
D1.1 First Report on Coordination Language for Robust
Adaptive Systems

Project acronym: ADMORPH
Project full title: Towards Adaptively Morphing Embedded Systems

Grant agreement no.: 871259

Due Date: Month 09

Delivery: Month 09

Lead Partner: UvA

Editor: Clemens Grelck, UvA

Dissemination Level: Public (P)

Status: Submitted

Approved:

Version: 1.1

This project has received funding from the European Union’s Horizon 2020 research and innovation pro-

gramme under grant agreement No 871259 (ADMORPH project).

This deliverable reflects only the author’s view and the European Commission is not responsible for any use

that may be made of the information it contains.

ADMORPH – 871259

DOCUMENT INFO – Revision History

Date and version number Author Comments

28/9/2020 ver. 1.1 Clemens Grelck Internal review completed

15/9/2020 ver. 1.0 Clemens Grelck First draft

List of Contributors

Date and version number Author Comments

21/9/2020 ver. 1.0 Clemens Grelck Internal review

05/9/2020 ver. 0.4 Marcus Völp Section 4

04/9/2020 ver. 0.4 Clemens Grelck Introduction and Conclusions

04/9/2020 ver. 0.3 Martina Maggio Section 3

01/9/2020 ver. 0.2 Clemens Grelck Section 2

01/8/2020 ver. 0.1 Clemens Grelck Initial report structure

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 1 of 55

ADMORPH – 871259

GLOSSARY

APT Advanced and Persistent Threat

BFT-SMR Byzantine Fault Tolerant Statemachine Replication

CPS(oS) Cyber Physical System (of Systems) [38]

DSL Domain Specific Language [39]

FTA Fault Tree Analysis

PPC Power PC

SoS System of Systems [22]

TRL Technology Readiness Level [40]

VIS Vision System

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 2 of 55

ADMORPH – 871259

Contents

Executive summary 5

1 Introduction 6

2 Task 1.1: Coordination Language Design 7
2.1 Coordination model . 7

2.1.1 Components . 7
2.1.2 Stateful components . 8
2.1.3 Non-functional properties . 8
2.1.4 Multi-version components . 9
2.1.5 Component interplay . 9

2.2 Coordination Language TeamPlay . 10
2.2.1 Components . 11
2.2.2 Edges . 12
2.2.3 Non-functional properties . 13
2.2.4 Multi-version components . 14

2.3 TeamPlay Language Extensions for Fault-tolerance 15
2.3.1 Checkpoint/restart . 15
2.3.2 Standby or primary-backup . 16
2.3.3 N-Modular redundancy . 17
2.3.4 N-version programming . 19

2.4 TeamPlay Language Extensions for Ease of Programming 19
2.4.1 Profiles . 20
2.4.2 Controlling cascading options . 22
2.4.3 Basic sub-networks . 23
2.4.4 Templates . 24
2.4.5 Parameterised templates . 24
2.4.6 Component and function names . 26

3 Task 1.3: Specifying Formal Guarantees for the Adaptation Layer 30
3.1 Background on control theory . 31
3.2 Maximum fail time Rmax . 35

4 Task 1.4: Specification of Fault Model and Threat Indicators 41
4.1 Dependability . 42
4.2 Fault Model and Threat Indicators . 43

4.2.1 Environmental Threats . 44
4.2.2 Internal Threats . 44

4.3 Threat Levels and Adversarial Power . 45
4.3.1 Example . 46

4.4 Next steps . 47

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 3 of 55

ADMORPH – 871259

5 Conclusion 47

6 References 48

A Appendices 52
A.1 TeamPlay core language . 52
A.2 TeamPlay language after Admorph extension . 53

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 4 of 55

ADMORPH – 871259

Executive summary

This deliverable is a report on the consortium’s work in Task 1.1 Coordination Language Design,
in Task 1.3 Specifying Formal Guarantees for the Adaptation Layer and in Task 1.4 Specification
of Fault Model and Threat Indicators.

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 5 of 55

ADMORPH – 871259

1 Introduction

Deliverable D1.1 is the first deliverable of work package 1: Specification of Adaptive Systems. It
contains the initial report on a coordination language for robust, adaptive systems. This includes
three tasks of work package 1, namely

• Task 1.1: coordination language design, led by UvA;

• Task 1.3: specification of formal guarantees for the adaptation layer, led by ULUND;

• Task 1.4: specification of fault model and threat indicators, led by UNILU.

Work package 1 targets the specification of adaptive systems including their functional and non-
functional behaviuor, possible fault and attack models, and formal guarantees of the adaptation
layer itself. Central to this work package is a (domain-specific) coordination language that allows
us to specify software components, their properties and their orderly interplay at a very high level
of abstraction. On top of the obvious aim of functional correctness, the coordination language is
particularly concerned with non-functional properties of code execution including reliability, time
and security.

We build our work work in this area on previous and on-going work on the TeamPlay coor-
dination language [31]. Work on the underlying coordination model and the core language have
been developed in the context of the Horizon-2020 project TeamPlay1, but continue to be subjects
of on-going research, both in the TeamPlay project as well as here in the Admorph project. We
expect both synergy effects and fruitful cross-pollination across projects from this setup.

In the context of the TeamPlay project our focus has been on the non-functional properties
energy, time and security. In particular guarantees on worst case execution time play a vital role in
the Admorph project as well. Energy and security are likewise relevant to Admorph, but possibly
less prominently. Instead we add two new strands to the development of the TeamPlay language:
robustness against partial hardware failure and robustness against cyber attack.

The name of the coordination language is TeamPlay, which we deem an appropriate name for a
coordination language. Whenever needed throughout this document we disambiguate the language
TeamPlay from the sister Horizon-2020 project TeamPlay, from which the language originates.

The remainder of Deliverable D1.1 is organised as follows. The subsequent three sections
describe the work in the above mentioned three tasks T1.1, T1.3 and T1.4, respectively. They are
written from the perspective (and by) the respective lead partner. Eventually, we summarise our
work and draw some conclusions in Section 5.

1European Union Horizon-2020 research and innovation programme grant agreement No. 779882 (TeamPlay),
2018–2020

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 6 of 55

ADMORPH – 871259

2 Task 1.1:

Coordination Language Design

In this section we describe the design of the coordination language TeamPlay. As pointed out be-
fore, the underlying coordination model and the core language have been developed in the context
of the Horizon-2020 project TeamPlay. We reiterate on both the coordination model in Section 2.1
and the core language in Section 2.2 for completeness and self-containedness of this deliverable
report. The TeamPlay coordination language is under active development in both Horizon-2020
projects, TeamPlay and Admorph, with different primary objectives. In Section 2.3 we present
our language extensions for fault-tolerance as a primary Admorph contribution. In Section 2.4 we
discuss various language extensions that allow programmers to write more abstract code. These
extensions have been exclusively motivated by the previous fault-tolerance extensions that sub-
stantially extend the amount of parameters and attributes compared with the core TeamPlay
language.

2.1 Coordination model

The term coordination goes back to the seminal work of Gelernter and Carriero [11] and their
coordination language Linda. Coordination languages can be classified as either endogenous or ex-
ogenous [1]. Endogenous approaches provide coordination primitives within application code; the
original work on Linda falls into the category. We pursue an exogenous approach that completely
separates the concerns of coordination programming and application programming. Software com-
ponents serve as the central artefact in between.

2.1.1 Components

Our exogenous approach fosters the separation of concerns between intrinsic component behaviour
and extrinsic component interaction. The notion of a component is the bridging point between low-
level functionality implementation and high-level application design. We illustrate our component
model in Figure 1. Following the keyword component we have a unique component name that serves
the dual purpose of identifying a certain application functionality and of locating the corresponding
implementation in the object code.

A component interacts with the outside world via component-specific numbers of typed and
named input ports and output ports. As the Kleene star in Figure 1 suggests, a component may
have zero input ports or zero output ports. A component without input ports is called a source
component ; a component without output ports is called a sink component. Source components and
sink components form the quintessential interfaces between the physical world and the cyber-world
characteristic for cyber-physical systems. They represent sensors and actors in the broadest sense.
We adopt the firing rule of Petri-nets, i.e. a component is activated as soon as data (tokens) are
available on each input port.

Technically, a component implementation is a function adhering to the C calling and linking
conventions whose name and signature can be derived from the component specification in a defined

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 7 of 55

ADMORPH – 871259

contracts:

time

energy

security

input

output

state

component
code

state*

Functional
contracts:

* *input outputNon−functional

<name>

Figure 1: Illustration of component model

way. This function may call other functions using the regular C calling convention. However, the
execution of the function, including execution of all subsidiary functions, must not interfere with
the execution environment. Exceptions to the former restriction are source and sink components
that are supposed to control sensors and actors.

2.1.2 Stateful components

Our components are conceptually stateless. However, some sort of state is very common in cyber-
physical systems. We model such state in a functionally transparent way as illustrated in Figure 1,
namely by so-called state ports that are short-circuited from output to input. In analogy to input
ports and output ports, a component may well have no state ports. We call such a component a
(practically) stateless component.

Our approach to state is in an interesting way not dissimilar from main-stream purely functional
languages, such as Haskell or Clean. They are by no means free of state either, for the simple
reason that many real-world problems and phenomena are stateful. However, purely functional
languages apply suitable techniques to make any state fully explicit, be it monads in Haskell or
uniqueness types in Clean. Making state explicit is key to properly deal with state and state
changes in a declarative way. In contrast, the quintessential problem of impure functional and
even more so imperative languages is that state is potentially scattered all over the place. And
even where this is not the case in practice, proving this property is hardly possible.

2.1.3 Non-functional properties

We are particularly interested in the non-functional properties of code execution. In the
TeamPlay project these are energy, time and security while the Admorph project adds fault-
tolerance/robustness. Hence, any component not only comes with functional contracts but ad-
ditionally with non-functional contracts concerning energy, time, security and/or fault-tolerance,
and potentially more in the future. These non-functional properties are inherently different in na-
ture. Execution time and energy consumption depend on a concrete execution machinery and vary
between different hardware scenarios. In contrast, security, more precisely algorithmic security,

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 8 of 55

ADMORPH – 871259

depends on the concrete implementation of a component, e.g. using different levels of encryption,
etc. However, different security levels almost inevitably incur different computational demands
and, thus, are likely to expose different runtime behaviour in terms of time and energy consump-
tion as well. In Section 2.3 we will discuss the novel fault-tolerance contracts that form our primary
contribution to Admorph.

2.1.4 Multi-version components

As illustrated in Figure 2, a component may have multiple versions, each with its own energy,
time and security contracts, but otherwise identical functional behaviour. More security requires
stronger encryption which requires more computing and, thus, more time and energy. However,
many systems do not need to operate at a maximum security level at all times. Take as an example
a reconnaissance drone that adapts its security protocol in accordance with changing mission state:
low security level while taking off or landing from/to base station, medium security level while
navigating to/from mission area, high security level during mission.

output

state

code<name>

ETS−contracts

code<name>

ETS−contracts

component

state*

Functional
contracts:

* *input output

input

<name>

Figure 2: Multi-version component with individual energy, time and security contracts

When performing in low security mode, the drone can use a less resilient encryption when
communicating with the base station while highest possible security is paramount in a potentially
hostile environment. Continuous adaptation of security levels results in less computing and, thus,
in energy savings that could be exploited for longer flight times. Our solution is to embed different
versions of the same component that are all functionally equivalent but expose different trade-
offs regarding non-functional properties (similar to [33]) and to select the best versions regarding
mission state and objectives.

2.1.5 Component interplay

Components are connected via FIFO channels to exchange data, as illustrated in Figure 3. De-
pending on application requirements, components may start computing at statically determined
time slots, when all input data is guaranteed to be present or may be activated dynamically by the
presence of all required input data. Components may produce output data on all or on selected
output ports.

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 9 of 55

ADMORPH – 871259

output

state

input

output

state

input

output

state

data

data

data

data

code<name>

ETS−contracts

code<name>

ETS−contracts

code<name>

ETS−contracts

code<name>

ETS−contracts

code<name>

ETS−contracts

code<name>

ETS−contracts

code<name>

ETS−contracts

code<name>

ETS−contracts

component

Functional
contracts:

component

Functional
contracts:

component

ObjectDetection

Functional
contracts:

component

Functional
contracts:

ImageCapture

OpticalFlow

input

DecisionMaking

output

state

input

Figure 3: Illustration of data-driven component interplay via FIFO channels

2.2 Coordination Language TeamPlay

We illustrate the TeamPlay coordination language by means of the example shown in Figure 4.
Our introductory example is an imaginary subsystem of a car with two sensors feeding messages
to a decision controller. This decision controller synchronises the messages pair-wise and sends
commands to two subsequent actuators. Figure 5 shows the TeamPlay coordination code that
implements this example.

