
T-TSP: Transient-Temperature Based Safe Power
Budgeting in Multi-/Many-Core Processors

Sobhan Niknam, Anuj Pathania, Andy D. Pimentel
Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands

{s.niknam,a.pathania,a.d.pimentel}@uva.nl

Abstract—Power budgeting techniques allow thermally safe
operation in multi-/many-core processors while still allowing for
efficient exploitation of available thermal headroom. Core-level
power budgeting techniques like Thermal Safe Power (TSP)
have allowed for more efficient operations than chip-level power
budgeting techniques like Thermal Design Power (TDP) since
the finer granularity permits operations closer to the threshold
temperature without thermal violations.

State-of-the-art TSP bases its power budgeting calculations
on the long-term steady-state temperature of cores while ig-
noring trends in their short-term transient temperature. In this
paper, we propose a new power budgeting technique called T-
TSP (Transient-Temperature-based Safe Power) that bases its cal-
culation on the current temperature of the core, a detail ignored
by TSP. T-TSP provides a dynamic power budget to a core, which
inversely correlates with the core’s thermal headroom. Dynamic
power budgeting with T-TSP allows cores to reach the threshold
temperature faster than TSP and operate safely close to it in
perpetuity. Therefore, it provides the same thermal guarantees
as TSP but enables even more efficient exploitation of thermal
headroom.

We integrate T-TSP with a state-of-the-art thermal interval
simulation toolchain. Our detailed evaluations show that bench-
marks execute faster by up to 17.94% and 8.37% on average
when we do power budgeting with T-TSP instead of the state-of-
the-art TSP. Finally, we make T-TSP publicly available in both
its integrated and stand-alone forms.

Index Terms—Multi-/Many-Core Systems, Dark Silicon, Power
Budgeting, Thermal/Power Management.

I. INTRODUCTION

Technology advancements have led to a steady increase in
transistor density in chips. Consequently, a chip nowadays
integrates more and more processing cores within it. This inte-
gration has led to the emergence of now common-place multi-
/many-core processors. These processors are primarily suitable
for multi-threaded applications whose performance enhances
through parallel processing. However, with the breakdown of
Dennard scaling, on-chip power density for the processors has
been increasing dramatically with the miniaturization of tran-
sistor size. This increased power density leads to overheating
issues wherein thermal hotspots emerge on the processor even
when only some of the available cores operate near their full
potential. These hotspots threaten the safety and reliability
of the system that deploys a multi-/many-core processor.
Therefore, to ensure a thermally safe system operation, the
power consumption of the active cores is constrained using

This research received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 871259
(ADMORPH project).

1 2 3 4 5
Power [W]

water.sp
water.nsq

raytrace
radix

radiosity
ocean.ncont

ocean.cont
lu.ncont

lu.cont
fmm

fft
cholesky

barnes
x264

swaptions
streamcluster

dedup
bodytrack

blackscholes

(a)

Active Core Idle Core

27 28
35 36

(b)

Fig. 1. (a) The variations in the power consumption in some benchmarks
from PARSEC and SPLASH-2 suites running on (b) an 8×8 many-core at the
highest frequency. The numbers in the squares represent the active cores’ id.

power budgets. A power budget for a core is the maximum
power that it dissipates with the help of the accompanying
cooling solution, i.e., the heat spreader, the heat sink, the
cooling fan, etc. This power budget is not determined just
by a core’s activity but also by the activities of other cores.

Nevertheless, to prevent any thermal violation, processors
also come with Dynamic Thermal Management (DTM). DTM
is triggered when the processor (or a part of it) heats up above
a threshold temperature. DTM controls the temperature by
various means, such as powering down the cores, gating their
clocks, reducing their supply voltage and frequency, boosting
the fan speed, etc. Although DTM ensures the thermally safe
operation of a processor, it also leads to substantial degradation
in the performance of the overlying system. Therefore, for
systems deployed in thermally constrained environments, the
primary objective is to maximize performance (and avoid
triggering DTM) through techniques like power budgeting.

Thermal Design Power (TDP) [1] is the most commonly
used power budget in practice. TDP is a single and constant
chip-level power budget that the manufacturer derives at the
time of design. Therefore, TDP is unaware of the number and
spatial alignment of active cores. Consequently, TDP is often
either too pessimistic (wherein significant thermal headroom
wastes) or is too optimistic (wherein frequent triggering of
DTM occurs).

The authors of [2] present an efficient alternative for TDP
called Thermal Safe Power (TSP). TSP considers the spatiality
of active cores to provide a per-core budget that is often much
higher than TDP while still providing guarantees for thermally
safe operation. TSP, by design, derives the per-core power bud-
get for the steady-state. It provides the power budget for a core



0 5 10 15 20 25 30 35 40
0

2

4

6

IP
S 

[S
1 ]

1e9

Total Execution Time: 39.2 ms

1 2 3

(a)

Core 27 [Master] Core 28 [Slave] Core 35 [Slave] Core 36 [Slave]

0 5 10 15 20 25 30 35 40
0
2
4
6
8

10
12

Po
we

r B
ud

ge
t [

W
]

(b)

0 5 10 15 20 25 30 35 40
0

1

2

3

Po
we

r [
W

]

(c)

0 5 10 15 20 25 30 35 40
Time [ms]

45

50

55

60

65

70

Te
m

pe
ra

tu
re

 [
C] Thermal Headroom Wasted by TSP

(d)

0 5 10 15 20 25 30 35
0

2

4

6

IP
S 

[S
1 ]

1e9

Total Execution Time: 37.2 ms

(e)

Core 27 [Master] Core 28 [Slave] Core 35 [Slave] Core 36 [Slave]

0 5 10 15 20 25 30 35
0
2
4
6
8

10
12

Po
we

r B
ud

ge
t [

W
]

(f)

0 5 10 15 20 25 30 35
0

1

2

3

Po
we

r [
W

]

(g)

0 5 10 15 20 25 30 35
Time [ms]

45

50

55

60

65

70

Te
m

pe
ra

tu
re

 [
C]

(h)

Fig. 2. This figure demonstrates the Instructions per Second (IPS), power budget, actual power consumption, and temperature of the active cores (from our
motivational example) running the four-threaded blackscholes in (a)-(d) and (e)-(h) wherein the power budgeting is being done over the course of time using
TSP and T-TSP, respectively.

that ensures a core’s steady-state temperature – the long-term
equilibrium temperature a core attains with constant power
consumption – does not exceed the temperature threshold.
Therefore, by operating at a much fine-grained granularity,
core-level TSP offers more opportunities to safely improve
system performance – using techniques such as Dynamic
Voltage and Frequency Scaling (DVFS) – than chip-level TDP.

