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Executive summary

Deliverable D1.2 is the second deliverable of work package 1: Specification of Adaptive Systems.
It contains the second report on a coordination language for robust, adaptive systems. At the
time of reporting three tasks of work package 1 are active, namely:

• Task 1.1: Coordination language design, led by UvA;

• Task 1.2: Validation of the coordination language, led by UvA;

• Task 1.3: Specification of formal guarantees for the adaptation layer, led by ULUND;

Work package 1 targets the specification of adaptive systems including their functional and non-
functional behaviour, possible fault and attack models, and formal guarantees of the adaptation
layer. Central to this work package is a (domain-specific) coordination language TeamPlay that
allows us to specify software components, their properties and their orderly interplay at a very
high level of abstraction. On top of the obvious aim of functional correctness, the coordination
language is particularly concerned with non-functional properties of code execution including
reliability, time and energy.
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1 Introduction

We (partially) build our work work in this area on previous and on-going work on the TeamPlay
coordination language [30]. Work on the underlying coordination model and the core language
have been developed in the context of the Horizon-2020 project TeamPlay1, but continue to be
subjects of on-going research in the ADMORPH project.

In the context of the TeamPlay project our focus has been on the non-functional properties
energy, time and security. In particular guarantees on worst case execution time play a vital role
in the ADMORPH project as well. Energy and security are likewise relevant to ADMORPH, but
possibly less prominently. Instead we add two new strands to the development of the TeamPlay
language: robustness against partial hardware failure and robustness against cyber attack, both
potentially leading to transient or permanent unavailability of computing resources.

The organisation of this deliverable deviates from the task structure of the work package.
The chosen structure in our view reflects the actual work done in a more balanced way. The
achievements described in Section 2 up until Section 7 can be attributed to Task 1.1 while the
work described in Section 8 belongs to Task 1.3. Our work on Task 1.2 has only started with
initial talks to the use case providing partners. Following our initial hiring delays experienced
by UvA, we decided to focus on Task 1.1 for the time being. We do not expect any long-term
or tangible impact on the project due to this decision.

We commence our journey with reporting on the advances of the TeamPlay coordination
language: we carefully revised the syntax of the language for better readability and compre-
hensibility. Furthermore, we added so-called modes to the language. These modes permit the
coordinated application to reflect on changing characteristics of its execution environment and
thus to react, for instance, on faulting hardware (permanent or transient) or on cyber attacks.
We report on this work in Section 2.

In the reporting period we have also spent considerable effort into our coordination compiler,
named CECILE. We extended the compiler front-end to accommodate the various language
extensions developed and adapted the various intermediate compiler analyses accordingly. Fur-
thermore, we added three new code generators targeting our three novel runtime environments
developed during the current reporting period. We describe our work on the CECILE coordi-
nation compiler in more detail in Section 3 and the three runtime environments thereafter.

In order to support the various TeamPlay language extensions specifically geared at fault-
tolerance that we already described in Deliverable D1.1 we designed and implemented a corre-
sponding fault-tolerant runtime environment. The result is a proof-of-concept runtime environ-
ment that dynamically reconfigures running applications upon detection of hardware failures.
This runtime environment targets both permanent (or crash) faults as well as transient faults,
for instance detected via n-modular redundancy. The runtime environment comes with a fault
injection facility for demonstration purposes. However, our fault-tolerant runtime proof-of-
concept has no real-time capabilities. We describe our work on the fault-tolerant runtime
system in Section 4.

As a synergy with the above mentioned Horizon-2020 project TeamPlay, we developed the
real-time runtime environment YASMIN (Yet Another Scheduling MIddleware for exploratioN ).
YASMIN schedules end-user applications with real-time requirements in user space and on be-

1European Union Horizon-2020 research and innovation programme grant agreement No. 779882 (TeamPlay),
2018–2020
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half of the operating system all with an easy-to-use programming interface and portability
across a wide range of hardware platforms. YASMIN treats heterogeneity on COTS heteroge-
neous embedded platforms as a first-class citizen supporting multiple functionally equivalent
task implementations (versions) with distinct extra-functional behaviour, tailor-made for the
TeamPlay coordination language. At the time of writing YASMIN supports the whole range
of TeamPlay features, but not (yet) the fault-tolerance aspects of the language. We describe
YASMIN in more detail in Section 5.