Decision

LeftActuator

DistSensor

voltage

dist

ImageCapture
frameData

RightActuator

Figure 4: Example for TeamPlay component coordination.

TeamPlay is a component-based streaming language [37] developed primarily with real-time
cyber-physical systems in mind. It implements the component coordination model laid out in the
previous section. A TeamPlay application definition (line 1) starts with the keyword app followed
by an identifier that serves as the application’s name. Enclosed within curly brackets we can
identify three major code regions: datatypes starting at line 2, components starting at line 6 and
edges starting at line 24. Data types are declared as pairs of identifier and string, where the former
will be used as symbolic type name throughout the TeamPlay code while the latter denotes the C
language type definition and merely is used by our compiler during the final code generation step.

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 10 of 55

ADMORPH – 871259

Components and edges are at the core of TeamPlay, and so we devote the following two sections
to them.

1 app car {

2 datatypes {

3 (num , "uint32_t")

4 (frame , "jpegFrame*")

5 }

6 components {

7 DistSensor {

8 outports [(dist , num)]

9 }

10 ImageCapture {

11 outports [(frameData , frame)]

12 }

13 Decision {

14 inports [(dist , num) (frameData , frame)]

15 outports [(voltage , num)]

16 }

17 LeftActuator {

18 inports [(voltage , num)]

19 }

20 RightActuator {

21 inports [(voltage , num)]

22 }

23 }

24 edges {

25 DistSensor.dist -> Decision.dist

26 ImageCapture.frameData -> Decision.frameData

27 Decision.voltage -> LeftActuator.voltage & RightActuator.voltage

28 }

29 }

Figure 5: TeamPlay coordination code for example of Figure 4

2.2.1 Components

Components serve as representations of stateless computations that map input data tokens on
typed incoming streams to output data tokens emitted on type output streams. Following the
conceptual approach of exogeneous coordination the actual computation is outside the scope of
the coordination code. As pointed out in the previous section, we expect to link our compiled
coordination code with independently provided and compiled component implementation code.

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 11 of 55

ADMORPH – 871259

Given our focus on cyber-physical systems we assume component implementations to be written
in the C language, or possibly in C++.

Coming back to Figure 5 we can identify the definitions of the five components of our example,
illustrated in Figure 4. They are enclosed in curly brackets following the key word components in
line 6. A component definition starts with a name followed by a pair of curly brackets enclosing
further information about the component.

As components communicate with other components via FIFO channels, the corresponding
ports are the most vital functional properties (or contracts) of components. Following the key
words inports, outports or state (The latter is not shown in the running example.) we have a list
of pairs of port name and port type with the pairs enclosed in round brackets and the whole list
of ports enclosed in square brackets. For example, the Decision component has two input ports,
i.e. port dist of type num and port frameData of type frame, and one output port voltage of type
num. Port types must refer to types previously defined in the datatypes section of the coordination
code. Port names are freshly introduced identifiers. The number of ports a component may have
is fixed but unbounded.

Optionally, ports can specify a multiplicity other than the default of one token. Syntactically,
multiplicity is indicated by a triplet as, for instance, in inports [(in, 3, frame)]. The multi-
plicity of an inport indicates the number of tokens required for firing. Likewise, outport multiplicity
indicates the number of tokens produced on this port in a single firing.

Depending on their inports and outports we can classify components into three classes: source
components, transformer components and sink components. Source components are characterised
by an empty set of inports, in which case also the key word can be omitted. In cyber-physical
applications source components typically represent sensors, like in our example from Figure 4. Sink
components do not have outports; they merely consume data. Sink components typically control
actuators or data transmitters outside of the scope of the coordination model. Last not least,
transformer components (or just components) receive data on their input ports, compute output
data solely based on input data and emit the output data on their outports. While transformer
and sink components are activated by the availability of data tokens on their respective inports
following a Petri-net inspired firing semantics, source components are either interrupt-driven or
timer-driven.

2.2.2 Edges

Components are connected via so-called edges, i.e. FIFO channels, as can be seen on line 24-27 in
the example code of Figure 5. Following the keyword edges and embraced within curly brackets we
can identify a sequence of edge specifications consisting of a component/outport specification, an
arrow and a component/inport specification. These simple edges are also illustrated in Figure 6.a
for the code and visually illustrated in Figure 6.c. On either side component name and port
name are separated by a dot. For the sake of concise code, port names can be omitted in the not
uncommon case that a component only has a single inport or a single outport, and thus the port
name is unambiguous.

There are a number of constraints on edge specifications. They must refer to valid outport and

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 12 of 55

ADMORPH – 871259

inport specifications from the components section of the coordination code. Furthermore, the port
types of outport and inport must coincide, thus defining the token type of the edge. Any port
specified in components section must be connected by exactly one edge. Last not least, cycles are
not permitted.

A special case are broadcast edges as shown in Figure 6.b for the code and visually illustrated
in Figure 6.d). A broadcast edge, as the name suggests transmits copies of tokens emitted by the
left hand side component’s outport to all component inports specified on the right hand side and
separated by ampersands. Our car subsystem example in Figure 4 makes use of a broadcast edge
to send the same value to both the left and right actuator.

A.x -> B.y

(a) Simple channel

A.x -> B.y & C.z

(b) Broadcast channel

A B
x y

(c) Simple edge visualisation

A

B
x

y

C
z

(d) Broadcast or duplication edge visualisa-
tion

Figure 6: Code specification and visual illustration of simple edges (left) and broadcast
edges (right)

2.2.3 Non-functional properties

As pointed out before, one of the goals in the design of the TeamPlay coordination language is
the active management of non-functional properties. In the TeamPlay project three such non-
functional properties are in the focus of interest: energy, time and security. Both energy and time
can only be considered in relation to some concrete execution machinery. Thus, any mentioning of
energy or time in the coordination source code would inherently make the code hardware-specific,
which is not what we want. In our current implementation of the TeamPlay language we make
use of a so-called non-functional properties file (NFP) that functions as a sort of data base storing
per component time and energy consumption values for the whole variety of hardware execution
units of interest. Depending on the concrete hardware properties concrete values can be derived
from static code analysis, dynamic profiling or simply asserted by the user.

The third non-functional property of interest, security, differs from energy and time as security
(in our interpretation of the word) is an algorithmic or code property that is independent of
the actual execution machinery. As demonstrated in Figure 7, line 5, TeamPlay supports the

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 13 of 55

ADMORPH – 871259

1 components {

2 Encryption {

3 inports [(original , frame)]

4 outports [(encrypted , frame)]

5 security 4

6 arch "arm/big"

7 }

Figure 7: Example of a component with non-functional properties: security and ar-
chitecture

specification of a security level in form of a natural number, using the security key word. Here,
we interpret higher numbers as denoting better security. Any concrete meaning of security levels,
however, are application-specific.

In a similar way we can specify an class of hardware on which the component must be scheduled
for execution, using the arch key word and a string representation. This feature is relevant for
the particularly targeted heterogeneous architectures, and the string refers to an architecture
specification that again is outside the scope of the TeamPlay coordination language. In the concrte
example of Figure 7 the component Encryption is (for whatever reason) to only be scheduled on
the big cores of an ARM big.LITTLE platform.

2.2.4 Multi-version components

As sson as non-functional properties rule, it becomes particularly interesting to have multiple ver-
sions of a component that expose identical functional behaviour but implement different trade-offs
of the non-functional properties of interest. Figure 8 demonstrates how this can be accomplished
in TeamPlay.

1 components {

2 Encryption {

3 inports [(in , frame)]

4 outports [(out , enc)]

5 version WeakerEncryption {security 4}

6 version MediumEncryption {security 6}

7 version StrongEncryption {security 9}

8 }

9 }

Figure 8: Example of a multi-version component. The Encryption component has
three different implementations, each with a different security value.

We see an alternative specification of the Encryption component from the previous sec-
tion. It now features three different versions, namely WeakerEncryption with security level 4,

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 14 of 55

ADMORPH – 871259

MediumEncryption with security level 6 and StrongEncryption with security level 9. Different ver-
sions of one component all share the same port specifications and must behave identically from
the outside functional perspective. As the example demonstrates, this does not mean bit-wise
equivalence of the input/output relation.

Our original design foresees the addition of more non-functional properties, and we will make
extensive use of this in the next section for the sake of introducing fault-tolerance.

2.3 TeamPlay Language Extensions for Fault-tolerance

Our first extension of the TeamPlay language is in the specification of selected fault-tolerance
methods known in literature. Some components or groups of components may be more important
than others, depending on the target hardware, application domain, and other factors. We opt
for a user-directed approach where the user can specify which of the predefined options to apply
in different parts of the application. This is due to major challenges in having a compiler or
scheduler analyse the criticality of a component in the application as a whole. Furthermore, the
way fault-tolerance is implemented and achieved needs to be transparent to the programmer in
order to make sure they they fit the application requirements.

As in the previous section we illustrate the TeamPlay language extensions for fault-tolerance by
example. For completeness we also provide a formal syntax specification of the complete language
in EBNF form in Appendix A.2.

2.3.1 Checkpoint/restart

Checkpoint/restart lets the system return to a stable (backup) state when a fault has occurred [36,
35]. Generally, the downside of checkpoint/restart methods is the concrete state of some failing
software unit is difficult to assess and, thus, in the worst case the entire process image needs to
be saved at each checkpoint. That is prohibitively expensive, both in storage space and execution
time.

Here the architecture of our coordination-based approach pays off. It creates a middleware layer
where our system software can precisely keep copies of the arguments of an individual component
invocation before giving control to the third-party provided component implementation. The
stateless nature of TeamPlay components ensures that no other data affects the computation. Note
here that this property remains valid even if state ports are used as described in Section 2.1.2. The
backup copies of the argument values only need to be stored while the component is computing.
As soon as it emits its output data on its outports, the backup copies can be discarded.

The benefits of using checkpoint/restart are (potentially) three-fold: implementation is straight-
forward, coordination between hardware components is not needed, and it only requires extra mem-
ory and copy time but no redundant active components. Figure 9 shows how checkpoint/restart
can be specified on the Decision component from Figure 5. Currently, our specification of check-
point/restart has no supported options, hence the empty pair or curly brackets.

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 15 of 55

ADMORPH – 871259

1 Decision {

2 inports [(frameData , int) (dist , int)]

3 outports [(voltage , int)]

4 checkpoint {}

5 }

Figure 9: Defaults of the checkpoint/restart specification.

2.3.2 Standby or primary-backup

In standby or primary-backup methods, standby components can take over the active computing
component in case of failure, as illustrated in Figure 10. Initially, the output of the primary pro-
cess is used. Should a fault be detected, the output of the standby component is used instead. A
distinction can be made between cold, warm and hot standby which differ in the amount of syn-
chronisation the backup components have to the active components [23]. The distinction between
these types can be defined as follows:

Cold The backup component(s) are only initialised and then turned off.

Warm The state of the active component is mirrored to the backyp component(s) at specified
points.

Hot The backup component(s) are actively synchronised with the primary component so that the
backup component can take over immediately.

In case of crash failures, components with long startup times benefit from this type of synchro-
nisation because the working component can be taken over faster when using primary-backup [23].
Generally, the number of required computing resources for primary-backup are lower compared
to methods like NMR. Especially using cold standby can save a lot of energy resources, which is
important in (often) battery powered systems like those in the cyber-physical class. The main
disadvantage of this method is that a fault needs to be detected before the redundant component
can take over. Furthermore, primary-backup cannot detect value faults (i.e., there is no voting)
and it relies on an error detection method to detect faults, so that the active component can be
taken over. Thus, this method is primarily useful in systems which require fast switch times while
keeping a state close to the state of the original, crashed process [23].