However, the power consumption of cores is rarely
steady (constant) in practice. A complex application projects
a high entropy in the power consumption of its underlying
core(s). Figure 1 illustrates this entropy in four-threaded
instances of different benchmarks executing on four central
cores of an 8×8 many-core at a fixed (highest) voltage and
frequency. Consequently, heat-flows occurring between the
cores of a processor are almost always in a state of flux.
Therefore, cores rarely attain their steady-state temperatures.
TSP, therefore, by operating solely on the premise of steady-
state, still leaves significant thermal headroom unexploited.
The following example illustrates the shortcomings of such
traditional transient temperature-agnostic use of TSP.

Motivational Example: Figure 1(b) shows the mapping of
a four-threaded blackscholes benchmark application onto the
four central cores of an 8×8 many-core.1 All other cores in
the many-core are idle. The ambient temperature is 45 oC. The
temperature threshold at which DTM gets triggered, denoted
as TDTM, is 70 oC. The granularity for power budgeting (and
DVFS) is 0.1 ms.

Figures 2(a)-(d) show the execution of blackscholes wherein
TSP does the power budgeting. Figure 2(a) shows the threads’

1Refer to Section IV-A for the full details of our experimental setup.

Instructions per Second (IPS) corresponding to the execu-
tion. The figure shows that the master-thread execution of
blackscholes has three main phases. In Phase 1©, only the
master thread runs. Phase 2© starts when the master thread
spawns the slave threads. In this phase, the slave threads
process the data (prepared by the master thread in Phase 1©)
while the master thread is near idle. After the slave threads
have finished execution and left the system, the master thread
resumes completing the task execution in Phase 3©.

Figure 2(b) shows the power budget assigned to master
and slave threads by TSP for the execution. In both Phases
1© and 3©, only the master thread is active. Therefore, TSP

assigns the power budget of 3.21 W to the core with the master
thread, while it assigns an idle core budget of 0.3 W to all
other cores. However, in Phase 2©, all threads (master and
slaves) execute simultaneously on the center cores. Therefore,
TSP assigns all active cores a lower uniform power budget
of 2.473 W. Since TSP operates at the spatiality of the active
cores (which remains unchanged during a phase), the per-core
power budgets assigned by TSP are constant over a phase.

Figure 2(c) shows the actual power consumption of the
active cores during the execution. A run-time control algorithm
with the help of DVFS ensures the execution of a thread
close to the assigned power budget. However, the actual power
consumption of the cores is inherently unstable due to the
ever-changing mix of instructions they are executing from
blackscholes. Furthermore, due to the discrete nature of DVFS,
it is not always possible to attain a target power budget for
a core exactly. Consequently, the control algorithm oscillates
between two frequencies when the core operates close to the



power budget. These induced frequency oscillations also add
to the fluctuations in the observed power consumption.

These fluctuations prevent the temperatures of the cores
from ever reaching the temperature threshold as expected by
TSP. Figure 2(d) shows the core temperatures corresponding
to the execution. The figure shows that the temperatures of
the cores (even during the compute-intensive Phase 2©) never
come close to the temperature threshold temperature of 70 oC.
The temperature of the cores fluctuates at most close to 64 oC.
Therefore, TSP wastes at least a thermal headroom of 6 oC.
This wastage highlights the shortcomings of TSP.

We introduce a new power budgeting technique called T-
TSP (Transient-Temperature Based Safe Power Budgeting) in
this work to address this shortcoming. Most importantly, T-
TSP works on the premise of transient temperature in contrast
to steady-state temperature-based TSP. The fundamental idea
behind T-TSP is to compute a thermally safe power budget
for a core at fixed periods (every 0.1 ms in this example) in
consideration of its current thermal headroom.

Figures 2(e)-(h) show the execution of blackscholes done
under T-TSP. Figure 2(f) shows the power budgets assigned
under T-TSP for the corresponding execution. In contrast to
the static power budgets assigned under TSP (Figure 2(b)),
power budgets assigned under T-TSP are dynamic even within
a phase. The power budgets assigned by T-TSP have an inverse
relation with the current core temperatures. Initially, when a
core is idle, its transient temperature is low, and therefore the
available headroom is larger. Consequently, T-TSP assigns the
core a higher budget when it is just starting with the execution.
The assigned power budget gets reduced over time as the
core’s transient temperature increases and the corresponding
thermal headroom reduces.

Figure 2(g) shows the real power consumption of execution
under T-TSP. Compared to the power consumption of the
execution under TSP (Figure 2(c)), the master thread seems to
have a similar power consumption profile under T-TSP as it
had under TSP. The memory-intensive nature of the master
thread explains this similarity. Its nature prevents it from
consuming even the power budget assigned by TSP, let alone
the much higher power budget under T-TSP. Nevertheless, the
compute-intensive slave threads have no problems consuming
the higher T-TSP assigned budgets to boost performance.

Figure 2(h) shows that the slave threads under T-TSP can
exploit the entire thermal headroom. Therefore, they operate
very near to the temperature threshold of 70 oC. This ex-
ploitation leads to faster execution of Phase 2©. In conclusion,
the execution time for blackscholes under T-TSP at 37.2 ms
(Figure 2(e)) is 5.1% lower than under TSP (Figure 2(a)) at
39.2 ms.

An interesting observation from Figure 2(f) is that even
when the temperatures of the cores running the slave threads
are very close to the temperature threshold, their power budget
under T-TSP (3.1 W) remains much higher than their power
budget under TSP (2.473 W). We can attribute this observation
to the fact that the variable core power consumption (even
close to the temperature threshold) can result in different tran-

sient thermal headrooms over time. This variability prevents
the budget assigned to it by T-TSP from dropping to the level
of the corresponding budget assigned to it by TSP.

