
Modeling Single Event Upsets in UPPAAL
SMC for Real-time DAG Scheduling

Lukas Miedema
l.miedema@uva.nl

Benjamin Rouxel
b.rouxel@uva.nl

Clemens Grelck
c.grelck@uva.nl

Abstract
Real-time cyber-physical systems have become

ubiquitous. As such systems are often safety-critical,
designers must include mitigations against various
types of hardware faults, including Single Event Up-
sets (SEU). SEUs are transient faults that only mo-
mentarily affect a single processor, after which the
processor returns to normal operation. The effect of
a SEU may manifest itself in the job running on that
processor as incorrect output.

We present a new approach for analyzing schedu-
lability using UPPAAL in Stochastic Model Checking
(SMC) mode while including mitigations for SEUs us-
ing job restarts into the scheduler. By restarting a
job after experiencing a SEU, the fault-free response
of the job is delayed, potentially multiple times. We
propose a method that informs the system designer
about the distribution of the applications makespan,
including the probability that a given deadline will be
met in the presence of SEUs.

Keywords
single upset event, soft error, transient fault toler-

ance, UPPAAL, timed automaton, DAG scheduling

1 Introduction
In this work we focus on online scheduling while

dealing with Single Upset Events (SEUs) on symmet-
ric multi-core platforms. SEUs, also called soft errors
or transient faults, are a type of fault which only mo-
mentarily affects a single processor and does not leave
it in a degraded state. Such faults may, for example,
be caused by cosmic rays [8]. The impact of a SEU is
that the output of the running code may be erroneous,
which can be disastrous for safety-critical systems.

In Directed Acyclic Graph (DAG) scheduling, the
deadline is shared between a set of tasks. Our
method does not allocate extra time per task to han-
dle restarts, but instead requires moving the shared
deadline to facilitate tasks restarting. It is up to the
online scheduler to assign this extra time dynamically
based on which tasks require a restart.

UPPAAL [1] is an existing tool for modeling, val-
idating and verifying real-time systems, which has
found use in the RTS community [7]. The tool can
verify properties or give counterexamples, e.g. prove
that a deadline will always be met. When mitigating

SEUs, the number of restarts a task can require is not
bounded. Instead, each number of restarts carries a
probability. Our method does not require an upper
bound on the extra time needed to facilitate restarts,
unlike for example the Δf limit used by Mosse et
al. [5]. Instead, our method provides insight into how
likely it is that a given deadline will be missed without
such an upper bound.

To estimate probabilities, we use UPPAAL in
Stochastic Model Checking (SMC) mode. This mode
is incompatible with models not designed to be used
with SMC, like the UPPAAL RTS template library
by Shan et al. [7]. Probability has been used before
in real-time scheduling [2], and examples of this ap-
proach include using statistical means for determining
a sensible upper bound estimate for the Worst-Case
Execution Time (WCET) [3].

Contributions. We present a new method for rep-
resenting a DAG of tasks and the hardware as an UP-
PAAL SMC model including SEUs, without putting
limits on the number of job restarts. Our model in-
cludes an online scheduler implemented in the UP-
PAAL language, allowing the scheduler to react to
the effects of job restarts caused by SEUs. For any
given deadline, the UPPAAL SMC model can show
the probability that the deadline will be met includ-
ing SEU mitigations. It is then up to the application
designer to choose an acceptable risk level.

2 Fault and Task Model
2.1 Task model and communication

The DAG of tasks has a single, constrained dead-
line D ≤ T , allowing us to consider each execution
of the DAG in isolation with exactly one job per task
(without fault detection). Furthermore, for each task
τi ∈ τ , a WCET value Ci must be available, which we
use in our online scheduling algorithm. Our scheduler
implements a global, fixed-priority, task-migrating and
non-preemptive scheduling algorithm. The priority Pi

of task τi is directly derived from the WCET value Ci.
The higher the WCET, the higher the priority of that
task. Let n be the number of tasks, and i ∈ [0, n),
we define the priority as Pi = Ci · n + i, resulting in
unique priorities due to the inclusion of i.

