2007.4391842
https://doi.org/10.1007/3-540-44499-8_24
https://doi.org/10.1007/3-540-44499-8_24
https://doi.org/10.1109/RTAS.2016.7461362
https://doi.org/10.1109/RTAS.2016.7461362
https://doi.org/10.1109/RTAS.2014.6925999
https://doi.org/10.1109/RTAS.2014.6925999
https://doi.org/10.1145/1795194.1795210

	Introduction
	System model
	Threat Model and Vulnerability Analysis
	Threat Model
	Vulnerability Analysis

	Mitigation Strategies
	Slot-level Online Randomization
	Background
	Slot-Level Randomization of Jobs
	Example

	Offline Schedule-Diversification
	Random Selection
	Schedule Entropy

	Fundamental limitations to diversity and randomization
	Extension to replicated systems on multicores
	Offline Schedule-Diversification
	Online Slot-Level Randomization
	Combining Offline and Online Strategies

	Experiments
	Synthetic Task Sets
	Real-world case study (ROSACE)
	Runtime Overhead for Slot-Level Randomization
	Runtime Overhead for Offline Precomputed Schedules
	Memory Cost for Offline Precomputed Schedules
	Upper-approximated Entropy Analysis
	Discussion

	Related Work
	Conclusion