Our Novel Contributions: Based on the above discussion,
this paper makes the following novel contributions.
• We propose a new power budgeting technique, called T-

TSP, which computes safe power constraint values as a
function of the spatial alignment of active cores and their
current temperature. The use of T-TSP leads to better
exploitation of the processor’s thermals and therefore
improved performance in a thermally constrained envi-
ronment. Furthermore, T-TSP guarantees a thermally safe
operation wherein DTM is never triggered.

• We implement and evaluate the proposed technique in
the state-of-the-art interval thermal simulation toolchain
HotSniper [3] over a set of benchmarks from both
PARSEC [4] and SPLASH-2 [5] benchmark suites. Our
detailed simulations show that execution under power
budgeting done with T-TSP results in a significant per-
formance boost over the same execution with power bud-
geting done with TSP for nearly all tested benchmarks.

Open-Source Contributions: The source code for T-TSP
as 1) a stand-alone tool and 2) a HotSniper plugin is available
for download at https://github.com/sobhanniknam/ttsp.

II. BACKGROUND

A. System and Application Model

In this work, we consider a many-core processor with
n homogeneous cores. All cores in the processor have the
same micro-architecture and share the same memory address
space. The processor has a per-core DVFS capability which
allows it to change the voltage and frequency of each core
independently. The cores are thermally constrained, and their
temperature should be kept below a given temperature thresh-
old, i.e., TDTM, to avoid triggering DTM. In this work, we
consider multi-threaded applications as the system workload.
The applications map on multiple cores under a one-thread-
per-core model. Multiple applications can execute on the
processor in parallel through multi-programming.

B. Thermal Model

In this work, we use the well-established RC thermal model
from [6] that has a basis in the well-known duality between the
thermal behavior and electrical circuits. In this model, we build
an RC thermal network with N thermal nodes for a many-core
system. The first n nodes in the model correspond to the cores,
while the remaining N − n thermal nodes correspond to the
cooling system. Thermal conductances interconnect the ther-
mal nodes. Each thermal node is also associated with a thermal
capacitance (except for the thermal node corresponding to the
ambient temperature) to model transient temperature. Ambient
temperature, denoted as Tamb, is considered to be a constant. In
this network, the power consumption of the active cores acts
as a heat source. Note that any thermal modeling tool, e.g.,
HotSpot [6] and MatEx [7], can be used to derive such an RC
thermal network for a chip, if detailed information about the

https://github.com/sobhanniknam/ttsp


chip’s floorplan, technological and cooling system parameters,
etc., is known. As this information might be proprietary to
the chip manufacturers, one can obtain such an RC thermal
model experimentally based on the temperature readings from
the thermal sensors on the chip using a methodology similar
to those presented in [8], [9].

With the above considerations, we can compute the tem-
perature of each thermal node (a function of its power con-
sumption, the temperature of its neighboring thermal nodes,
and the ambient temperature) through a set of N first-order
differential equations given by

AT′ + BT = P + TambG, (1)

where A = [ai,j ]N×N contains the thermal capacitances,
B = [bi,j ]N×N contains the thermal conductivity between
neighboring nodes, T = [Ti(t)]N×1 contains the temperature
on every node at time t, T′ = [T ′i (t)]N×1 contains the first-
order derivative of the temperature on every node concerning
time, P = [pi]N×1 contains the power consumption of every
node, and G = [gi]N×1 contains the thermal conductivity
between every node and the ambient temperature. By defining
matrix C = −A−1 × B, we can rewrite Equation (1) in a
standard form given below.

T′ = CT + A−1P + TambA−1G. (2)

Furthermore, in a steady-state, when the temperatures of cores
are stable, Equation (1) becomes

Tsteady = B−1P + TambB−1G (3)

where Tsteady = [Tsteadyi ]N×1 contains the steady-state temper-
ature of nodes and B−1 = [b̃i,j ]N×N is the inverse of matrix
B. Note that b̃i,j · pj , from B−1P, represents the amount of
heat contributed by node j into the steady-state temperature
of node i, i.e., Tsteadyi .

III. T-TSP

The T-TSP’s primary objective is to derive the accurate
power budget values of the active cores using their transient
temperature. T-TSP, therefore, more efficiently exploits the
available thermal headroom in the system to improve system
performance. The main step towards this objective is to
solve Equation (2) to attain the relation between the transient
temperature of the cores and their power consumption. As
initial conditions are needed to solve any differential equation,
we define the column matrix Tinit = [Tiniti ]N×1 as the initial
temperature of nodes at time t = 0s. Assume P is the new
power vector. After any change in power consumption of one
or more cores that happens at time t = 0, an analytical solution
of Equation (2) (by using the well-studied matrix exponentials
[7]) is

T(t) = Tsteady + eCt(Tinit − Tsteady), (4)

where we derive the temperature of the cores at time t as
a function of Tinit, Tsteady (that depends on the new vec-
tor P according to Equation (3)), and C. In Equation (4),
eCt = [eCt

i,j ]N×N is defined as the matrix exponential and

can be analytically computed as eCt = VDV−1, where
V = [vi,j ]N×N represents a matrix containing the eigenvectors
of matrix C, V−1 = [ṽi,j ]N×N is the inverse of matrix V, and

D =


eλ1t 0 · · · 0
0 eλ2t · · · 0
...

...
. . .

...
0 0 · · · eλN t


is a diagonal matrix where λ1, λ2, · · · , λN are the eigenvalues
of matrix C. Thus, every element eCt

i,j of matrix eCt can be
computed as

∑N
k=1 vi,k ·eλkt ·ṽk,j . Since matrix C is hardware

dependent, it is only needed to compute matrix eCt once for
every chip.