In primary-backup, the state of the primary and standby component is synchronised. The
degree of this synchronisation depends on which flavour, cold, warm or hot is implemented. This
allows the application to quickly switch outputs when a fault is detected. In TeamPlay, the firing of
a component is discrete, i.e., every execution produces output tokens only once. This, together with
the fact that state is made explicit in the buffers of the edges, means that it is not necessary to run
the primary and standby components at the same time, i.e., they do not have to be synchronised.
We can simply provide copies of the input tokens to the hardware units and take the first unit
who delivers an output as the primary component. If it fails, one of the standby components will

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 16 of 55

ADMORPH – 871259

Active
component

Standby
component

Faulty
component

New active
component

Input

Detected

Fault detecting
system

Timing or crash
fault occurs Handles

control to
standby

Figure 10: Illustration of recovery of a failing active component using the hot standby
method. When a fault is detected, the output of the active component is routed to
that of the standby component, so that the service can continue.

deliver output instead. This makes this method predictable as one does not have to account for
switching from the primary to the replica component or synchronisation mechanisms.

Figure 11 shows the way primary-backup can be specified. The specified options again use
default values. In primary-backup the replicas option can be specified as an integer denoting the
number of replicas to run for this component.

1 Decision {

2 inports [(frameData , int) (dist , int)]

3 outports [(voltage , int)]

4 standby {

5 replicas 2

6 }

7 }

Figure 11: Defaults of the primary-backup specification.

2.3.3 N-Modular redundancy

A classic example of physical redundancy is N-Modular Redundancy (NMR). In this strategy,
n independent identical processes are executed with identical input [36, 23]. These n processes
are followed by voting processes, which vote which answer they will be outputting. This method

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 17 of 55

ADMORPH – 871259

primarily focuses on masking transient faults. Depending on the fault-model for the application,
it can be possible that the voter processes fail. In order to decrease the chance of this happening
it is possible to increase the number of voters [3].

If a minority of the computational processes have faults, a majority vote will still result in the
correct answer. Triple Modular Redundancy (TMR) [20, 36, 23] is a special case of NMR in which
n is minimally chosen such that the computation does not have to be repeated (when a single fault
is present). Since we can’t know which process is likely to be faulty in case n = 2. However, this
double-modular redundancy method has uses as an error detection method since it can be used to
detect transient errors. Figure 12 illustrates N-Modular Redundancy with a pipeline consisting of
two stages of components followed by voting processes.

Component
1

Component
2

. . .
 N

Component N

Voter 2Voter 1 Voter N

Component
1.1

Component
2.1

. . .
 N

Component
N.1

Voter 2.1Voter 1.1 Voter N.1

Figure 12: Illustration of N-Modular Redundancy (NMR)

NMR is a mechanism that deals with transient faults without employing low level (hardware)
error detection techniques. Furthermore, NMR is a time-predictable method, i.e., it is suitable
for use in real-time systems [29]. Figure 13 shows the defaults of the N-modular redundancy. We
support the following options:

• replicas (line 6), integer signifying the number of replicas. Default is 3, meaning a TMR
setup.

• votingReplicas (line 7), integer signifying whether and how much the voting processes need
to be replicated.

• waitingTime (line 8), how long processes should wait before initiating the voting process.
Given as a percentage of the average execution time of the finished components, the percent-
age can be higher than 100%.

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 18 of 55

ADMORPH – 871259

• waitingStart (line 9), defines the starting point of waiting. When waitingStart is majority,
processes start waiting based on the execution time when a majority of processes are done.
In the case of single, the waiting will start when a single process is ready.

• waitingJoin (line 10), boolean defining whether processes that are finished later should be
added in the waitingTime calculation. Can apply on both a waitingStart value of majority
and single.

1 Decision {

2 inports [(frameData , int) (dist , int)]

3 outports [(voltage , int)]

4

5 nModular {

6 replicas 3

7 votingReplicas 2

8 waitingTime 30%

9 waitingStart majority

10 waitingJoin true

11 }

12 }

Figure 13: Default options for N-modular redundancy

2.3.4 N-version programming

In N-Version Programming (NVP) multiple functional equivalent implementations of the same
component are created [28]. At runtime, they can be run in the same way as when using N-
Modular Redundancy. The advantage of NVP over NMR is that software faults present in one
implementation are caught the same way as transient hardware faults are caught.

The disadvantage of NVP is that it combines high runtime overhead with additional develop-
ment cost. However, TeamPlay already supports the concept of multi-version components. What
has primarily been intended to exploit different energy/time/security trade-offs, can now be reused
for fault-tolerance. By leveraging our existing version mechanic, the programmer can kill two birds
with one stone by reusing existing versions for NVP.

The options we support in NVP are similar to N-Modular Redundancy (Section 2.3.3) adding
an option to specify versions, which defines which versions should be used and how many of each
of these versions should be run. This is ilustrated in Figure 14.

2.4 TeamPlay Language Extensions for Ease of Programming

To assist in managing the fault-tolerance options defined in the previous section and reducing
duplication in the coordination code we introduce new constructs into the TeamPlay coordination

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 19 of 55

ADMORPH – 871259

1 components {

2 Encryption {

3 inports [(in , frame)]

4 outports [(out , enc)]

5 version Encryption1 {security 4}

6 version Encryption2 {security 6}

7 version Encryption3 {security 9}

8

9 nVersion {

10 versions [(Encryption1 , 2) (Encryption2 , 1)]

11 }

12 }

13 }

Figure 14: Example of versions. The first entry in the tuple specifies the version while
the second specifies how many replicas of that version should exist. Not all versions
have to be specified because the default value is 0.

language. While the motivation for these additions originates from managing fault-tolerance op-
tions, they are also meant to work with existing options, like deadline and period specification,
and future options of the language. Again we illustrate the TeamPlay language extensions for ease
of programming by example. For completeness we provide the formal syntax specification of the
complete TeamPlay language in EBNF form in Appendix A.2.

2.4.1 Profiles

In order to provide intuitive structures while keeping code duplication low, we pursue the idea
of using profiles. These profiles are defined globally and can be added to components to prevent
the user from having to specify the same options again and again. Figure 15 shows an example
of adding profiles. The key word profiles opens a new code section where we define the profile
named TMR as triple-modular-redundancy. Later we apply the TMR profile to the ImageCapture

component (see Figure 4 for the complete example) by placing it inside the profiles attribute in
the component definition on line 11.

Profiles aim to cover the general case in which the programmer wants to deal with certain com-
ponents in the exact same way. However, we also envision a situation in which a programmer desires
variations or additions in the use of a profile, possibly in conjunction with other profiles. This can
range from changing a single setting through systematically overwriting the original profile. To
do this we enable the user to combine and overwrite profiles in a cascading manner, overwriting
settings that are previously set and adding settings that are not previously set. Figure 16 shows
this in the ImageCapture component on line 17. On this line, two profiles are added. The order of
these profiles matters as the profile given first (TMR) will be overwritten by the following profiles
(in this case, TMRRedundantVoting).

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 20 of 55

ADMORPH – 871259

1 profiles {

2 TMR {

3 nModular {

4 replicas 3

5 }

6 }

7 }

8 components {

9 ImageCapture {

10 outports [(out , frame)]

11 profiles [TMR]

12 }

13 }

Figure 15: Profile example, the options of the TMR profile will be applied on the
ImageCapture component

1 profiles {

2 TMR {

3 nModular {

4 replicas 3

5 votingReplicas 1

6 }

7 }

8 TMRRedundantVoting {

9 nModular {

10 votingReplicas 3

11 }

12 }

13 }

14 components {

15 ImageCapture {

16 outports [(out , frame)]

17 profiles [TMR TMRRedundantVoting]

18 }

19 }

Figure 16: Cascading example, votingReplicas is equal to three on the ImageCapture

component as the TMRRedundantVoting profile overwrites the TMR profile.

It is also possible to mix the globally defined profiles and inline settings. In Figure 17, the
inline setting on line 13 overwrites the given TMR profile on line 12. The order of the keywords
matters: inports is first, then outports, profiles, and then inline options can be defined. This order

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 21 of 55

ADMORPH – 871259

was chosen to make it clear that profiles are overwritten by inline options just like earlier defined
profiles are overwritten by later ones.

1 profiles {

2 TMR {

3 nModular {

4 replicas 3

5 votingReplicas 2

6 }

7 }

8 }

9 components {

10 Decision {

11 inports [(dist , num) (frameData , frame)]

12 outports [(voltage , num)]

13 profiles [TMR]

14 nModular { replicas 4 }

15 }

16 }

Figure 17: Cascading inline and separated profile definition. The inline option will
overwrite the replicas 3 option of the TMR profile because the inline option is more
specific than a profile. Other options, in this case the votingReplicas option will be
merged with the inline profile.

2.4.2 Controlling cascading options

In general-purpose languages, there are keywords that can be used to communicate certain inten-
tions towards other programmers, for example to indicate that some function needs to implemented
or that some variable must not be overwritten. To this end, we introduce two keywords to allow
more expressiveness and control over options: remove and vital.

remove can be placed before a (fault-tolerance) option to signify that a method should be
removed if it is specified. remove can be used when the programmer wants to cascade certain
options using multiple profiles but not all. For now, we only allow removes on the first layer
keywords of the fault-tolerance options and normal settings. When cascading multiple profiles the
remove is handled per singular cascade. For example, given three profiles, the first of which adds
nModular with replicas 5, the second profile removes nModular while the third one adds it again
without specified options, i.e., the default settings will be used. In handling the cascade of the
first and second profile, nModular will be deleted. When the result of the first cascading operation
is cascaded with the third and final profile, replicas will be equal to 3.

The vital keyword signifies an option that is not allowed to be changed by cascading or
removal. Figure 18 shows remove (line 13) and vital (line 4). If we were to have a component that

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 22 of 55

ADMORPH – 871259

has these profiles in the same order they are defined, i.e., profiles [TMR TMRRedundantVoting

RemoveNModular], the TeamPlay compiler produces an error that the option with the vital

keyword on line 4 cannot be overwritten on line 9, nor can it be removed by the remove keyword
on line 13.

1 profiles {

2 TMR {

3 nModular {

4 vital votingReplicas 1 // will not be overwritten by cascading

profiles

5 }

6 }

7 TMRRedundantVoting {

8 nModular {

9 votingReplicas 3

10 }

11 }

12 removeNModular {

13 remove nModular

14 }

15 }

Figure 18: Example for the usage of vital and remove. The option with the vital

statement on line 4 cannot be changed or removed.

2.4.3 Basic sub-networks

Cascading profiles is a modular approach to applying profiles on individual components. How-
ever this approach can still become repetitive as groups of components responsible for a specific
functionality may have a similar criticality, i.e., they require the same or similar fault-tolerance
options. To support applying profiles on multiple components at once, we introduce sub-networks.
This helps us in three areas:

1. applying potential future edge-based fault-tolerance methods;

2. applying profiles on multiple components via inheritance;

3. enabling programmers to reuse sub-networks of components in different parts of a program.

This section covers the first two points while the third one is treated in the next section.
Basic sub-networks are defined within the components section and can contain one or more

components. Figure 20 shows a schematic example of a sub-network, which is detailed in code
in Figure 19. Note that this example is similar to our previous example shown in Figure 4. The

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 23 of 55

ADMORPH – 871259

Sensors sub-network is defined with two components: ImageCapture (line 9) and DistanceSensor

(line 13). These two components inherit the TMR profile from the Sensors sub-network. In
these components it is again possible to define profiles and inline settings as can be seen on
line 11. These sub-networks are treated similarly to components as they have the same outports
as normal components and they are automatically instantiated. Everything that is defined under
the components keyword is instantiated under the name it has been given. The major difference
between the interface of a normal component and a sub-network is that in sub-networks the
programmer has to specify when an edge should be presented towards the outside of the sub-
network. If an edge should go towards the outside of a sub-network the out keyword can be used
instead of the component name, as can be seen on lines 17 and 18 in Figure 19. The in keyword
can be used to allow an edge from the inport of the sub-network to connect to a component inside
the sub-network, as is shown in line 31.

The advantage of specifying the edges inside the sub-network is that they are self-contained
units. Thus, they can easily be copied in other parts of the program or even other programs
entirely, provided the used types also exist there.