The third compilation target of the coordination compiler is not a runtime environment
per sé, but the ADMORPH eXchange Format (AXF) meant to facilitate the interplay of tools
contributed by various ADMORPH stakeholders. We describe the design of the ADMORPH
eXchange Format (AXF), compilation of TeamPlay coordination programs to the AXF as well
as another runtime environment implementing the AXF in Section 6.

The effects of transient faults and the timing impact of their mitigation can only be analysed
by looking at long-running application behaviour. A wall-time simulator would take too much
time to gather meaningful data over the behaviour of an application in the presence of transient
faults. Therefore, we decided to analyse long-running application behaviour using simulated
time. To this end, we have enlisted the help of the existing model checking tool UPPAAL
and added code generation for UPPAAL as yet another compilation target to the TeamPlay
coordination compiler CECILE. We summarise this thread of research in Section 7.

At last we come to Task 1.3 on the specification of formal guarantees for the adaptation
layer. In this task, we are trying to quantify the natural resilience of control systems to faults
and attacks. For this, we focus on a failure model that manifests itself in the controller missing
deadlines (although this may come from never receiving a sensor data or experiencing delays),
which are quantified according to the weakly-hard task model [7]. We analyse the robustness
of control systems using two different dimensions: stability and performance. The result of the
analysis is a set of constraints that, when satisfied, formally guarantee that control tasks do not
misbehave. If the system is under attack, this means that the adaptation layer must guarantee
a reaction time and the restoration of nominal condition within the threshold specified by the
analysis conducted in this task. We provide a detailed account of our work on Task T1.3 in
Section 8.

With Section 10 we end this Deliverable with some intermediate conclusions and an outlook
on the coming steps to take.
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2 Evolution of TeamPlay coordination language

In Deliverable D1.1 we discussed the underlying concepts of our TeamPlay DSL (domain-specific
language) for adaptive multi-core coordination. We presented both the language as it was prior
to the start of the ADMORPH project as well as the extensions we developed specifically for
the purpose of ADMORPH. In the following we describe a careful evolution of the syntax of the
core language in Section 2.1. Furthermore, we introduce TeamPlay modes, a recent extension
to reflect on potential property changes in the runtime environment of the running coordination
program, in Section 2.2.

The work described in this section is a synergy between the ADMORPH project and the
Horizon-2020 project TeamPlay Time, Energy and Security Analysis for Multi/Many-core Het-
erogeneous Platforms (2018–2021, grant agreement no 779882).

2.1 Syntax evolution

Figure 1 shows the revised syntax of the core language in Extended Backus-Naur Form (EBNF).
For conciseness we leave out the various additions described in Deliverable D1.1, both for ease
of programming and abstraction as well as for fault-tolerance; they all remain unchanged. In
the following we focus on the differences while generally speaking the commonalities prevail.
As before, a coordination application starts with the keyword app followed by the name of the
application and its actual specification enclosed in curly brackets.

Following global specifications of deadline and period of the application as a whole, the
bulk of a coordination program is made up of two further sections headed by the keywords
components and channels. In these sections we specify the properties of a DAG (directed
acyclic graph). In graph terminology our components are vertices and our channels are edges.
In real-time embedded systems terminology our components are usually referred to as tasks
while our channels are called dependencies. Throughout this deliverable report we will use the
terminology interchangeably.

Comparing old and new syntax in detail, we observe that the former keyword edges has
been substituted by the new keyword channels. The new keyword emphasises the operational
behaviour of a coordinated application, where graph edges do not only specify abstract depen-
dencies between components, but rather concrete data transfers from source components to
sink components.