Having Equation (4), we are now ready to compute the
power budget value of the cores for their current temperature.
Note that we compute the power budget value of cores at a
fixed period, called power budgeting epoch, with the length
of τ . τ is, therefore, the time steps between every power
budget computation. In this way, we can assume that the initial
temperature of cores sets to the transient temperature of cores
at the beginning of each epoch at time t, i.e., Tinit = T(t).
Furthermore, to exploit the available thermal headroom, the
transient temperature of cores should reach the temperature
threshold by the end of the epoch, i.e., T(t+ τ) = [TDTM]N×1.
Therefore, we can compute Tsteady (the only variable in Equa-
tion (4)) as

Tsteady = (I− eCτ )−1(T(t+ τ)− eCτT(t)) (5)

where I is the identity matrix of size N . Note that we can
rewrite the expression (I− eCτ )−1 as

Q = (I− eCτ )−1 = (I− VDV−1)−1 = (VIV−1 − VDV−1)−1

= (V(I− D)V−1)−1 = V(I− D)−1V−1
(6)

where

(I− D)−1 =


1

1−eλ1τ 0 · · · 0

0 1
1−eλ2τ · · · 0

...
...

. . .
...

0 0 · · · 1
1−eλNτ


as both I and D are diagonal matrices. Similarly, we can
rewrite the expression (I− eCτ )−1eCτ as

R = (I− eCτ )−1eCτ = V(I− D)−1V−1VDV−1

= V(I− D)−1DV−1
(7)

where

(I− D)−1D =


eλ1τ

1−eλ1τ 0 · · · 0

0 eλ2τ

1−eλ2τ · · · 0
...

...
. . .

...
0 0 · · · eλNτ

1−eλNτ

 .

Using the above defined auxiliary matrices, we can rewrite
Equation (5) as



Algorithm 1: Power budgeting of cores under T-TSP
Input: Floorplan, Tamb, TDTM, Tinit, pidle, τ , and AC
Output: Matrix P
/* Design-time phase */

1 forall i= 1, 2, · · · , N do
2 forall j= 1, 2, · · · , N do
3 qi,j =

∑N
k=1 vi,k ×

1
1−eλkτ × ṽk,j

4 ri,j =
∑N
k=1 vi,k ×

eλkτ

1−eλkτ × ṽk,j

/* Run-time phase */
5 P = [pi = 0]n×1
6 forall corei ∈ AC do
7 Tsteadyi = TDTM×

∑
j∈AC qi,j −

∑
j∈AC ri,j ×Tinitj

8 forall corei /∈ AC do
9 pi = pidle

10 forall corei ∈ AC do
11

∑
j∈AC b̃i,j × pj =
Tsteadyi−Tamb×

∑N
j=1 b̃i,j×gj−

∑
j /∈AC b̃i,j×pj

12 return Matrix P

Tsteady = QT(t+ τ)− RT(t). (8)

Now, by substituting the computed Tsteady (by using Equa-
tion (8)) into Equation (3) (wherein the matrix P is the
only variable), we can compute the new matrix P using the
Gaussian elimination algorithm. P now contains the power
budget value of cores for the next epoch.

Algorithm 1 presents the pseudo-code for computing the
power budget values under T-TSP. This algorithm takes as
inputs floorplan including hardware-dependent matrices (com-
puted once for every chip at design time), an ambient temper-
ature Tamb, a thermal threshold TDTM, an initial temperature
matrix Tinit, the power consumption of an idle core pidle,
an epoch length of τ , and a set AC of active cores. The
algorithm returns as output a matrix P containing the power
budget values of the cores on the chip. At first, the algorithm
computes the auxiliary matrices of Q and R (in lines 1-4) at
design time using Equations (6) and (7), respectively. Then,
at run time, the algorithm first initializes matrix P to zero
in line 5. Then, it computes the new value of Tsteadyi only
for active cores, having the major heat contributions on each
others’ steady-state temperature, in lines 6-7. In lines 8-9, the
algorithm sets the power budget of idle cores to pidle, i.e., the
maximum power consumed by a core’s associated LLC bank
even though the core is idle. The algorithm then computes the
power budget of pi of each active core i using Equation (3) in
lines 10-11. Note that in this equation, the heat contribution
of each idle core j with the assigned budget of pidle is also
considered on the steady-state of an active core i using b̃i,j ·pj .

A. Run-Time Overhead

So far, we assume that the power budget values are com-
puted and applied instantly at the beginning of each epoch.
This assumption is, however, not feasible in practice. The

11.0 11.5 12.0 12.5 13.0
40

60

80

100

120

Te
m

pe
ra

tu
re

 [
C]

(a)

A TDTM = 70 CB C

Tsteady = 119.34 C
Tsteady = 98.37 C
Tsteady = 84.69 C

11.0 11.5 12.0 12.5 13.0
Time (ms)

40

60

80

100

120

Te
m

pe
ra

tu
re

 [
C]

(b)

A TDTM = 70 CB C

Tsteady = 119.34 C
Tsteady = 99.41 C
Tsteady = 90.06 C

Fig. 3. An example showing how the power budget of a core is computed
under T-TSP with respect to (a) its transient temperature and (b) the epoch
length, when the overhead is assumed to be negligible.

execution of Algorithm 1, to compute new power budget
values, has a run-time overhead (tov). This overhead implies
that the newly computed power budget values in the current
epoch, beginning at time t, are available (and effectively
applied) at the time t + tov. Meanwhile (during [t, t + tov]),
the active cores can still consume power according to their
assigned power budget in the previous epoch. However, the
cores may have different temperatures at time t+tov compared
to time t, with which Algorithm 1 originally computes the new
power budget values. Thus, the newly computed power budget
values are no longer safe to apply at time t+ tov, as they may
result in thermal violations.

One possible solution to avoid any thermal violation is: 1)
at first, predict how the initial temperature of cores at the
beginning of each epoch at time t evolves until time t + tov,
during which cores are still consuming the old power budget
values. Equation (4) predicts the transient temperature of cores
at time t+ tov as follows:

T(t+ tov) = Tsteady + eC(t+tov)(Tinit(t)− Tsteady)

where Tinit(t) contains the initial temperatures of cores at
time t and Tsteady contains the steady-state temperature of the
cores according to the power budget values of cores assigned
in the previous epoch. 2) Then, we can use the predicted
temperature of cores at time t + tov in Algorithm 1 instead
of their (measured/computed) initial temperature at time t to
compute the new safe power budget values of cores. Each
epoch is theoretically considered in period [t, t+ τ ], whereas
Algorithm 1 assigns the computed power budgets to cores in
period [t+ tov, t+ tov + τ ].