Communication between tasks is exclusively han-
dled via the exchange of tokens, which may contain
arbitrary data. Furthermore, we consider communi-

1
5

cation overhead negligible. In order to launch tasks
multiple times, we assume all tasks to be stateless and
free of side-effects.
2.2 Fault Detection and Mitigation

We assume that when a SEU occurs, it affects only
one processor. While the SEU itself is transient, effects
of the event may still be present and continue to affect
the job. We assume that the SEU manifests itself as an
incorrect result for that job (incorrect output tokens).

Let there be m processors, then each processor πk

where k ∈ [0,m) has an associated SEU fault rate
parameter λk. We model the inter-arrival times of
faults with an exponential distribution as we are only
concerned with SEUs and not with permanent degra-
dation of the hardware. Exponential distributions are
the only continuous memory-free distributions, hence
knowledge about how long a processor has been fault-
free does not impact the future probability of a fault
in any way. Since we focus on symmetric multi-core
systems, we treat the fault rate for each processor as
identical (∀k ∈ [0,m) : λk = λ).

We validate the output of a task using Dual Modular
Redundancy (DMR) [6] by spawning two jobs for ev-
ery task. If the content of the output tokens does not
match, one or both jobs experienced a SEU while run-
ning. SEUs may also impact jobs in such a way that
they never terminate. As such, jobs exceeding their
WCET are also considered faulty and are terminated
by a watchdog timer.

To recover from a fault, we use Checkpoint-Restart.
The input tokens are always checkpointed and kept
for the duration of the task. If a fault is detected, the
produced tokens are discarded and the two jobs are
started again using the original input tokens.

Our implementation of DMR runs the two jobs
concurrently on separate processors, an approach
also known as Chip-level Redundant Multithreading
(CRT) [6]. As such, the use of DMR itself does not im-
pact the Worst-Case Response Time (WCRT) of the
task, assuming there are no SEUs requiring restarts.

3 Scheduling with Restarts
The number of restarts a particular job needs to en-

dure before it is guaranteed to produce a result with-
out a SEU is not bounded. The lack of such a bound
makes the fault-free WCRT effectively infinite, and
as such no longer a particular useful metric to work
with. As a result, our technique only works with on-
line scheduling.
3.1 Definitions

To simplify reasoning about DMR and checkpoint-
restart, we introduce the fault detecting task τ , run-
ning on the fault detecting processor π as conceptual
abstractions. The fault detecting task τi is constructed
from user-provided task τi, but can detect that a SEU
has occurred. The τi runs the user-provided task τi

twice and compares the output tokens of both ex-
ecutions. Similarly, the πk is a tuple consisting of
two hardware processors. With these constructions
in place, a fault detecting task can be scheduled on a
fault detecting processor, hence we can reuse existing
scheduling algorithms.

3.2 Schedulability Testing using Stochastic
Model Checking

Our method informs the application designer about
the probability of meeting the deadline for each exe-
cution of the DAG. To obtain this number, we model
the entire application (including the scheduler) as
a UPPAAL SMC model [1]. Tasks are treated as
black boxes and are assumed to always need their
entire WCET estimate. Furthermore, we do not
model the individual processors or tasks, but instead
we directly model the fault-detecting processors and
fault-detecting tasks. We implement our global fixed-
priority scheduler in the UPPAAL language, control-
ling transitions in the task automaton based on its
position in the scheduler queue.

3.3 Representation as UPPAAL Model
Our method represents the DAG of tasks, the sched-

uler and the hardware as a composition of four UP-
PAAL templates:

1. a singleton scheduler;
2. for each fault detecting task τk, an instance of the

task template;
3. for each fault detecting processor πf , an instance

of the processor template;
4. for each dependency between two tasks, an in-

stance of the edge template.

We show the task template in Figure 1. This tem-
plate is parameterized with the task id i and the
WCET estimate Ci of the task that it represents.
Tasks start out in the UnmetDependencies state until
all of their dependencies have been met. Then, they
transition to the Ready state where they are available
to be picked up by the scheduler and assigned to a
processor to start running in the Running state. After
some time, the task either finishes or transitions to a
faulty state during execution (RunningWFault state),
moving it back to the Unscheduled state for another
try. This procedure sheds light on how faults are
modeled: a SEU is triggered by the processor model
(omitted here for brevity) after which the task running
on that processor (if any) moves to the RunningWFault
state by synchronizing on a channel. Synchronization
forces other models in the system to transition as well
when in a state with an outgoing edge waiting for the
same channel. In this case, the processor model sig-
nals the task_transient_fault[i] channel, prompt-
ing the task τi to transition to the RunningWFault
state.