2.4.4 Templates

In order to have multiple instances of the same subgraph or component, i.e., have a single definition
and use them multiple times in a graph, we have to decouple the component definition and their
instantiation since there can be multiple instances of the same sub-network or component. To do
this, we introduce an additional top-level code section in application definitions called templates.
Sub-networks and components defined under this keyword are not automatically instantiated but
serve as abstract definitions. These definitions must be instantiated explicitly in the components

section.
In order to illustrate this templating mechanism we expand our previous sub-network example

from Figure 20 into the one shown in Figure 22. The corresponding coordination code can be found
in Figure 21. Here, we take the previous example and add another instance of the same Sensors

sub-network to the application by moving the Sensors sub-network to templates. Two Sensors

sub-networks, SensorFront and SensorRear, are instantiated on lines 26 and 27, respectively. Both
are connected to an extended Decision component.

The split between components and templates makes explicit to the programmer what is already
instantiated and what is not. Components defined in the components section are automatically
instantiated. In contrast templates defined in the templates section must still be instantiated ex-
plicitly in the components section. This also reduces additional code overhead for smaller programs,
as they can be automatically instantiated by placing their definitions directly into the components

section.

2.4.5 Parameterised templates

Templating is not limited to sub-networks as components can also be defined in templates so that
they can be instantiated multiple times. However, having instances of the same component or

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 24 of 55

ADMORPH – 871259

1 profiles {

2 TMR {

3 nModular { replicas 3 }

4 } }

5 components {

6 Sensors {

7 outports [(dist , num) (frameData , frame)]

8 profiles [TMR]

9 ImageCapture {

10 outports [(frameData , frame)]

11 nModular { replicas 4 }

12 }

13 DistanceSensor {

14 outports [(dist , num)]

15 }

16 edges {

17 ImageCapture -> out.frameData

18 DistanceSensor -> out.dist

19 } }

20 Actuators {

21 inports [(voltage , num)]

22 profiles [TMR]

23 LeftActuator {

24 inports [(voltage , num)]

25 nModular { replicas 4 }

26 }

27 RightActuator {

28 inports [(voltage , num)]

29 }

30 edges {

31 in.voltage -> LeftActuator.voltage & RightActuator.voltage

32 } }

33 Decision {

34 inports [(frameData , frame) (dist , num)]

35 outports [(voltage , num)]

36 } }

37 edges {

38 Sensors.dist -> Decision.dist

39 Sensors.frameData -> Decision.frameData

40 Decision.voltage -> Actuators.voltage

41 }

Figure 19: Sub-network example which mirrors 20. The TMR profile applies to all
sub-components of the Sensors subgraph, ImageCapture and DistanceSensor.

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 25 of 55

ADMORPH – 871259

Sensors

ImageCapture

DistanceSensor

Decision

dist

frameData
LeftActuator

RightActuator

Actuators

voltage

Figure 20: Conversion of Figure 4 to sub-networks. The edges originating from
ImageCapture and DistanceSensor are presented towards the outside of the graph. From
the outside of the Sensors sub-network, two edges go to the Decisision component.
The Decision component calculates a voltage goes into the sub-network. From the
edge of the Actuators sub-network, a duplicate edge copies the same voltage token to
the LeftActuator and RightActuator. The coordination code that corresponds with this
figure is listed in Figure 19.

sub-network does not mean that they have the same criticality (i.e., the same profiles), or, to
move past the focus on fault-tolerance, have the same settings (e.g., deadlines). To satisfy the
need for variations between instances of components or sub-networks we introduce parameterised
templates.

Another version of the Sensors sub-network example we showed in Figure 20 is presented
in Figure 23. Parameters can be added in the template definition, as can be seen on line 7.
Occurrences of the parameter names in setting areas (e.g., fault-tolerance settings, deadline, period,
etc.) are substituted by the value given during instantiation (lines 24 and 25). In the absence of
parameters the brackets can be left out. On line 24 we add the TMR profile, but on line 25 we leave
the parameter empty by giving an underscore as a parameter. For now, we only support adding
parameters to options and profile names as these are the areas where we expect this variation
between instances exists.

2.4.6 Component and function names

In TeamPlay, component names in the coordination domain are tied to function names in the
computation domain. This creates problems with templates when having multiple sensors, when
using the same function without any changes would just reuse the same sensor. To remedy this,
we introduce the cname keyword to specify the name of the function inside a component. This
becomes a useful mechanism when paired with parameter passing as the name of the function is
then tied to its instance instead of its template.

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 26 of 55

ADMORPH – 871259

1 profiles {

2 TMR {

3 nModular { replicas 3 }

4 }

5 }

6

7 templates {

8 Sensors {

9 outports [(distance , num), (frameData , frame)]

10 profiles [TMR]

11 ImageCapture {

12 outports [(outFrame , frame)]

13 nModular { replicas 4 }

14 }

15 DistanceSensor {

16 outports [(dist , num)]

17 }

18 edges {

19 ImageCapture.outFrame -> out.outFrame

20 DistanceSensor.dist -> out.dist

21 }

22 }

23 }

24

25 components {

26 Sensors SensorFront // Instantiates a sub -network of type Sensors

27 Sensors SensorRear // Instantiates a sub -network of type Sensors

28

29 Decision {

30 inports [(frameFront , frame) (distanceFront , num)

31 (frameRear , frame) (distanceRear , num)]

32 }

33 }

34

35 edges {

36 SensorFront.dist -> Decision.distFront

37 SensorFront.frameData -> Decision.frameFront

38

39 SensorRear.dist -> Decision.distanceRear

40 SensorRear.frameData -> Decision.frameRear

41 }

Figure 21: Example of multiple instances of the same sub-network in an application

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 27 of 55

ADMORPH – 871259

SensorFront

ImageCapture

DistanceSensor

Decision

dist

frameData

SensorRear

ImageCapture

DistanceSensor
dist

frameData

distFront

frameRear distRear

frameFront

. . .

Figure 22: Extension of Figure 20 which adds another Sensor sub-network using tem-
plating. The Actuators sub-network is left out for brevity. The corresponding code
snippet can be found in Figure 23.

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 28 of 55

ADMORPH – 871259

1 profiles {

2 TMR {

3 nModular { votingReplicas 3 }

4 }

5 }

6 templates {

7 Sensors(numReplicas , rootProfile) {

8 outports [(dist , num), (frameData , frame)]

9 profiles [rootProfile]

10 ImageCapture {

11 outports [(frameData , frame)]

12 nModular { replicas numReplicas }

13 }

14 DistanceSensor {

15 outports [(dist , num)]

16 }

17 edges {

18 ImageCapture -> out.frameData

19 DistanceSensor -> out.dist

20 }

21 }

22 }

23 components {

24 Sensors(3, TMR) SensorFront

25 Sensors(4, _) SensorRear

26

27 Decision {

28 inports [(distFront , num) (frameFront , frame)

29 (distRear , num) (frameRear , frame)]

30 }

31 }

32 edges {

33 SensorFront.dist -> Decision.distFront

34 SensorFront.frameData -> Decision.frameFront

35

36 SensorRear.dist -> Decision.distRear

37 SensorRear.frameData -> Decision.frameRear

38 }

Figure 23: Example of specifying parameters in a template. In SensorFront, NMR
will be utilised with three replicas and the TMR profile will be applied to all sub-
components. SensorRear on the other hand will have four replicas and no other profile
will be applied.

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 29 of 55

ADMORPH – 871259

3 Task 1.3:

Specifying Formal Guarantees for the Adaptation Layer

The aim of this task is to specify the formal guarantees that the adaptation layer has to meet in
order to ensure the correct functioning even in the presence of an attack or of a fault. We focus on
control systems that receive their sensor input and has to compute a corresponding control signal
to actuate. In our initial research proposal, the task objective was defined as follows.

One of the objectives of this work package is to specify what kind of formal guarantees
can be provided on the adaptation. An abstract example could be: “in response to event
X, the predicate Y is false for a maximum time of T”, which in concrete can be “if the
temperature measured at the CPU level is higher than 90 degrees, after 30 seconds the
system is able to recover and stops missing deadlines”. This task will investigate how
the guarantees can be specified.

Suppose an event (fault or attack) happens at time tevent. The even start triggers anomalous
conditions in which the control signal is not actuated correctly (either because the sensor message
is not delivered, or because it is tampered with, or because the computation does not complete
within its deadline). We assume that our adaptive system is able to resolve the anomalous situation
at time tresolution. We define the duration of the anomaly as

Ranomaly = tresolution − tevent.

The aim of this task is to determine the formal guarantees that the adaptation layer has to
provide with respect to Ranomaly in order to preserve the correct system behaviour. In particular,
we accept guarantees expressed in two different forms:

1. The fault/attack should be resolved within Rmax time. This means guaranteeing Ranomaly ≤
Rmax. In this case, we are stating that there can be subsequent events but each of them cannot
last more than a given amount of time. Furtheremore, to simpify the analysis, we assume
that only one active event can happen at a time (meaning that if a system is under attack
it cannot experience a fault). This assumption is of course limiting and we will try to relax
it in the future. However, the ability of determining the maximum duration of an anomaly
is beneficial even in the presence of this limitation (if multiple faults can be experienced a
bound to their number should be provided and the time Rmax should be extended to ensure
the resolution of all of them).

2. Given Ranomaly, we would like to find Rrecovery such that, if the adaptation layer can guarantee
that the system is in a fail-safe state for Rrecovery then it has returned to nominal conditions in
which another event can happen. Notice that we are in no way constraining that Ranomaly ≤
Rmax and the two requirements are indepedent.

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 30 of 55

ADMORPH – 871259

In fact, the first alternative allows us to guarantee that the system always operate in a fail-safe
state as long as the event does not last more than Rmax, while the second alternative allows us to
quantify a sensible recovery period after experiencing an event.

We provide some control background in Section 3.1. Translating the first requirement into the
corresponding control properties, we want to study the stability of the system, ensuring that no
harm is done to the system’s execution. In Section 3.2 we summarise the preliminary results we
obtained for this requirement.

The second case will be the subject of our future investigation in the work package.

3.1 Background on control theory

In this section we recap the basic concepts of control theory that are used in the rest of the
paper. We analyse linear time-invariant models and controllers implemented as periodic tasks
with implicit deadlines.

Plant Model The starting point for control design is always understanding the object that
the controller should act upon. The control engineer obtains a model Pc of the plant to control.
In most cases, this model is linear and time-invariant, and represents with ordinary differential
equations the dynamics of the system in the following form.

Pc :
ẋ(t) = Ac x(t) +Bc u(t)
y(t) = Cc x(t) +Dc u(t)

(1)

The equations above are specifying how the internals of a physical object behaves. Typically,
these equations are nonlinear, but the behaviour of physical systems can be approximated quite
well with a linear system of equations. Each equation is specifying how some of the physical
quantities involved in the behaviour of the physical object change over time. If we open a valve,
letting some water flow in a bathub, the water flow depends on the section of the pipe and on how
open the valve is. We can describe the quantity of water in the bathub by knowing how much
water there was at the beginning of time and what was the water flow since then.

Another example, applying this to a specific problem – cruise control – allows us to map the
specific items that appear in the equation with their meaning. We are trying to control the car
speed, keeping it at a constant value specified by the user, and at the same time ensuring that the
distance between the front of the car and the vehicle in front of it does not exceed a certain value.
To do so, we control the gas pedal and the acceleration that is given to the car. We also need to
measure the current speed of the car and the distance with the vehicle in front.

The values that are measured are considered the output of the system y(t). At every point in
time, the output vector represents a snapshot of what is known about the system. The output of
the system depends on the internal state of the system – for example, the car speed depends on
the previous speed – and on the value of the control signal that we apply (the gas pedal). We
denote with u(t) the value of the control signal and with x(t) the state of the system. The state
vector includes all the variables that are needed to fully describe the system behaviour – whether
we can measure them or not. For example, the system state may include the slope of the road

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 31 of 55

ADMORPH – 871259

that the car is currently running onto, as this makes a difference in describing how much power is
needed to reach a certain speed. A common definition for the state of a system is “an encoding of
evertything about the past that has an effect on the system at present time.”