B. Working Example

Figures 3 and 4 present an example to provide insights into
the periodic computation of power budget by Algorithm 1. For
the sake of simplicity, we assume the run-time overhead to be



negligible in Figure 3. This figure zooms in the sharp temper-
ature rise of core 36, shown in Figure 2(h) with a solid (violet)
curve, from 48.22 oC to 67.20 oC within the time interval of
[11, 13] ms. In Figure 3(a), we demonstrate the effect of in-
creasing the transient temperature of the core on its computed
steady-state temperature and the corresponding power budget
value. At time t =11 ms, the transient temperature of the
core is 48.22 oC. Therefore, the available thermal headroom
is about 21.78 oC when considering a thermal threshold of
70 oC. By targeting the thermal headroom to be exploited by
the end of the upcoming epoch [t, t+ τ ], T-TSP computes the
steady-state temperature and the corresponding power budget
of the core. Assuming the epoch length of τ =100µs, T-TSP
computes the steady-state temperature of 119.34 oC. Using
this temperature, the computed transient temperature of the
core (shown as a solid (green) curve with square markers in
Figure 3(a)) according to Equation (4) reaches the temperature
threshold, at point A, by the end of the upcoming epoch at
time t + τ =11.1 ms. The transient temperature of the core
at the beginning of the other two epochs of [11.5,11.6] ms
and [12,12.1] ms are 57.54 oC and 63.64 oC, respectively. This
increase in transient temperature of the core decreases the
available thermal headroom on the core. By targeting the
thermal headroom to be exploited by the end of the epochs at
11.6 ms and 12.1 ms, T-TSP computes the steady-state temper-
ature of 98.37 oC and 84.69 oC, respectively. As a result, the
transient temperature of the core (according to Equation (4))
reaches the temperature threshold at points B and C for
the second and third epochs, respectively. The corresponding
power budget value of the core for the computed steady-state
temperatures of the three (non-consecutive) epochs are 8.57 W,
5.85 W, and 4.08 W, respectively.

In Figure 3(b), we demonstrate the effect of increasing
the length of the power budgeting epoch on the computed
steady-state temperature and the power budget value of the
core. As explained above, T-TSP computes the steady-state
temperature of 119.34 oC at time t =11 ms when assuming
the epoch length of τ =100µs. Following the same approach,
assuming different epoch lengths of 200µ and 300µ results in
different steady-state temperatures of 99.41 oC and 90.06 oC
for which the computed transient temperature of the core
(according to Equation (4)) reaches the temperature threshold,
at the points B and C, respectively. The corresponding power
budget values of the computed steady-state temperatures in
the order of increasing epoch length are 8.57 W, 6.11 W, and
4.95 W, respectively. This observation implies that the longer
is the epoch length, the lower is the computed steady-state
temperature and power budget value of the core.

Let us now assume that the run-time overhead is non-
negligible, i.e., tov = 65µs according to our experiments in
Section IV-B. Figure 4 further zooms in the temperature rise
of core 36, shown in Figure 2(h) within the time interval
of [11, 11.5] ms. The transient temperature of the core at
the beginning of the first epoch [11, 11.1] ms is 48.22 oC.
The dotted (green) line with a square marker in this figure
represents the temperature rise of the core during the period

11.0 11.1 11.2 11.3 11.4 11.5
Time (ms)

40

50

60

70

80

90

Te
m

pe
ra

tu
re

 [
C]

tov

A B C DTDTM = 70 C

Tsteady = 116.36 C
Tsteady = 80.11 C

Tsteady = 98.58 C
Tsteady = 83.61 C

Fig. 4. An example showing how the power budget value of a core under
T-TSP is computed when considering the run-time overhead.

of [t, t + tov] = [11, 11.065]ms when the core consumes the
power according to its assigned budget in the previous epoch,
i.e., 0.3 W as the core was idle. In this way, the transient
temperature of the core (according to Equation (4)) is expected
to reach at most to 49.46 oC at time t + tov=11.065 ms,
thereby leaving the thermal headroom of 20.54 oC. T-TSP then
computes the steady-state temperature of 116.36 oC. Using
this temperature, the computed transient temperature of the
core (shown as a solid (green) curve with square markers
in Figure 4) reaches the temperature threshold (70 oC) at
point A at time t + tov + τ = 11.165 ms. The corresponding
power budget value of the core for the next epoch is then
8.28 W. However, this high assigned power budget causes
a pessimistic prediction of the core’s transient temperature
of 65.58 oC at the time 11.165 ms. Consequently, it leaves
only a tiny thermal headroom of 4.4 oC. The dotted (blue)
line (with a plus sign marker) in Figure 4 shows the rise in
temperature of the core. The rise shown is from its actual
transient temperature at 11.1 ms to the predicted transient
temperature at 11.165 ms. For the next epoch, this pessimism
results in the pessimistic steady-state temperature and power
budget of 80.11 oC and 3.66 W, respectively. Similarly, the
computed steady-state temperature and power budget values
for the core in the third and fourth (consecutive) epochs are
(98.56 oC, 6.01 W) and (83.61 oC, 4.1 W), respectively.

In contrast to T-TSP, TSP always considers the tempera-
ture threshold (70 oC) as the steady-state temperature of the
core. Consequently, this consideration results in the (constant)
power budget of 2.473 W when using Equation (3) and consid-
ering the mapping shown in Figure 1(b). This example shows
that T-TSP, compared with TSP, can compute a much higher
yet safe power budget value for the core.

IV. EXPERIMENTAL EVALUATION

In this section, we first describe the experimental setup
used for evaluating T-TSP. In the next part, we describe
different experiments performed to quantify the benefits of the
proposed T-TSP approach compared with the state-of-the-art
TSP approach [2].