2
6

start UnmetDependencies

Unscheduled

Ready

Running, t <= Ci

RunningWFault
t <= Ci

Finished

open_deps[i] == 0
any_dep_satisfied?

queue_peek() == i

start?
t = 0

t >= Citask_finished[i]!task_transient_fault[i]?

t >= Citask_finished_err[i]!

Figure 1: Summary of the UPPAAL model of a task
execution. The task continues to run in an
erroneous state (“RunningWFault”) after ex-
periencing a transient fault.

Running in this state does not change the task
from the perspective of the scheduler. It is
only when the task has completed that it either
signals success (“task_finished[i]!”) or error
(“task_finished_err[i]!”), to which the scheduler
can respond.

Task execution is represented as a timed automa-
ton, where the state is composed of not just discrete
variables but also of continuous (clock) variables. In
the case of the task model this is the clock variable
t for time. The clock t is set to 0 when transition-
ing to the Running state. The transitions out of the
Running or RunningWFault state are guarded: t ≥ Ci,
enabling the transition only when the task has been
running for its WCET estimate. A state invariant on
the two running states of t ≤ Ci prevents lingering in
the running states past the tasks WCET estimate.

Tasks may not always need their full WCET esti-
mate to produce a result. However, modeling the early
return of tasks would require knowledge about the fre-
quency and distribution of such cases happening. De-
spite this, the WCET estimate provides a useful upper
bound that lets us provide a lower bound probability
that the deadline will be met.

4 Evaluation
4.1 Experimental Setup

To test our technique we have created three syn-
thetic test cases. As the potential gain by our tech-
nique scales with the number of tasks in the graph,
we have tested three DAGs with varying critical path
lengths. Each test case is a variation of the same fork-
join graph with a different level of nesting, as shown in
Figure 2. To focus just on the impact of restarting, we
set the WCET estimate of each task to the same value
of 1000 seconds. We do not give our DAGs a deadline
or period, but are instead interested in the distribution
of whole-DAG response times. Instead of obtaining a
probability of meeting the deadline, we gain insight
into what a sensible deadline might be together with
the probability of meeting that deadline.

Fork
Left

Right
Join

(a) Test case A: fork-join with four tasks

FF

FL

FR

FJ

LF

LL

LR

LJ

RF

RL

RR

RJ

JF

JL

JR

JJ

(b) Test case B: nested fork-join graph. Each of the tasks
in the previous graph is replaced with the entire graph.

(c) Test case C: double nested fork-join graph. Each of the
tasks in test case B is replaced with the entire graph of
test case A.

Figure 2: The various test cases, showing 41, 42 and
43 tasks

To execute the tests, we simulate a platform
with 4 fault detecting processors (constructed from
8 hardware processors). Furthermore, we set the
rate of transient faults for each processor to λ =
10−3/hour, which is the highest permissible fault rate
per RTCA/DO-178C for faults that have only minor
criticality level [4].

4.2 Results
Figure 3 shows the results of the UPPAAL SMC

simulations. The distribution of the whole-DAG
makespan (left) informs the application designer about
the probability of meeting a particular deadline, or
helps determining a suitable deadline. For example,
let the deadline of test case C be DC = 3.0 · 104s, the
simulations can show us that the probability of miss-
ing this deadline is 1.45 · 10−4. Or, if the deadline
has not been determined yet, DB > 1.1 · 104s could
be determined as a suitable deadline for case B. How-
ever, the exact bounds depend on the amount of risk
acceptable in the domain of the application.