A tangible difference between initial and revised coordination language design is that we
decided to remove the datatypes section entirely. Originally, this section mapped abstract type
identifiers to concrete C language types. We removed the datatype implementations because
we found that having concrete C types in a coordination program would not fit the high-level
character of coordination programs well. The corresponding information can now be provided
in one of two possible ways: via the config file or by simply providing a matching C type
definition with the component implementation code base. The former allows us to still provide
auxiliary information about types in line with the initial syntax of the TeamPlay coordination
language.

In all three categories, inports, outports and state ports we replaced the initial notion of a
connector by the new port lists. Port lists essentially mimic the syntax of C structs, instead
of using a tailor-made (but hence also exotic) syntax characteristic for connectors. Optional

ADMORPH Deliverable D1.2 Page 7 of 61



ADMORPH – 871259

CoordApp ⇒ app Id { AppBody }
AppBody ⇒ [ period FrequencyConst ]

[ deadline FrequencyConst ]
Components
Channels

Components ⇒ components { [ Component ]+ }
Component ⇒ Id {

[ inports PortList ]
[ outports PortList ]
[ state PortList ]
[ Settings ]
[ Version ]*
}

Settings ⇒ { Setting [ ; Setting ]* [ ; ] }

Setting ⇒ period FrequencyConst
| deadline FrequencyConst
| arch StringConst
| security IntConst
| cname StringConst

Version ⇒ version Id [Settings ]

PortList ⇒ { Port [ ; Port ]* [ ; ] }
Port ⇒ Type Id [ [ IntConst ] ]

Channels ⇒ channels { [ Channel ]* }
Channel ⇒ OneToOne | Broadcast

OneToOne ⇒ OutPort -> InPort

Broadcast ⇒ OutPort -> InPort [ & InPort ]+

InPort ⇒ Id [ . Id ]

OutPort ⇒ Id [ . Id ]

Figure 1: Revised grammar of coordination language in EBNF

multiplicities, i.e. the opportunity to send or receive multiple data tokens at once, now makes
use of C array syntax.

A component may have multiple versions that are functionally equivalent but typically
expose different non-functional behaviour. In the new syntax we have made the provision of
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attributes between single-version and multi-version components uniform. All settings can be
attributed to the component as well as to any of its versions (a.k.a. implementations or variants).
In the absence of version specifications, hence a single-version component, all attributes are
directly attached to the component specification. In the presence of version specifications,
typically multi-version components, component-level attributes act as defaults for the various
versions and can be overwritten with version-specific values.

Looking at the supported attributes we see little change. The keyword targetArch is simpli-
fied to arch. We also added the attribute and corresponding keyword cname that allows explicit
specification of the name of the C function implementing the component or version thereof. By
default, the name is automatically derived from component name and where applicable version
name, but the ability to override the default has proven convenient in practice.

Other than renaming the introductory keyword from edges to channels the corresponding
section shows little change. This aspect of our coordination DSL was already simplified drasti-
cally on the way towards Deliverable D1.1 and thus differs from external publications such as
[30].

Decision

LeftActuator

DistSensor

voltage

dist

ImageCapture
frameData

RightActuator

Figure 2: Example for TeamPlay component coordination (reproduced from Deliverable D1.1)

We illustrate the evolution of the TeamPlay language syntax by means of the same example
we already used in Deliverable D1.1 and that is illustrated in Figure 2. Our example is an
imaginary subsystem of a car with two sensors feeding messages to a decision controller. This
decision controller synchronises the messages pair-wise and sends commands to two subsequent
actuators. Figure 3 shows the corresponding TeamPlay coordination code using the revised
syntax. For comparison with the old syntax we refer the interested reader to Deliverable D1.1.

2.2 Modes

One major theme of our work on the TeamPlay coordination language is dynamic adaptation
to changing properties of the execution environment. For this purpose we extend the TeamPlay
coordination language in multiple aspects. In Figure 4 we show the various extensions to the
grammar of the core language as provided in Figure 1.