A. Experimental Setup

This work employs state-of-the-art open-source Electronic
Design Automation (EDA) tools for experimentations. We use



barnes

blackscholes
bodytrack

cholesky
dedup fft

fluidanimate fmm
lu.cont

lu.ncont

ocean.ncont
radiosity radix

streamcluster

swaptions
water.nsq

water.sp x264
average

0

5

10

15

20

Ex
ec

ut
io

n 
Sp

ee
du

p 
(%

) (a)#Active Cores: 4 8 16 32 48 64

barnes

blackscholes
bodytrack

cholesky
dedup fft

fluidanimate fmm
lu.cont

lu.ncont

ocean.ncont
radiosity radix

streamcluster

swaptions
water.nsq

water.sp x264
average

0

5

10

15

20 (b)#Active Cores: 4 8 16 32 48 64

Fig. 5. The effect of increasing the number of active cores on the execution speedup of running tasks when power budgeting under T-TSP (considering
τ=100µs) compared to TSP for (a) TDTM=65 oC and (b) TDTM=70 oC.

the HotSniper [3] thermal interval simulation toolchain to sim-
ulate the execution of multi-threaded applications. HotSniper
tightly integrates the Sniper [10] many-core interval simulator,
McPAT [11] Power Modeling framework, and HotSpot [6]
thermal modeling tool in a unified toolchain.

For the hardware platform, we simulate a many-core system
with 64 out-of-order cores located in an 8×8 grid and com-
municating over a 2D Network-on-Chip (NoC), as shown in
Figure 1(b). The NoC uses the conventional XY routing with
a latency of 1.5 ns (corresponds to 6 CPU cycles at 4 GHz)
per-hop and a link bandwidth of 256 bits per cycle. Cores
have Intel Gainestown micro-architecture with x86 Instruction
Set Architecture (ISA). Each core has private L1 data and
instruction caches of size 16 KB each and an access latency
of 3 cycles. We assume an 8 MB shared LLC using S-NUCA
policy where each core holds a 128 KB LLC bank with an
access latency of 8 cycles. We assume the use of a 14 nm
technology node for fabrication of the many-core. Each core,
including caches, has an area of 0.79 mm2. We assume per-
core DVFS with a frequency range of 1 GHz up to 4 GHz with
steps of 100 MHz and DVFS epoch of 100µs. The most recent
technology node supported by McPAT is 22 nm. Therefore,
we estimate the power consumption at 22 nm and scale it to
14 nm using scaling factors [12]. We used HotSpot and MatEx
[7] to compute the hardware-dependent matrices needed to
create the thermal model of the many-core. We set the ambient
temperature to 45 oC and set the value of thermal threshold
TDTM to 65 oC or 70 oC in our experiments. We set the power
consumption of an idle core pidle to 0.3 W.

For the system’s software workload, we use 19 benchmarks
taken from both PARSEC [4] and SPLASH2 [5] multi-threaded
benchmark suites with small inputs as they are large enough
to stress the caches. However, they are also still small enough
to allow the simulation to finish in a reasonable time.

B. Results and Analysis

In this section, we compare the power budgeting efficacy of
our T-TSP to the state-of-the-art approach TSP [2] (described
in the motivational example in Section I). The average execu-
tion time of the concurrently running multi-threaded tasks on
the many-core system act as the comparison metric. To prevent
long-running tasks from dominating the average execution
time, we compare the geometric means of the execution

times. Note that we observe no thermal violation when power
budgeting either using TSP or T-TSP.

In the first set of experiments, we assume that the run-
time overhead of Algorithm 1 running in parallel with the
executed tasks on a single core is negligible. The experimental
results under this assumption can provide some insights into
the maximum execution speedup possible under our T-TSP
vis-a-vis TSP. Figure 5 presents the speedup over average
execution time for different tasks with power budgeting under
T-TSP (considering τ=100µs) compared to TSP for a different
number of active cores. In these experiments, we run multiple
instances of the given benchmark, each of which has a
different number of threads such that they utilize all the active
cores. The active cores are also selected from the center of
the many-core to evaluate the performance of both power
budgeting approaches under the worst-case thermal condition.
Figures 5(a) and 5(b) show the result for TDTM=65 oC and
TDTM=70 oC, respectively. We observe an increase in execution
speedup for most benchmarks when the number of active
cores increases. We can observe the same trend by comparing
Figures 5(a) and 5(b) when reducing thermal threshold. The
decrease in the non-uniform per-core power budget (to avoid
any thermal violations) with the increase in active cores or
thermal threshold decrease explains the trend. As a result,
the benefit of power budgeting under our T-TSP compared
to TSP can be more significant when the active cores have
more constrained power budgets. Figures 5(a) and 5(b) show
the execution time of tasks under T-TSP (compared to TSP)
can be reduced by up to 18.25% and 10.4% on average
when TDTM=65 oC and all cores are active. Similarly, this
performance gain when TDTM=70 oC is up to 13.96% and
8.8% on average. In our remaining experiments, we only
consider the worst-case thermal scenario wherein all the cores
are active. We also now fix TDTM to one value of 65 oC.

We further analyze the performance of our T-TSP under
different epoch lengths. The results for this experiment, con-
sidering negligible run-time overhead, are demonstrated in
Figure 6(a). In this figure, we can see that the benefit of
using T-TSP compared to TSP decreases with the increase in
the epoch length for most of the benchmarks. This decrease
is mainly because the power budgets are computed more
conservatively for a longer period. Consequently, the effect
of considering the transient temperature gradually cancels out
with an increase in the epoch length. Therefore, T-TSP will



barnes

blackscholes
bodytrack

cholesky
dedup fft

fluidanimate fmm
lu.cont

lu.ncont

ocean.cont

ocean.ncont
radiosity radix

streamcluster

swaptions
water.nsq

water.sp x264
average

0

5

10

15

20

Ex
ec

ut
io

n 
Sp

ee
du

p 
(%

) (a)Epoch Length: = 100 s = 200 s = 500 s = 1000 s

barnes

blackscholes
bodytrack

cholesky
dedup fft

fluidanimate fmm
lu.cont

lu.ncont

ocean.cont

ocean.ncont
radiosity radix

streamcluster

swaptions
water.nsq

water.sp x264
average

0

5

10

15

20
(b)Epoch Length: = 100 s = 200 s = 500 s = 1000 s

Fig. 6. The effect of increasing the epoch length, τ , on the execution speedup of tasks running on different number of active cores when power budgeting is
done under T-TSP compared to TSP with (a) negligible run-time overhead assumption and (b) with measured run-time overhead tov of 65µs in consideration.