The system state x(t) = [x1(t), . . . , xp(t)]
T evolves depending on the current state and the input

signal u(t) = [u1(t), . . . , ur(t)]
T, where the superscript T indicates the transposition operator. We

denote with p the number of state variables (i.e., the length of vector x) and with r the number of
input variables (i.e., the length of vector u). The matrices Ac, Bc, Cc, and Dc encode the dynamics
of the system. In the following, we will make two assumptions: Dc is a zero matrix of appropriate
size, and Cc is the unit matrix of appropriate size.2 The first assumption means that the system is
strictly proper and holds for almost all the physical models used in control. The second assumption
means that the state is measurable. This does not always hold for real systems, but state observers
can be built whenever this is not true [16], to estimate the state x(t).3 This means that, without
losing generality, we can represent Pc as

ẋ(t) = Ac x(t) +Bc u(t), (2)

and describe the system dynamics using only Ac and Bc.
From this starting point, control systems are usually designed and realised in one of these two

ways:

1. The plant model Pc is used to synthesise a controller (model) Cc in continuous-time. Closed-
loop system properties, like stability, are proven on the feedback interconnection of Cc and
Pc. However, when the controller is implemented, digital hardware is used. This means that
the controller model Cc has to be discretised, obtaining Cd. Cd describes the behaviour of Cc
at given sampling instants.

2. The model of the plant in continuous time Pc is discretised, obtaining a discrete-time plant
model Pd. Pd describes the behaviour of Pc at given sampling instants. A controller Cd is
designed directly in the discrete-time framework, using the discrete-time plant model Pd.
Closed-loop properties are proven on the feedback interconnection of Cd and Pd.

In both cases, when an object (being it the plant or the controller) is discretised, a sampling period
π is chosen. With either design methods, we can obtain a discrete-time model of the plant Pd and of
the controller Cd. In control theory, usually it is possible to prove properties of the interconnection
between these two models. In particular, we use Cd rather than Cc to prove properties using the
controller that is closer to the real implementation. However, on top of what is done in classical
control theory, we want to take into account deadline misses.

We discretise Pc from Equation (2). From the representation in terms of ordinary differential
equations, we obtain the system of difference equations Pd as

Pd : x[k+1] = Ad x[k] +Bd u[k]. (3)

2Ac is a p× p matrix, Bc is a p× r matrix, Cc is a p× p matrix, and Dc is a p× r matrix.
3As a remark, if a state observer is present its dynamics should be taken into account in the analysis. This

extension only requires to augment the system state with the rows and columns corresponding to the execution of
the observer, but the analysis method remains the same.

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 32 of 55

ADMORPH – 871259

Here, k counts the sampling instants (i.e., there is a distance of π [s] between the k-th and the k+1-
th instant). The matrices Ad and Bd are the counterparts of Ac and Bc for the continuous-time
system. They describe the evolution of the system in discrete-time, have the same dimensions
of the corresponding continuous-time matrices, and their elements depend on the choice of the
sampling period π.

We also consider noise in our model, which is relevant for performance analysis (and not for
stability). We define the plant with noise as

Pd : x[k+1] = Ad x[k] +Bd u[k] +Bw w[k]. (4)

The noise variable w[k] is subject to its specific matrix Bw, which is not the same as the matrix
Bd used for the input u[k]. This allows us to distinguish system that behave differently depending
on the input. Generally speaking, the inputs that are included in u[k] are under our control,
meaning that we can choose them to drive the system state where we want. On the contrary, the
inputs that are included in w[k] are not under our control and may come from imprecise sensors or
from disturbances (like a gist of wind disrupting an helicopter flight).

Controller Model Once a model of the plant is available, control design can be carried out with
many different methods. In this paper we tackle periodic controllers expressed as state feedback
controllers, i.e., controllers that execute periodically with period π and whose discrete-time form
is

u[k] = Kk x[k] (5)

or
z[k+1] = Ak z[k] +Bk e[k]

u[k] = Ck z[k] +Dk e[k]

. (6)

The control design problem is the problem of finding the matrix Kk (or the matrices Ak, Bk, Ck and
Dk) that stabilises the system and obtains some desired properties. The state feedback formulation
Kk is quite general, although the linear system Ak, Bk, Ck and Dk generalises it. State feedback
controllers are not purely proportional controllers, although their update is proportional to the
state vector. It is possible to augment the state vector of the system – for example introducing an
error term and its integral – to achieve controllers that are not simply proportional but contain
integral action.4 Additionally, it is possible to use pole placement [16], or to compute optimal
controllers using the Linear Quadratic Regulator [15] formulation. To properly represent the lack
of update of linear controllers in case of lack of execution (and handle digital implementations of
PID controller), we also consider the linear controller formulation in our analysis.

4The most widely adopted controllers in industry are the Proportional and Integral (PI) or the Proportional,
Integral and Derivative (PID) controllers. These controllers can be expressed in state-feedback form, by augmenting
the system state x(t) with the difference between the desired state values and the obtained ones, i.e., the error, and
its integral, or sum, over time. There is a small difference between the controller expressed in state-feedback form
and the controller expressed as a state-space system. In the first case, when the controller misses its deadline, the
update function for the state is still executed (as it is now part of the system equation). It is however possible to
generalise the findings in this paper to handle controllers in state-space form.

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 33 of 55

ADMORPH – 871259

In an industrial setting,5 many controllers are still designed assuming zero latency and instan-
taneous computation [41], i.e., assuming that it takes zero time to retrieve the sensor measurement
from the plant, compute the control signal, and apply it. When the dynamics of the plant are slow
and the controller is able to sample and measure signals at a reasonable speed, this assumption
does not significantly affect the behaviour of the system. However, in most cases, basic properties
like stability can be violated because of the computational delays that are introduced in the loop.
The controller job that is activated at time ta completes its execution at time tc, where tc is in the
controller period, i.e., tc ∈ (ta, ta + π], introducing a computational delay tc − ta.

Due to this computational delay, in industry, it became common practice to design control
systems following the Logical Execution Time (LET) paradigm and to synchronise input and
output exactly to the period boundary. In this case, the control signal is computed within a
control period and applied at the beginning of the next period. This enhances the predictability
of the system, allows the processor to execute other tasks without affecting the control properties,
and ensures a consistent behaviour.

In control terms, this means that the controller actuates its control signal computation with
a one-step delay. Assuming that the cycle of sampling, computing, and actuating can be always
terminated within a control period, this allows the designer to synthesise an optimal controller
regardless of the time-varying components of the computational delay such as activation jitter,
unpredictable interrupts, uncertain computation times [18]. The equation for the state feedback
controller then becomes

Cd : u[k] = K x[k−1], (7)

where K is the designed controller, or

Cd :
z[k+1] = Ak z[k] +Bk e[k]

u[k+1] = Ck z[k] +Dk e[k]

(8)

where Ak, Bk, Ck and Dk represent the linear controller evolution and e[k] represents the error
term. With very few exceptions, the vast literature on control design assumes that the deadlines
to compute control signals are always met. Recently, Linsenmayer and Allgöwer started to connect

the theory of m-K real-time systems (i.e., the τ `
(
m
[k]

)
model) with control design [19], showing

that it is in some cases possible to design a state feedback controller that is robust (i.e., guarantees
stability) to deadline misses. In this paper we will connect the amount of possible consecutive
deadline misses (i.e., the τ ` 〈n〉 model) to the analysis of stability as a control design property.

Feedback Interconnection Assume there are no deadline misses. In this case, we can plug the
value of u[k] obtained from Equation (7) into the plant Equation (3), obtaining

x[k+1] = Ad x[k] +BdK x[k−1]. (9)

5In fact, a survey published in 2001 by Honeywell [8] states that 97% of the existing industrial controllers are
PI controllers and use no delay compensation. This does not mean that the control community has not developed
solutions to properly address delays in the control design. It simply means that in many industrial settings the
design is still simple and limited to considering the computation instantaneous.

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 34 of 55

ADMORPH – 871259

To analyse the closed-loop system, we define a new state variable x̃[k] = [xT
[k], x

T
[k−1]]

T (the super-

script T indicates the result of the transposition operator). We recall that p denotes the order of
the system (i.e., the number of state variables in vector x[k]). Using the new state variable x̃[k],
Equation (9) can be rewritten as

x̃[k+1] =

[
x[k+1]

x[k]

]
=

[
Ad BdK
Ip 0p×p

]
︸ ︷︷ ︸

A

[
x[k]

x[k−1]

]
= A x̃[k], (10)

where Ip and 0p×p are respectively the identity matrix and the zero matrix of size of the number
of state variables p.

Stability A discrete-time linear time-invariant system is asymptotically stable if and only if
all the eigenvalues of its state matrix are strictly inside the unit disk. For the system shown in
Equation (10), this means that the eigenvalues of A should have magnitude strictly less than one.

Another way of formulating the stability requirement uses the concept of spectral radius ρ(A).
The spectral radius is defined as the maximum magnitude of the eigenvalues of A. If we denote
with {λ1, ..., λn} the set of eigenvalues of A, this means

ρ(A) = max {|λ1|, . . . , |λn|} . (11)

Requiring that all the eigenvalues have magnitude strictly less than one is equivalent to stating
that the spectral radius of the A matrix should be less than 1.

This only proves the stability of the system in absence of deadline misses. However, we are
aware that sporadic misses can occur, either due to faults [12] or to the chosen period π not
satisfying the requirement of worst-case response time for the controller task τ being less than the
controller period [10, 27, 26].

3.2 Maximum fail time Rmax

We consider that an event causes deadline misses, either because the control signal is not correctly
received by the actuator, or because the computation is not carried on, or because the sensor
message is not received.

In order to properly analyse the closed-loop system properties when deadlines can be missed,
it is necessary to define a model of how the system reacts to deadline misses. There are two
aspects of this reaction: (i) what is the chosen control signal when a miss occurs [19], and (ii)
how is the operating system treating the job that missed the deadline [26]. In the remainder of
this section, suppose that in the k-th iteration the controller task τ did not complete its execution
before the deadline, i.e., it does not complete its computation before time (k+ 1) π [s]. We denote
time (k + 1) π [s] with tm.

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 35 of 55

ADMORPH – 871259

Control Signal At time tm, a control signal should be applied to the plant. Two alternatives
have been identified for how to select the next control signal [19]: zero and hold.

1. Zero: The control signal u[k+1] is set to zero.

2. Hold: The control signal u[k+1] is unchanged, i.e., it is the previous value of the control signal
u[k].

The choice of these two alternatives often depends on the control goal that should be achieved.
When a controller is designed for setpoint tracking (i.e., to ensure that the value of some

physical quantity follows a desired profile – e.g., to have a robot follow a desired trajectory), the
control signal is usually zero in case the measured physical quantity is equal to its setpoint. In this
case, setting the control signal to zero means assuming that the model of the plant is correct and
the computation does not need correction. When a controller is designed for disturbance rejection
(i.e., to ensure that the effect of some physical disturbance is not visible in the measurements –
e.g., to keep the altitude of a helicopter constant despite wind) then the control signal is usually
a reflection of the effort needed to counteract the disturbance. In this case, holding the previous
value of the control signal means making the assumption that the system is experiencing the same
disturbance.

System-Level Action The second decision to make is the choice of what to do with the job
that missed the deadline. In this case three alternatives have been proposed [26]: kill, skip-next,
and queue(1).

1. Kill: At time tm the job that missed the deadline is killed and a new job is activated.

2. Skip-next: At time tm the job that missed its deadline is allowed to continue with the same
scheduling parameters (e.g., priority or budget) and carries on in the next period. The
job that should have been activated at the deadline missed is not activated, and the next
activation is set to tm + π.

3. Queue(1): At time tm the job that missed its deadline is continued. A new job is activated
with deadline tm+π. The two jobs share the scheduling parameters during the period interval
[tm, tm + π]. At time tm + π, the most recent update of the control value is applied. If both
jobs finish their computation, the control variable is set to the value produced by the most
recently activated job (i.e., the job that started at time tm and was placed in the queue
until the old job that missed its previous deadline finished). If only the first job finishes the
computation the control variable is set to the value of the job that finished and the following
one is continued in the subsequent period.

We analyse the system in all possible configurations. However, we point out that, from an
implementation perspective, killing the control job may not be feasible in many industrial settings.
In fact, the system has reached an inconclusive intermediate state. The internal state of the
controller could have been updated and the system should implement a clean rollback of these

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 36 of 55

ADMORPH – 871259

x(t)

Cd

u(t)

π

x[1]

x[2] x[3] x[4]

u[1]
u[2] u[3]

e1 e2 e3

t

Figure 24: System evolution in case no
deadline is missed. The state feedback
controller Cd computes the control sig-
nal u based on measurements of the
state x.

x(t)

Cd

u(t)

π

x[1]

x[2] x[3] x[4]

u[1]
u[2] u[3] = u[2] u[4]

skipe1 e2

t

Figure 25: System evolution in case of
a deadline miss with the hold policy
and skip-next strategy. The controller
misses the deadline and completes in
the subsequent period.

changes. Implementing a clean rollback procedure is risky. Furthermore, if the lengthy computation
(and subsequent deadline miss) is due to the received input values, it is likely that the next iteration
will start from state values that are fairly close to the previous ones, with higher than normal risk
of missing a deadline.