The first extension are so-called modes, that represent possibly changing relevant properties
of the execution environment in the context of the coordination program. Following the new
keyword modes we identify a sequence of mode specifications consisting of an identifier for
the mode itself and its possible values as comma-separated list of identifiers enclosed in curly
brackets. The notation is vaguely inspired by C enumeration types. All mode values must be
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app car {

components {

DistSensor {

outports { num dist }

}

ImageCapture {

outports { frame frameData }

}

Decision {

inports { num dist;

frame frameData }

outports { num voltage }

}

LeftActuator {

inports { num voltage }

}

RightActuator {

inports { num voltage }

}

}

channels {

DistSensor.dist -> Decision.dist

ImageCapture.frameData -> Decision.frameData

Decision.voltage -> LeftActuator.voltage & RightActuator.voltage

}

}

Figure 3: TeamPlay coordination code for example of Figure 2 making use of the revised syntax

unique in order to let the coordination compiler identify the mode given any potential mode
value. Mode values have no further interpretation than their names, but the textual order of
definition induces a total ascending order that can later be used to compare any two values of
a mode using the usual relational operators.

Mode specifications define a Cartesian product of possible states of the coordination envi-
ronment, where each mode individually defines one independent axis or dimension. In practice,
not all potential combinations of mode values may be useful or even permitted, but such re-
strictions are application-specific.

Modes can affect the coordination program in various ways, all introduced by the new
keyword if followed by a mode expression. Mode expressions more or less follow the stan-
dard definition of Boolean expressions with operators inspired by the C language for negation,
conjunction and disjunction. The usual precedences apply, and parentheses can be used to

ADMORPH Deliverable D1.2 Page 10 of 61
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CoordApp ⇒ app Id { AppBody }
AppBody ⇒ [ period FrequencyConst ]

[ deadline FrequencyConst ]
[Modes ]
[Templates ]
Components
Channels

Modes ⇒ modes { [Mode ]+ }
Mode ⇒ Id { Id [ , Id ]* }
Version ⇒ version Id [ if ModeExpr ] Settings

Channel ⇒ OneToOne | Broadcast | Select

OneToOne ⇒ OutPort -> InPort [ if ModeExpr ]

Broadcast ⇒ OutPort -> InPort [ if ModeExpr ]
[ & InPort [ if ModeExpr ] ]+

Select ⇒ OutPort -> InPort [ if ModeExpr ]
[ | InPort [ if ModeExpr ] ]+

ModeExpr ⇒ ( ModeExpr )
| ModeValueId
| ModeId RelOp ModeValueId
| ! ModeExpr
| ModeExpr || ModeExpr
| ModeExpr && ModeExpr

RelOp ⇒ == | != | < | <= | > | >=

Figure 4: Grammar of coordination language extension for dynamic adaptation to coordination
environment in EBNF form; grammar rules that are identical with those in Figure 1 are left
out for conciseness

structure complex mode expressions. In practice, however, we expect mode expressions to be
of rather simple nature. We support the usual six relational operators to relate a mode (iden-
tifier) as left operand to a mode value (identifier) as right operand. Using just a mode value
(identifier) by itself is a short notation for checking the corresponding mode for equality with
the given mode value.

The first application of modes can be seen in the context of multi-version components where
modes can be used to restrict the choice of available versions. All further applications of modes
affect the channels between components. A simple one-to-one channel can be conditioned on a
mode expression. Likewise, individual right hand sides of a broadcast channel can be activated
or deactivated via modes. A new kind of channel introduced in this context is the select channel
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that routes a token to exactly one destination depending on the mode expressions. Unlike the
broadcast channel that sends a token to any destination whose mode expression is met, the
select channel evaluates mode expressions left to right and selects the first matching destination.
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3 TeamPlay compiler extensions for fault-tolerance

This chapter details the extensions of the Teamplay language compiler, named CECILE, to
implement the language extensions introduced in Deliverable D1.1. We commence by reviewing
the existing TeamPlay compiler in Section 3.1. We then move on to describe the most relevant
extensions of compiler front-end and compiler back-end in Section 3.2 and in Section 3.3,
respectively.