4 8 16 32 48 64
Number of Active Cores

100

101

102

Ov
er

he
ad

 [
s]

Fig. 7. Average run-time overhead tov of Algorithm 1 with different number
of active cores.

result in the same power budget values as TSP for long enough
epochs. Figure 6(a) shows the average execution speedup
under T-TSP compared to TSP decreases from 10.4% to 9.3%,
6.2%, and 3.4% for an increase in epoch length τ from 100µs
to 200µs, 500µs, and 1 ms, respectively.

Now let us consider the impact of the run-time overhead
of Algorithm 1, running in parallel to the executed tasks, on
the execution time of the tasks. The run-time overhead of
Algorithm 1 plays an important role in the computed power
budget of active cores under T-TSP. As shown in Section III-
B, T-TSP computes the power budgets conservatively when
considering the run-time overhead of Algorithm 1 to avoid
any thermal violations. Figure 7 shows the run-time overhead
of Algorithm 1 for different numbers of active cores in the
system. The overhead reported is averaged over 1000 runs.
According to this figure, the average overhead increases with
the number of active cores from 1µs for a single active core
to 65µs when all 64 cores are active.

Considering the run-time overhead of 65µs, Figure 6(b)
demonstrates the execution speedup of our T-TSP compared
to TSP. When considering epoch length τ=100µs, the aver-
age execution time of tasks under T-TSP can speed up by
17.94% and by 8.37% on average. Comparing Figure 6(a)
and Figure 6(b), the execution speed of T-TSP compared to
TSP is reduced by on average 2% and by up to 4.4% when
considering run-time overhead compared to the negligible
overhead scenario. These results show that such run-time
overhead has only a minor impact on the performance of our
T-TSP. Figure 6(b) also demonstrates the effect of increasing
the epoch length on the performance of our T-TSP. Following
the similar trend as in Figure 6(a), we see a decrease in the
speedup under our T-TSP compared to TSP in Figure 6(b).
The average speedup decreases from 8.37% (for τ = 100µ)
to 7%, 4%, and 1.11%, with an increase in epoch length τ to
200µs, 500µs, and 1 ms, respectively.

V. RELATED WORK

Power budgeting is quintessential in thermal management of
multi-/many-cores. TDP [1], a chip-level power budget, is an
inefficient yet popular technique used extensively to perform
power budgeting. The authors in [13] propose an algorithm
that greedily distributes the available power budget, under
TDP, to all active cores according to their Instructions per
Cycle (IPC). However, TDP is now increasingly replaced by
more advance and fine-grained power budgeting techniques.

The authors in [2] propose a per-core power budgeting
technique called TSP. TSP primarily depends on active cores
and their spatial alignment. Apart from online power budgeting
under TSP for a particular thread mapping, the authors in [2]
also compute the offline power budgets under TSP for the
worst-case mappings of active cores. Worst-case mapping
gives the lowest power budget for a given number of ac-
tive cores. TSP is significantly better in exploiting thermal
headroom compared to TDP. However, by being agnostic to
transient temperature, it is still too pessimistic. Consequently,
it also fails to exploit the entire thermal headroom. The
transient-temperature aware technique T-TSP introduced in
this work address this shortcoming.

The authors in [14] propose a run-time refinement to TSP
that reallocates the excessive power budget of the idle or
memory-intensive threads to more compute-intensive threads
at run-time. This run-time approach can also be applied with T-
TSP to further boost [15] the system performance by assigning
the power budgets more intelligently to active cores when one
or multiple threads are idle/memory intensive. The authors
further extended the idea to work with thread (task) migrations
in [16]. However, T-TSP (similar to TSP) in its default form
is application-independent.

The authors in [17] propose a power-temperature stability
and safety analysis technique for multi-core processors. The
proposed analysis considers the positive feedback between the
leakage power and the temperature. It then computes the stable
fixed point at which the power-temperature trajectory of a core
is eventually converged. The analysis forms the foundation
for the computation of the fixed point (i.e., steady-state)
temperature and maximum thermally-safe dynamic power con-
sumption at run-time based on the current temperature of the
cores. Although this technique is more fine-grained than TSP,
it has the same shortage as TSP and only considers the steady-
state temperature for power budgeting.



The authors in [18] propose a heuristic algorithm, called
GDP, to find near-optimal threads mapping that results in high
per-core power budgets on multi-/many-core systems using
both the spatial alignment of the active cores and their transient
temperature. By solving Equation (2) numerically, both the
power budgeting and task re-mapping are performed periodi-
cally at each mapping epoch. Authors in [18] presume a long
mapping epoch (in the order of seconds) to avoid high run-time
overhead due to frequent thread re-mapping. However, such a
coarse-grained epoch length (considering the results shown in
Figure 6) can entirely cancel out the benefit of considering the
transient temperature in the power budgeting computations.
Moreover, the approach in [18] lacks the consideration of
run-time overhead from power budgeting (as described in
Section III-A) on the computed power budgets. Without this
consideration, the approach in [18] may result in thermal
violations when applied at a more fine-grained epoch length. In
contrast to [18], in this work, we focus on power budgeting at a
fine-grained epoch length (in the order of a few microseconds)
for a given mapping while still taking the run-time overhead of
power budget computation into account. Moreover, in contrast
to the approach in [18], we perform a more extensive and
realistic analysis for T-TSP. Authors in [18] only evaluate
their approach using HotSpot and that also solely with single-
threaded benchmarks. We, on the contrary, evaluate T-TSP
using detailed interval thermal simulations of multi-threaded
benchmarks using HotSniper [3].