We also notice that enqueuing the task could be beneficial from the control perspective, because
a computation with most recent measurements of the state variables could be applied. However, the
scheduling parameters for τ have most likely been tuned for one single control job to be executed
in a period. For example, if the control task is executed using reservation-based scheduling, its
budget is selected to match one execution. When using fixed-priority scheduling, the controller
priority has been selected. Executing a second control task may create ripple effects and have a
disruptive effect on lower priority tasks.

Finally, if the deadline is missed, this means that the system is likely experiencing a transient
overload state, which would make skip-next the best option to relieve some pressure from the
system.

Analysis Fundamentals Here we present the general methodology that we apply to verify the
stability of closed-loop systems with different strategies. We cast the problem into a switching-
systems stability problem and show how real-world implementations behave.

Within one control period, there are two possible realisations. The controller job that was
activated at time k π can either hit or miss its deadline. Figure 24 shows the case in which no
deadline is missed, while Figure 25 shows the behaviour of the system when a deadline miss occur
with the hold and skip-next strategy. In the figures, we use ei to indicate the execution time of the
i-th job of the controller. The figure just provides a visual representation of a lengthy execution,
but misses can occur due to other sources of interference, e.g., higher priority task being executed
with a fixed-priority scheduling algorithm, interrupts being raised and served during the execution
of the control task, or access to locked shared resources being requested. In Figure 25, the control
signal u[2] is held as u[3]. The next controller execution instance is skipped and the result of the
completion of e2 is applied as u[4].

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 37 of 55

ADMORPH – 871259

The procedure that we follow to analyse the closed loop system is the following:

1. We express the dynamics of the closed-loop system in the cases of hit and of miss. Following
a procedure similar to the one we used in Equation (10), we determine the state matrices
for the closed-loop systems in case of deadline hit and deadline miss, respectively AH and
AM . We then know that the system with (unconstrained) deadline misses can be expressed
as a switching system [17] that arbitrarily switches between these two matrices. If the
original system in Equation (3) was unstable, there is no hope that the switching system
that arbitrarily switches between AH and AM is stable (as either an old or no control action
is applied when a miss occurs). However, we still have not introduced any weakly hard
constraint.

2. We determine the set of possible cases for the evolution of the system when τ ` 〈n〉 guarantees
are provided, i.e., the possible realisations of the system behaviour. We denote with Σ the set
of possible matrices that these realise. For τ ` 〈n〉 guarantees, the set of possible realisations
is {H,MH, . . . ,MnH}. The set contains either a single hit, or a certain number of misses
(up to n) followed by a hit.6 This means that Σ = {AH , AHAM , AHA2

M , ...AHA
n
M}. This

can be written in a compact form as Σ = {AHAiM | i ∈ Z≥, i ≤ n} where Z≥ indicates the
set of integers including zero. Notice that matrices are multiplied from the right to the left
(denoting the standard evolution of the system from a mathematical standpoint). This step
introduces the weakly hard constraint for which we investigate the system stability.

3. We compute a generalisation of the spectral radius concept, called joint spectral radius
ρ(Σ) [32, 14], that allows us to assess the stability of the closed-loop system that switches
between the realisations (i.e., the valid scenarios including a number of misses between 0 and
n followed by a hit) included in Σ. More precisely, the closed-loop system that can switch
between the realisations included in Σ is asymptotically stable if and only if ρ(Σ) < 1 [14,
Theorem 1.2].

In order to generalise the spectral radius to a set of matrices, we introduce some notation. The
following paragraphs are using the notation and sequential treatise proposed in [14] to introduce the
concept of the joint spectral radius. We recap only what is needed for the purpose of understanding
our analysis.

Joint Spectral Radius [32, 14] The first step for our definition is to determine what happens
when some steps of evolution of the switching system occur. We then denote with ρµ(Σ) the
spectral radius of the matrices that we find after µ-steps. Precisely,

ρµ(Σ) = sup{ρ(A)
1
µ : A ∈ Σµ}. (12)

6The notation used to define Σ is slightly simplified here, as the matrix AH may be different depending on how
many deadlines have been missed (for example, with the skip-next strategy the controller uses an old measurement
of the state to compute the control signal). We will be more precise in the following when we show how to apply
the procedure to the different cases. Furthermore, notice that the matrices in Σ represent the evolution across a
different number of time steps: AH advances the time in the system of π, while AHAM advances the system time
of 2π. This is not a concern for the system analysis.

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 38 of 55

ADMORPH – 871259

In this definition we quantify the average growth over µ time steps, as the supremum of the spectral
radius (elevated to the power 1

µ
) of all the matrices that can be evolutions of the system after µ

matrix multiplications (i.e., after µ evolution steps, where an evolution step is either a hit or a set
of constrained misses followed by a hit). Equation (12) denotes the supremum of all the possible
combinations of products of µ matrices that are included in Σ.

Using ρµ(Σ) we can define the joint spectral radius of a bounded set of matrices Σ as

ρ(Σ) = lim sup
µ→∞

ρµ(Σ). (13)

We are then looking at the evolution of the system for an infinite amount of time, i.e., pushing µ
to the limit.

Determining that the switching system is asymptotically stable is equivalent to assessing that
the joint spectral radius of the set of matrices Σ is less than 1. This condition is both sufficient
and necessary [14, Theorem 1.2]. This means that if the joint spectral radius is higher than 1,
there is at least a sequence of switches of hits and misses that destabilises the closed-loop system.

Joint Spectral Radius Computation On the practical side, the problem of computing if the
joint spectral radius is less than 1 is undecidable [7]. In many cases it is possible to approximate the
joint spectral radius with satisfactory precision [13, 6, 5, 24] and obtain upper and lower bounds
for ρ(Σ). Clearly, the closer the two bounds are, the more precise is the estimation of the true
value of the joint spectral radius. We can safely say that our controller design is sufficiently robust
to deadline misses if the upper bound on the joint spectral radius ρ(Σ) is less than 1.

Joint Spectral Radius with at most n Consecutive Misses If the joint spectral radius of
the set Σ is less than 1, the stability of all the combinations of realisations (of hits and misses,
that include at most n consecutive misses) is proven, regardless of the window size.

For example, let us assume that we are analysing a system with the real-time guarantee that
we cannot experience more than two consecutive misses. The realisations that we analyse are
{AH , AHAM , AHAMAM} and the joint spectral radius unfolds and checks all the possible (infinitely
long) sequences of combinations of these realisations.

For a length of two, this means that we check: (1) AHAH as the product of the first term
twice, (2) AHAHAM as the product of the first two terms picking the first as final (in terms of time
evolution of the system), (3) AHAHAMAM as the product of the first and last terms picking the
first as initial, (4) AHAMAH as the product of the first two terms picking the second as final, (5)
AHAMAHAM as the product of the second term twice, (6) AHAMAHAMAM as the product of the
last two terms, picking the second as final, (7) AHAMAMAH as the product of the last and first
term, (8) AHAMAMAHAM as the product of the last and second term, (9) AHAMAMAHAMAM as
the last term twice. This procedure is repeated for more products, up to infinitely long sequences.
From the computation side, the results are an upper and a lower bound on the value of the (true)
joint spectral radius.

The analysis is sound on the control side, as stability is guaranteed if and only if the joint
spectral radius is less than 1. On the theoretical side, this demonstrates that the τ ` 〈n〉 model

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 39 of 55

ADMORPH – 871259

can elegantly provide a necessary condition for the stability of the system. The only if part means
that there is at least a sequence of hits and misses (where at most we experience n consecutive
misses) that causes the system to be unstable if the (true value of the) joint spectral radius is
larger than 1.

Considering that we only compute an upper and lower bound on the joint spectral radius, what
we can conclude is: if the lower bound that we obtain is above 1, we are entirely certain that such
a sequence exists, while if the lower bound is below 1 and the upper bound is above 1 we have
no mathematical certainty that the system is unstable. Nonetheless, on the practical side, the
bounds obtained with modern approximation techniques [13, 6, 5, 24] are usually very close to one
another, implying that they are a very good estimate of the true value of the joint spectral radius.

It is important to note that even if the control system is able to stabilise the system in the
presence of n consecutive misses, this does not mean that executing the controller with a period of
nπ, rather than its original period π, is a sensible choice. In fact, the performance (measured for
example using the integral of the squared error) of the controller that is executing with a larger
period would be dramatically worse than the performance of the controller with the shorter period
that can experience misses. Being able to tolerate misses is very different than performing well
when these misses occur.

We presented the analysis of these systems in the paper [21] published at the Euromicro Con-
ference on Real-Time Systems (ECRTS) 2020. In our analysis, we discover that depending on
the physical characteristics of our process under control, a different number of deadlines can be
missed without harming the stability of the system and we gave a quantification of the number,
depending on the strategy used to handle the miss. We are then able to find Rmax = nπ where n
is the maximum number of deadline misses that do not harm stability given the handling strategy
that is defined.

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 40 of 55

ADMORPH – 871259

Figure 26: AVI model (see D.5.1 for further details): Systems of a certain complexity
must be considered to contain undetected vulnerabilities. Accidental faults but also
adversaries exploit vulnerabilities that have not been removed to intrude the system,
where they may cause errors and ultimately the failure of a subsystem if the fault goes
undetected and if it cannot be tolerated for extended periods of time. Adaptation
improves the system’s ability to tolerate accidental faults and partial compromise by
evading the attack and by replacing failed components with healthy counterparts.

4 Task 1.4:

Specification of Fault Model and Threat Indicators

For the DSL TeamPlay to anticipate faults and attacks, domain experts must be able to specify
the fault categories (accidental and malicious) that the system should tolerate and the indicators
that define the current threat level that the system is exposed to. Adaptation then happens as
indicated in Section 2.1.4 by selecting one of the multiple versions that has been embedded to the
system at design time. The role of threat indicators is therefore to identify the subset of embedded
versions of the individual components that are capable of withstanding the perceived threats.

As highlighted in Deliverable D.5.1, we shall follow the fault taxonomy of Avizienis et al. [2]
and build upon and extend the AVI model [9]: Attacks and accidental faults are treated under the
same body of knowledge with the exception that statistical information about occurrence can only
be used for the latter. It remains completely to the discretion of an adversary, when he triggers a
fault of the former kind and his ability to do so is only limited by his skill, power and intention.
Both types of faults affect the system through reachable vulnerabilities and we shall assume that
several vulnerabilities go undetected in any system of reasonable complexity, even if the system
has been tested extensively and even if it has undergone formal or semi-formal assurance processes.
Our goal is to achieve dependability by adapting systems to compensate failures and to remove the

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 41 of 55

ADMORPH – 871259

vulnerabilities that lead to those. However, to not overpay for dependability, we aim to adjust the
system to withstand the current perceived threats, while optimizing quality of service. This way,
when the system perceives its risk of failure and compromise increases, it will gracefully degrade
performance to compensate for the changed risk situation.

4.1 Dependability

Avizienis et al. [2] defines dependability as “the ability to deliver service that can justifiably be
trusted”. However, there are many more possible definitions of depedability. For example, an
alternative definition whould characterize dependability a “the ability of a system to avoid service
failures that are more frequent or more severe than acceptable.”

In our opinion, dependability can be better explained by defining its attributes, threats and
means as shown in Figure 27.

Dependability
and

Security

Attributes

Threats

Means

Availability
Reliability
Safety
Confidentiality
Integrity
Mainteinability

Faults
Errors
Failures

Fault Prevention
Fault Tolerance
Fault Removal
Fault Forecasting

Figure 27: Definition of Dependability

1. Dependability Attributes

(a) Availability is the readiness for correct service.

(b) Reliability is the continuity of correct service.

(c) Safety is the absence of catastrophic consequences on the user(s) and the environment.

(d) Confidentiality is the the absence of unauthorized disclosure of information.

(e) Integrity is the ability to detect improper system alterations.

