ADMORPH: Towards <u>Adaptively</u> Morphing Embedded Systems

http://www.admorph.eu

Mission and Objectives

How can we efficiently and effectively develop and deploy embedded computer systems that utilize adaptivity to achieve fault and intrusion tolerance in mission- and safety-critical Cyber Physical Systems (of Systems) – CPS(oS)?

To realize such robust, adaptively morphing systems, we address:

- formal specifications of adaptive systems;
- adaptivity methods like strategies for maintaining safe and secure control of CPS(oS);

- analysis techniques for adaptive systems to, e.g., perform timing verification of adaptive systems;
- run-time systems for adaptive systems that realize the actual run-time system reconfigurations to achieve fault and intrusion tolerance.

Robustness of E adaptation d methodologies

Efficient engineering of robust, adaptive systems

Use Cases

Autonomous

Aerospace

Systems

Will demonstrate adaptability as a key enabler for autonomy in the context of a System of Systems involving autonomous aircrafts and Air Traffic Control (ATC)

Will demonstrate the ability to achieve fault tolerance as needed for reliable and robust real-time data processing in radar surveillence systems Will demonstrate the suitability of ADMORPH methods for supporting real-time and transparent reconfiguration of a Train Supervision Surveillance System

ADMORPH System Architecture and Technologies

- Design Space Exploration for H/W and adaptivity selection
- Multi-Model MoC to formally model adaptive real-time embedded systems
- Coordination language, compiler and middleware for adaptive systems
- Adaptive Byzantine Fault-tolerance and Rejuvenation Analysis tools for adaptive systems, including degraded modes
 - Analysis tools for fault-resilient control systems

Subway

Transportation

Systems

- Runtime environments for Fault-detection, Resilient control and Task Re-execution
- Software Update Framework without Loss of Service

Project data and further information

Project funded by the European Union's Horizon 2020 research and innovation programme under the grant agreement No 871259

Start Date: 1st January 2020

- End Date: 30th June 2023
- Coordinator: Univ. of Amsterdam

linkedin.com/in/admorph/

twitter.com/ADMORPH1