Our UPPAAL representation does not express any
variance in the execution time of a task, which means
that the whole-DAG execution time is always an in-
teger multiple of a 1000 seconds. For all cases, the
number of restarts has a very predictable impact on
the makespan. Test case C (Figure 3c), however,
also shows signs of something else: a number of runs
manage to finish early. We explain this as a tim-
ing anomaly caused by some non-determinism in the

3
7

3 4 5
100

102

104

106

Time (×1000s)

#
ca

se
s

(lo
g) Makespan

0 1 2
100

102

104

106

restarts

#
ca

se
s

(lo
g)Restarts

(a) Results for test case A

9 10 11
100

102

104

106

Time (×1000s)

#
ca

se
s

(lo
g) Makespan

0 1 2
100

102

104

106

restarts
#

ca
se

s
(lo

g)Restarts

(b) Results for test case B

28 29 30 31 32
100

102

104

106

Time (×1000s)

#
ca

se
s

(lo
g) M.span

0 1 2 3
100

102

104

106

restarts

#
ca

se
s

(lo
g)Restarts

(c) Results for test case C

Figure 3: UPPAAL results for 106 SMC simulations.
For each test case, the distribution of whole-
DAG makespan is shown on the left. On the
right, the number of restarts is shown.

completion order of tasks. When multiple tasks com-
plete at the same time, the scheduler randomly han-
dles one first and reassigns the processor due to a lack
of clairvoyance. Even though the scheduler assigned
the highest-priority task to the idle processor, it can
only consider tasks that have all of their dependen-
cies satisfied. Furthermore, our scheduler does not
preempt, as such the release of a higher-priority task
may must wait for a lower priority task to finish. Our
fixed-priority online scheduling algorithm is not an op-
timal algorithm (without preemption), which allows
this source of non-deterministic behavior to impact
the whole-DAG execution time.

As the number of tasks in the DAG increases, so
does the number of restarts. This makes sense: the
longer the DAG runs, the higher the chance of a tran-
sient fault to occur.

5 Conclusion and Future Work
Transient faults in processors lend themselves well

to be modeled using UPPAAL in SMC mode. We have

shown in this paper how an existing SMC tool can be
leveraged to get timing information of an application
in the presence of SEUs.

Our approach models how the tasks are scheduled,
including how an online scheduler may absorb the time
lost due to a restart. However, for relatively small test
cases (up to 64 tasks), Figure 3 shows a strong correla-
tion between the number of restarts and the makespan.
In future work, we will look at larger DAGs of tasks
and investigate varying the amount of dependencies
between the tasks. We suspect that, for more loosely
connected graphs, SEUs can more often be solved by
making use of idle processors. As such, for a given size
of the DAG, we expect the number of restarts to no
longer be a good predictor of the makespan.

Finally, our results are obscured by timing anoma-
lies. In future work, we hope to mitigate these anoma-
lies by implementing clairvoyance in our scheduler.

Acknowledgments
This project has received funding from the Euro-

pean Union’s Horizon 2020 research and innovation
program under grant agreement No. 871259 (AD-
MORPH project).

References
[1] P. Bulychev et al. “UPPAAL-SMC: Statistical

Model Checking for Priced Timed Automata”. In:
arXiv e-prints (2012).

[2] R.I. Davis and L. Cucu-Grosjean. “A survey
of probabilistic schedulability analysis techniques
for real-time systems”. In: LITES: Leibniz Trans-
actions on Embedded Systems (2019).

[3] S. Edgar and A. Burns. “Statistical analysis of
WCET for scheduling”. In: 22nd IEEE RTSS.
2001.

[4] A. Löfwenmark and S. Nadjm-Tehrani. “Fault
and timing analysis in critical multi-core systems:
A survey with an avionics perspective”. In: Jour-
nal of Systems Architecture 87 (2018).

[5] D. Mosse et al. “A nonpreemptive real-time
scheduler with recovery from transient faults and
its implementation”. In: IEEE Transactions on
Software Engineering (2003).

[6] Isil Oz and Sanem Arslan. “A Survey on Multi-
threading Alternatives for Soft Error Fault Toler-
ance”. In: ACM Comput. Surv. (2019).

[7] L Shan et al. “RTLib: A Library of Timed
Automata for Modeling Real-Time Systems”.
PhD thesis. Grenoble 1 UGA-Université Greno-
ble Alpe; INRIA Grenoble-Rhone-Alpes, 2016.

[8] F. Wang et al. “Single Event Upset: An Embed-
ded Tutorial”. In: 21st International Conference
on VLSI Design. 2008.

4
8