(f) Maintainability is the ability to undergo modifications and repairs.

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 42 of 55

ADMORPH – 871259

2. Dependability Threats

(a) Vulnerability is a condition that may lead to a Fault (e.g., insufficient shielding against
radiation, which may lead to a bitflip if an α-particle hits the memory, a buffer, which
may overflow if an adversary triggers this software bug).

(b) Fault is an event (or system state) that has unintentionally occured, caused by external
and/or uncontrollable factors (such as radiation induced bit flips for which only the
probability of occurrance is known, largely unpreditable subsystem failures, or attacker
induced state changes), which may manifest to an error.

(c) Error is the deviation from the correct behaviour. An error is the part of the total state
of the system that may lead to its subsequent service failure. They might not reach an
external state so they are called dormant errors.

(d) Failure occurs when the delivered service deviates from correct service. This means,
an external state deviates from the nominal behaviour. A service fails either because it
does not comply with the functional specification, or because this specification did not
adequately describe the system function. A service failure is a transition from correct
service to incorrect service. The period of delivery of incorrect service is a service
outage. The transition from incorrect service to correct service is a service restoration.
The deviation from correct service may assume different forms that are called service
failure modes and are ranked according to failure severities.

3. Dependability Means

(a) Fault Prevention is the means to prevent the occurrence or introduction of faults

(b) Fault/Intrusion Detection is a mean to identify faults that are happening

(c) Fault Forecasting is the means to estimate the present number, the future incidence,
and the likely consequences of faults.

(d) Fault Removal is the means to reduce the number and severity of faults.

(e) Fault Tolerance is the means to avoid service failures in the presence of faults or sub-
system failure.

(f) Fault Masking ensures continued service delivery (i.e., without interruption) despite
components or subsystems failing. As such, masking implies tolerance.

4.2 Fault Model and Threat Indicators

In the following we detail the general fault model we follow in Admorph and the threat indicators
that trigger adaptations to increase the resilience of the system.

We assume systems operate through phases where they are exposed to threats of different
severity. This includes environments which differ in the statistics how frequent accidental faults
happen. A prominent example of this kind are the different radiation situations experienced by

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 43 of 55

ADMORPH – 871259

an airplane while it is flying versus when it is on ground at the airport. Phases also differ in
the presence and strength of adversaries attacking the system. In the following, we detail the
assumptions of our fault model as far as they concern this environment and the assumptions and
threat indicators that affect internal components, after adversaries have been partially successful
in compromising some of the system’s components.

4.2.1 Environmental Threats

We assume individual systems are composed of interacting components, as described in Section 2.
Systems act in their environment. Components with no input channel constitute input compo-
nents. They sense the environment and are thus susceptible to receiving faulty inputs from this
environment. Conversely, components with no output channel constitute output components.
Since output components typically act on the environment, they as well may be susceptible to
faults triggered by the environment.

For example, rogue packets on a wireless communication medium or physical attacks to the
sensors of an individual cyber-physical system may lead to a fault in the input component, which
interprets this packet or sensor value. A physically blocked rotor is an example of an environment
fault that may jam an actuator and that in turn might trigger a fault in the actuating component.

Threat indicators for environment-triggered faults include reading implausible sensor values,
receiving improperly signed packets, unexpectedly high network traffic, but also the CPS entering
a zone of known high likelihood to experience accidental or intentionally malicious faults (e.g., an
area with high radiation or a hostile area).

We take the safety criticality of the Admoprh use cases as justification to not exclude the general
possibility of advanced and persistent threats (APTs). We therefore consider rare failure situations
and prepare the system to withstand also worst case combinations of threats to the degree that
this tolerance can be justified given the resource budget available to system components.

Naturally, systems normally do not face such worst-case combinations. Instead, it is much more
likely that no component fails or that components fail only individually and by accident. Our fault
model is therefore not tied to define a single threshold f over the number of failing components
that can be tolerated, but rather adjusts this threshold according to the component considered
and to the level of threat, the system thinks it is exposed to.

For input/output components, detecting the presence of an adversary in the environment jus-
tifies increasing the perceived threat level, whereas having applied a new patch to fix a known
vulnerability supports lowering the perceived threat level, since adversaries are stripped from this
attack possibility.

4.2.2 Internal Threats

However, threat levels apply equally well to internal components. In fact, they allow us to char-
acterize the partial success adversaries might already have when we see indicators for a possibly
successful compromise. Indicators of this sort include wrong outputs from an internal component,
no or delayed reaction to inputs, the communication of corrupt, stale or otherwise suspicious data

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 44 of 55

ADMORPH – 871259

over internal channels, and gained knowledge about detected but not yet fixed vulnerabilities.
Since the systems Admorph investigates are cyber-physical systems and as such real-time systems,
threat indicators are not only limited to the value domain, but may also concern the timing when
information is provided. Moreover, because of the CPS nature of the Admorph use cases, con-
trollers form the last line of defense against physical damage to the environment or to the humans
that operate in close proximity to the CPS. Once the aversary compromises these controllers or
once he overcomes the internal resilience of the controlled system (see Sec. 3), the adversary can
reach out to the physical world and cause harm that no adaptation can prevent. We therefore set
out to prevent such software side compromise, leaving physical attacks to the actuators the only
threat that requires different mitigation strategies.

Adaptation gives rise to two general ways of defending against such attacks: by evading critical
components from the attack paths through which adversaries seek to reach their ultimate targets
— typically the actuators if adversaries intend to cause harm — or by reinstantiating components
along this part to replace a possibly compromised version with a fresh instance that the adversary
still has to compromise to advance in his attack. Of course, pracical defenses apply a combination
of the two.

For the purpose of this project, we shall assume the real-time operating system (PikeOS) and
the adaptation component to not be compromised by adversaries. Note that this does not con-
straint the adversary to spare these components, but we will make no guarantees once adversaries
are successful in compromising these components. The design and implementation of fault and
intrusion tolerant real-time operating systems is out of scope of this project.

4.3 Threat Levels and Adversarial Power

To operate in the above fault model, one must be able to characterize adversarial power and to
put this strength in relation to the countermeasures we foresee through adaptation. We do so, by
investigating components ci individually and by anticipating a time T iA that reflects the best case
time after which an adversary with his resources has compromised ci. For interface components,
we can then associate the presence of adversaries of a certain strength with a threat-level tl ∈ TL
and act to an increasing or decreasing tl by adapting the components to an embedded component
that can withstand attacks at tl and that performs better than component instances, which could
withstand the threats of higher levels. Similarly, we can adapt the path by which components can
be reached.

For most situations, a totally ordered set TL will be sufficient (e.g., distinct numbers 1− 9 to
match the security levels in Figure 14). However, in general, a lattice suggests itself to be able
to express different aspects of adversarial strengths (e.g., the ability to compromise cryptographic
operations vs. the possibility to tamper with the sensors) in one level and to quantify as least
upper bound when multiple of these aspects come together.

Once the adversary is successful in compromising components, the adversarial strength in-
creases, since the adversary now has additional resources, provided by the system to the compo-
nents he has compromised. At the same time, attacking internal components, requires a foothold
in the system from where it may attack other components. For this direct aspect of his attack the

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 45 of 55

ADMORPH – 871259

Figure 28: Threat levels and their implication on assumed accidental fault likelihood-
s/attack strengths.

adversary is therefore constrained to the resources he can muster inside the system and these are
the resources associated with the components he has already compromised.

So far, we have no final notion to express this reduction of adversarial strength when his attack
is limited to system-local resources. For now, we will work with abstract force factors F i

A (initially
F i
A = 1) that are applied to T jA to reflect how long this type of adversary takes to compromise

component cj, reachable from ci under the assumption that he has already compromised ci.
Rejuvenation [34] with a novel diverse instance [30] resets the component to a state at least

as secure as initially. Rejuvenating ci faster than T iA outpaces adversaries in compromising com-
ponents [4] to sustain security and safety for the lifetimes we expect from cyber-physical systems
and systems of them [25].

4.3.1 Example

Let us exemplify T jA and F i
A on the example of the replicated subsystem, shown in Figure 28.

To compromise a component cj, which is composed of n replicas, reaching agreement through a
Byzantine Fault Tolerant State-Machine Replication (BFT-SMR) protocol, the adversary must
either find a flaw in the BFT-SMR protocol or it must compromise more than f replicas. f is
here the number of faults that the protocol can tolerate with n replicas. Admorph will research

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 46 of 55

ADMORPH – 871259

protocols that allow the parameters n and f to be adapted to match the perceived threat level.
To reach replicated component cj, the adversary may have to go through a network stack,

which we denote as component ci. Therefore, the time T jA to compromise more than f replicas
of cj depends on the speed at which the adversary may apply attacks through ci. F i

A reduces
the adversaries power from arbitrary many resources he may muster outside the system to the
resources the system has allocated to component ci. Of course, having compromised some of the
replicas ckj of component cj, gives the adversary additional resources he may muster for continuing
his attack. We reflect this by increasing the threat-level of cj to reflect the number of suspected
replicas. This threat-level increase should then trigger adaptation (e.g., by increasing n and f to
compensate the higher risk of failure). Rejuvenating replicas ceases adversarial control over the
resources they provide.

4.4 Next steps

With a general characterization of threat levels in place, the next steps are to develop a fault-tree
analysis (FTA) that is capable of anticipating partial adversarial success to derive the risk of faults
under the condition of compromises. Such an FTA will then serve to quantify the residual safety
of use-case scenarios after individual components have fallen in the hands of an attacker, and will
give guidance how the system can and should adapt to defend such an ongoing attack and to
ultimately throw out the adversary by changing components along its attack paths.

5 Conclusion

The previous three sections reported on the work accomplished by the various partners in the
context of work package 1: Specification of Adaptive Systems. Quite a lot has already been
achieved by the individual partners during this initial reporting period. While the three strands
of work show clear relations and contact points, we see potential to strengthen the collaborative
aspects of our work.

To this effect the Covid-19 pandemic and the corresponding lock-downs across Europe only
shortly after the Admorph kick-off meeting have had a negative effect on collaboration in the
work package. Planned physical meetings had to be cancelled or already given up in the planning
phase. New staff for the project was difficult to find and once found difficult to train during the
lock-down period that with exceptions and regional differences persists until today. Last not least,
in particular academic staff has been overstrained to keep education and student services alive and
running during these extraordinary times.

With the general Covid-19 situation slowly stabilising we see the compilation of this deliverable
as a good starting point for the more structured exchange of ideas and solutions across consortium
partners. In this sense we aim at strengthening the collaborative aspects of the work package
throughout the coming reporting period.

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 47 of 55

ADMORPH – 871259

6 References

[1] Farhad Arbab. Composition of interacting computations. In Dina Goldin, Scott Smolka, and
Peter Wegner, editors, Interactive Computation, pages 277–321. Springer, 2006.

[2] A. Avizienis, J. . Laprie, B. Randell, and C. Landwehr. Basic concepts and taxonomy of
dependable and secure computing. IEEE Transactions on Dependable and Secure Computing,
1(1):11–33, 2004.

[3] Algirdas Avizienis, J-C Laprie, Brian Randell, and Carl Landwehr. Basic concepts and tax-
onomy of dependable and secure computing. IEEE Transactions on Dependable and Secure
Computing, 1(1):11–33, 2004.

[4] A. Bessani, H. Reise, P. Sousa, I. Gashi, V. Stankovic, T. Distler, R. Kapitza, A. Daidone,
and R. Obelheiro. Forever: Fault/intrusion removal trhough evolution and recovery. In
ACM/IFIP/USENIX Middleware, pages 99–101, December 2008.

[5] V. Blondel and Y. Nesterov. Computationally efficient approximations of the joint spectral
radius. SIAM Journal on Matrix Analysis and Applications, 27(1):256–272, 2005.

[6] Vincent Blondel, Yurii Nesterov, and Jacques Theys. On the accuracy of the ellipsoid norm
approximation of the joint spectral radius. Linear Algebra and its Applications, 394:91–107,
2005.

[7] Vincent Blondel and John N. Tsitsiklis. The boundedness of all products of a pair of matrices
is undecidable. Systems & Control Letters, 41(2):135–140, 2000.

[8] Lane Desborough. Increasing customer value of industrial control performance monitoring-
honeywell’s experience. Preprints of CPC, pages 153–186, 2001.