The authors in [19] propose an empirical model for comput-
ing the maximum sustainable per-chip power budget concern-
ing the current temperature and spatial alignment of the active
cores on the chip. They use HotSpot for deriving the model.
To derive the model, the uniform per-core power budget for
limited sets of active cores, each having a different initial
temperature, is computed at design time. Authors do this by in-
creasing the power budget from a low value as long as the peak
chip temperature, simulated by HotSpot, remains below the
threshold temperature. The authors further extend the model
to support non-uniform per-core power budgets in [20]. In
contrast to analytical T-TSP, this empirical approach is prone
to errors that lead to incorrect power budgeting. Consequently,
the errors lead to thermal headroom wastage/thermal violation.

VI. CONCLUSION

In this paper, we propose T-TSP as a novel power budgeting
technique for multi-/many-core systems. The fundamental
feature of T-TSP is to incorporate the transient temperature
of the cores in power budgeting calculations, a detail ignored
by state-of-the-art power budgeting techniques. This feature
enables T-TSP to provide a dynamic power budget to a core,
which inversely correlates with the core’s thermal headroom.
With efficient exploitation of such transient thermal headroom,
dynamic power budgeting with T-TSP can result in a sig-
nificant system performance boost in a thermally constrained
environment. Executing cores at any power consumption be-
low their power budgets under T-TSP ensures thermally safe
operation wherein the temperature of cores remains below the

threshold temperature. Our experiments show that benchmarks
execute faster by 17.94% and 8.37% on average when power
budgeting with T-TSP instead of TSP.

REFERENCES

[1] T. Mitra. Heterogeneous multi-core architectures. Information and
Media Technologies, 10(3):383–394, 2015.

[2] S. Pagani, H. Khdr, W. Munawar, J.J Chen, M. Shafique, M. Li, and
J. Henkel. Tsp: Thermal safe power: Efficient power budgeting for
many-core systems in dark silicon. In International Conference on
Hardware/Software Codesign and System Synthesis, pages 1–10, 2014.

[3] A. Pathania and J. Henkel. Hotsniper: Sniper-based toolchain for many-
core thermal simulations in open systems. IEEE Embedded Systems
Letters, 11(2):54–57, 2018.

[4] C. Bienia, S. Kumar, J.P. Singh, and K. Li. The parsec benchmark suite:
Characterization and architectural implications. In 17th international
conference on Parallel architectures and compilation techniques, pages
72–81, 2008.

[5] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta. The splash-
2 programs: Characterization and methodological considerations. ACM
SIGARCH computer architecture news, 23(2):24–36, 1995.

[6] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron,
and M.R. Stan. Hotspot: A compact thermal modeling methodology
for early-stage vlsi design. IEEE Transactions on very large scale
integration (VLSI) systems, 14(5):501–513, 2006.

[7] S. Pagani, J.J. Chen, M. Shafique, and J. Henkel. Matex: Efficient
transient and peak temperature computation for compact thermal models.
In Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 1515–1520. IEEE, 2015.

[8] F. Beneventi, A. Bartolini, A. Tilli, and L. Benini. An effective gray-
box identification procedure for multicore thermal modeling. IEEE
Transactions on Computers, 63(5):1097–1110, 2012.

[9] G. Bhat, G. Singla, A. K Unver, and U. Y Ogras. Algorithmic opti-
mization of thermal and power management for heterogeneous mobile
platforms. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 26(3):544–557, 2017.

[10] T.E. Carlson, W. Heirman, and L. Eeckhout. Sniper: Exploring the level
of abstraction for scalable and accurate parallel multi-core simulation. In
International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–12, 2011.

[11] S. Li, J.H. Ahn, R.D. Strong, J.B. Brockman, D.M. Tullsen, and N.P.
Jouppi. The mcpat framework for multicore and manycore architectures:
Simultaneously modeling power, area, and timing. ACM Transactions
on Architecture and Code Optimization (TACO), 10(1):1–29, 2013.

[12] J. Henkel, H. Khdr, S. Pagani, and M. Shafique. New trends in dark
silicon. In 52nd ACM/EDAC/IEEE Design Automation Conference
(DAC), pages 1–6. IEEE, 2015.

[13] Z. Chen and D. Marculescu. Distributed reinforcement learning for
power limited many-core system performance optimization. In Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages
1521–1526. IEEE, 2015.

[14] M. Rapp, M. Sagi, A. Pathania, A. Herkersdorf, and J. Henkel. Power-
and cache-aware task mapping with dynamic power budgeting for many-
cores. IEEE Transactions on Computers, 69(1):1–13, 2019.

[15] M. Rapp, B. Sikal, H. Khdr, and J. Henkel. Smartboost: Lightweight
ml-driven boosting forthermally-constrained many-core processors. In
58th ACM/IEEE Design Automation Conference (DAC), 2021.

[16] M. Rapp, A. Pathania, T. Mitra, and J. Henkel. Neural network-based
performance prediction for task migration on s-nuca many-cores. IEEE
Transactions on Computers, 2020.

[17] G. Bhat, S. Gumussoy, and U. Y Ogras. Power-temperature stability
and safety analysis for multiprocessor systems. ACM Transactions on
Embedded Computing Systems (TECS), 16(5s):1–19, 2017.

[18] H. Wang, D. Tang, M. Zhang, S.X.D Tan, C. Zhang, H. Tang, and
Y. Yuan. Gdp: A greedy based dynamic power budgeting method
for multi/many-core systems in dark silicon. IEEE Transactions on
Computers, 68(4):526–541, 2018.

[19] X. Hu, Y. Xu, J. Ma, G. Chen, Y. Hu, and Y. Xie. Thermal-sustainable
power budgeting for dynamic threading. In 51st ACM/EDAC/IEEE
Design Automation Conference (DAC), pages 1–6. IEEE, 2014.

[20] G. Chen, Y. Xu, X. Hu, X. Guo, J. Ma, Y. Hu, and Y. Xie. Tsocket:
Thermal sustainable power budgeting. ACM Transactions on Design
Automation of Electronic Systems (TODAES), 21(2):1–22, 2016.


	Introduction
	Background
	System and Application Model
	Thermal Model

	T-TSP
	Run-Time Overhead
	Working Example

	Experimental Evaluation
	Experimental Setup
	Results and Analysis

	Related work
	Conclusion
	References