[9] Giovanna Dondossola, Geert Deconinck, Felicita Giandomenico, Susanna Donatelli, Mohamed
Kaaniche, and Paulo Veŕıssimo. Critical utility infrastructural resilience. 11 2012.

[10] G. Frehse, A. Hamann, S. Quinton, and M. Woehrle. Formal analysis of timing effects on
closed-loop properties of control software. In 2014 IEEE Real-Time Systems Symposium,
pages 53–62, December 2014.

[11] D. Gelernter and N. Carriero. Coordination languages and their significance. Communications
of the ACM, 35(2):97–107, 1992.

[12] Saurav Kumar Ghosh, Soumyajit Dey, Dip Goswami, Daniel Mueller-Gritschneder, and
Samarjit Chakraborty. Design and validation of fault-tolerant embedded controllers. In De-
sign, Automation & Test in Europe Conference & Exhibition (DATE), pages 1283–1288, 2018.

[13] N. Guglielmi, F. Wirth, and M. Zennaro. Complex polytope extremality results for families
of matrices. SIAM Journal on Matrix Analysis and Applications, 27(3):721–743, 2005.

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 48 of 55

ADMORPH – 871259

[14] R. Jungers. The Joint Spectral Radius: Theory and Applications. Lecture Notes in Control
and Information Sciences. Springer Berlin Heidelberg, 2009.

[15] Huibert Kwakernaak. Linear Optimal Control Systems. John Wiley & Sons, Inc., New York,
NY, USA, 1972.

[16] W.S. Levine. The Control Handbook. Electrical Engineering Handbook. Taylor & Francis,
1996.

[17] D. Liberzon. Switching in Systems and Control. Systems & Control: Foundations & Appli-
cations. Birkhäuser Boston, 2003.

[18] B. Lincoln and A. Cervin. JITTERBUG: a tool for analysis of real-time control performance.
In 41st IEEE Conference on Decision and Control, volume 2, pages 1319–1324, December
2002.

[19] S. Linsenmayer and F. Allgower. Stabilization of networked control systems with weakly hard
real-time dropout description. In IEEE 56th Annual Conference on Decision and Control
(CDC), pages 4765–4770, December 2017.

[20] R. E. Lyons and W. Vanderkulk. The Use of Triple-Modular Redundancy to Improve Com-
puter Reliability. IBM Journal of Research and Development, 6(2):200–209, 1962.

[21] Martina Maggio, Arne Hamann, Eckart Mayer-John, and Dirk Ziegenbein. Control-System
Stability Under Consecutive Deadline Misses Constraints. In Marcus Völp, editor, 32nd
Euromicro Conference on Real-Time Systems (ECRTS 2020), volume 165 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pages 21:1–21:24, Dagstuhl, Germany, 2020.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[22] David Nicholson. 153821-nwr-rep-ese-000002 digital railway – system of systems (sos) system
definition.

[23] Manuel Oriol, Thomas Gamer, Thijmen de Gooijer, Michael Wahler, and Ettore Ferranti.
Fault-tolerant fault tolerance for component-based automation systems. In Proceedings of the
4th international ACM Sigsoft symposium on Architecting critical systems, pages 49–58, 2013.

[24] Pablo A. Parrilo and Ali Jadbabaie. Approximation of the joint spectral radius using sum of
squares. Linear Algebra and its Applications, 428(10):2385–2402, 2008.

[25] A. Paverd, M. Völp, F. Brasser, M. Schunter, N.Asokan, A. Sadeghi, P. Verissimo,
A. Steininger, and T. Holz. Sustainable security and safety: Challenges and opportunities.
Technical report, ICRI CARS, 2019.

[26] Paolo Pazzaglia, Claudio Mandrioli, Martina Maggio, and Anton Cervin. DMAC: Deadline-
Miss-Aware Control. In 31st Euromicro Conference on Real-Time Systems (ECRTS 2019),
volume 133 of Leibniz International Proceedings in Informatics (LIPIcs), pages 1:1–1:24, 2019.

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 49 of 55

ADMORPH – 871259

[27] Paolo Pazzaglia, Luigi Pannocchi, Alessandro Biondi, and Marco Di Natale. Beyond the
Weakly Hard Model: Measuring the Performance Cost of Deadline Misses. In 30th Euromi-
cro Conference on Real-Time Systems (ECRTS 2018), volume 106 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 10:1–10:22, 2018.

[28] Z. Peng. Building reliable embedded systems with unreliable components. In ICSES 2010
International Conference on Signals and Electronic Circuits, pages 9–13, 2010.

[29] Stefan Poledna. Fault-tolerant real-time systems: The problem of replica determinism, volume
345. Springer Science & Business Media, 2007.

[30] R. Pucella and F. B. Schneider. Independence from obfuscation: A semantic framework for
diversity. In 19th IEEE Work. on Computer Security Foundations, pages 230–241, 2006.

[31] Julius Roeder, Benjamin Rouxel, Sebastian Altmeyer, and Clemens Grelck. Towards energy-,
time- and security-aware multi-core coordination. In Coordination Models and Languages,
22nd International Conference. Springer, LNCS 12134, 2020.

[32] Gian–Carlo Rota and W. Gilbert Strang. A note on the joint spectral radius. Indagationes
Mathematicae, 63:379–381, 1960.

[33] Cosmin Rusu, Rami Melhem, and Daniel Mossé. Multi-version scheduling in rechargeable
energy-aware real-time systems. Journal of Embedded Computing, 1(2):271–283, 2005.

[34] Paulo Sousa, Nuno Ferreira Neves, and Paulo Verissimo. Proactive resilience through archi-
tectural hybridization. In Proceedings of the 2006 ACM symposium on Applied computing,
pages 686–690. ACM, 2006.

[35] Nawrin Sultana. Toward a Transparent, Checkpointable Fault-Tolerant Message Passing In-
terface for HPC Systems. PhD thesis, Auburn University, USA, 2019.

[36] Andrew S Tanenbaum and Maarten Van Steen. Distributed systems: principles and paradigms.
Prentice-Hall, 2007.

[37] William Thies and Saman Amarasinghe. An empirical characterization of stream programs
and its implications for language and compiler design. In 2010 19th International Conference
on Parallel Architectures and Compilation Techniques (PACT), pages 365–376. IEEE, 2010.

[38] https://www.cpsos.eu (main author Sebastian Engell). Cyber-physical systems of systems
- definition and core research and innovation areas. https://www.cpsos.eu/wp-content/

uploads/2015/07/CPSoS-Scope-paper-vOct-26-2014.pdf. Online; accessed 26 May 2020;
included for definition of CPS(oS).

[39] wikipedia. Domain specific language. https://en.wikipedia.org/wiki/Domain-specific_
language. Online; accessed 25 May 2020.

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 50 of 55

https://www.cpsos.eu
https://www.cpsos.eu/wp-content/uploads/2015/07/CPSoS-Scope-paper-vOct-26-2014.pdf
https://www.cpsos.eu/wp-content/uploads/2015/07/CPSoS-Scope-paper-vOct-26-2014.pdf
https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Domain-specific_language

ADMORPH – 871259

[40] wikipedia. Technology readyness level. https://en.wikipedia.org/wiki/Technology_

readiness_level. Online; accessed 25 May 2020.

[41] Dirk Ziegenbein and Arne Hamann. Timing-aware control software design for automotive
systems. In Proceedings of the 52Nd Annual Design Automation Conference, DAC ’15, pages
56:1–56:6, 2015.

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 51 of 55

https://en.wikipedia.org/wiki/Technology_readiness_level
https://en.wikipedia.org/wiki/Technology_readiness_level

ADMORPH – 871259

A Appendices

A.1 TeamPlay core language

App ⇒ app Id { AppBody }

AppBody ⇒ deadline FrequencyConst
period FrequencyConst

datatypes { [(Type, StringConst)]* }
components { [Component]+ }
edges { [Edge]* }

Type ⇒ Id

Settings ⇒ period FrequencyConst
| deadline FrequencyConst
| arch StringConst
| security IntConst
| cname StringConst

Component ⇒ Id {
[inports PortList]
[outports PortList]
[state PortList]
[Settings]*

[Version]* }

Version ⇒ version Id { Settings }

PortList ⇒ [[(Id , [IntConst ,] Type)]+]

Edge ⇒ SimpleEdge | BroadcastEdge

SimpleEdge ⇒ OutPort -> InPort

BroadcastEdge ⇒ OutPort -> InPort [& InPort]+

InPort ⇒ Id [. Id]

OutPort ⇒ Id [. Id]

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 52 of 55

ADMORPH – 871259

A.2 TeamPlay language after Admorph extension

App ⇒ app Id { AppBody }

AppBody ⇒ deadline FrequencyConst
period FrequencyConst

datatypes { [(Type, StringConst)]* }
[profiles { [ProfileDef]+ }]

[templates { [Templs]+ }]

components { [Components]+ }
Edges

Type ⇒ Id

ProfileDef ⇒ Id { [Settings]* [FTSettings]? }

Settings ⇒ [vital] period (FrequencyConst | Id)
| [vital] deadline (FrequencyConst | Id)
| [vital] arch (StringConst | Id)
| [vital] security (IntConst | Id)
| cname (StringConst | Id)
| remove (removeSetting | Id)

FTSettings ⇒ nModular { [[vital] [NModularSetting | ReplicaSetting]]* }
| standby { [[vital] ReplicaSetting]* }
| nVersion { [[vital] [NVersionSetting | NModularSetting]]* }
| checkpoint { }

ReplicaSetting ⇒ replicas [IntConst | Id]

NModularSetting⇒
| votingReplicas [IntConst | Id]
| waitingTime [PercentConst | Id]
| waitingStart [single | Id | majority]
| waitingJoin [BoolConst | Id]

NVersionSetting ⇒ versions [[(Id, IntConst)]+]

RemoveSetting ⇒ nModular | standby | nVersion | checkpoint
| deadline | period | cname

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 53 of 55

ADMORPH – 871259

Components ⇒ Component | SubNetwork | Instantiation

Templs ⇒ Component | Template

Component ⇒ Id {
[inports PortList]
[outports PortList]
[state PortList]
[Profiles]
[Settings]*

[Versions]* }

Profiles ⇒ profiles [[Id]+]

Edges ⇒ edges { [Edge]* }

Versions ⇒ version Id { Settings }

Template ⇒ Id [(Id[, Id]*)] {
[inports PortList]
[outports PortList]
[state PortList]
[Profiles]
[Settings]*
[Templs | Instantiation]+
[Versions]*

Edges }

SubNetwork ⇒ Id {
[inports PortList]
[outports PortList]
[state PortList]
[Profiles]
[Settings]*
[Component | Instantiation]*

Edges }

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 54 of 55

ADMORPH – 871259

Instantiation ⇒ Id [(Arg [, Arg]*)] Id

Arg ⇒ | StringConst | IntConst | Id | PercentConst | FrequencyConst

PortList ⇒ [[(Id, [IntConst ,] Type)]+]

Edge ⇒ SimpleEdge | BroadcastEdge

InPort ⇒ Id[. Id] | in [. Id]

OutPort ⇒ Id[. Id] | out [. Id]

SimpleEdge ⇒ OutPort -> InPort

BroadcastEdge ⇒ OutPort -> InPort [& InPort]+

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 55 of 55

	Executive summary
	Introduction
	Task 1.1: Coordination Language Design
	Coordination model
	Components
	Stateful components
	Non-functional properties
	Multi-version components
	Component interplay

	Coordination Language TeamPlay
	Components
	Edges
	Non-functional properties
	Multi-version components

	TeamPlay Language Extensions for Fault-tolerance
	Checkpoint/restart
	Standby or primary-backup
	N-Modular redundancy
	N-version programming

	TeamPlay Language Extensions for Ease of Programming
	Profiles
	Controlling cascading options
	Basic sub-networks
	Templates
	Parameterised templates
	Component and function names

	Task 1.3: Specifying Formal Guarantees for the Adaptation Layer
	Background on control theory
	Maximum fail time Rmax

	Task 1.4: Specification of Fault Model and Threat Indicators
	Dependability
	Fault Model and Threat Indicators
	Environmental Threats
	Internal Threats

	Threat Levels and Adversarial Power
	Example

	Next steps

	Conclusion
	References
	Appendices
	TeamPlay core language
	TeamPlay language after Admorph extension