3.1 Existing TeamPlay compiler

The structure of the TeamPlay compiler is illustrated in Figure 5. The compiler uses an XML-
based configuration file to enable or disable specific passes in the compiler and allows the user
to provide options specific to these passes. The compilation process can be divided into three
phases: the compiler front-end, schedule generation and code generation. The compiler front-
end consists of the syntactic and semantic analysis of the coordination file which is transformed
into an intermediate representation for usage in subsequent phases. The scheduling policy
generator uses the Non-functional Properties File (NFP) to obtain architecture-specific time
and energy information per component. The last phase is code generation. The generated C
code is compiled by a back-end compiler, and the resulting binary is linked with the component
implementation object files and the TeamPlay runtime environment.

Coordination file Config file

Coordination Compiler

Non-Functional 
Properties files

Dot, XML, …
Output files

XML
parser

Coordination
lexer/parser

NFP
parser

Syntactic & semantic analyses

Scheduling policy generator

Code Generator

IR

ETS-IR config

augmented
ETS-IR

ETS-IR
+

schedule
mapping

....

....

....
Exporter

....

Target 
Compiler & Linker

Binary file + RTE

Component
object files
Component
object files

RTE

Figure 5: Overview of the TeamPlay compiler
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3.2 Compiler front-end extensions

The compiler uses Xtext, a framework for developing domain-specific languages to generate the
grammar for the coordination language [11]. The benefit of using Xtext is that it automatically
generates syntax highlighting and auto-complete and bundles it into an eclipse plugin. The
grammar is exported into a format that can be used with the ANTLR (ANother Tool for
Language Recognition) runtime [1]. This runtime can be imported into various general-purpose
programming languages to parse coordination files with the exported grammar. In our case,
we use the ANTLR4 runtime with C++ to parse our language.

We extend the existing parser of the language to accommodate our language extensions for
fault-tolerance as described in Deliverable D1.1 as well as the further language updates and
extensions as described in Section 2. Implementing the specification of fault-tolerance methods
requires extending the Xtext grammar and the parser. We add a profile class on each compo-
nent which handles adding the options and the merging of profiles originating from different
specification places such as the sub-network profile field, sub-network-inline, component profile
field and component inline. Figure 6 shows an overview of cascading and inheritance of profiles.

First, the options from the sub-network are added (red box in the figure). These represent
the weakest options and are overwritten by the specific, strong options. The profiles of the sub-
network are inherited by the components inside. As mentioned in Deliverable D1.1, the profiles
defined first in profiles are overwritten by those defined later. These options are overwritten
by the inline options of the sub-network. We see a similar structure in the yellow box in which
the component profiles overwrite and merge any settings defined by the sub-network. Finally,
the inline component options overwrite the previously defined options. Options with the vital

keyword cannot be overwritten. Fault-tolerance options with the remove keyword are removed
in between merges/overwrites of options. This makes it possible to remove an option in the
specification of the inline options of the sub-network and add it again in the inline specification
of a component.

Sub-networks are implemented by dissolving them in the front-end phase of the compiler.
Figure 7 illustrates this process using the example from Section 2. The result of this dissolving
pass is Figure 2. First, we take a look at the Sensors sub-network. All edges that go to the sub-
network ports are replaced with edges that go directly to the component the port is attached to.
In this case, this means that the edge leaving the ImageCapture component is attached directly
to the Decision component, the same goes for DistanceSensor. In the Actuators sub-network we
essentially move the duplicate or broadcast edge from inside the sub-network to the outside,
taking the components along. This algorithm becomes more complex when taking into account
that it is possible to have broadcast edges both inside and outside the sub-network. This
requires merging the broadcast edges into one.

Our implementations of TeamPlay modes is still on-going. The design of modes is carefully
chosen to permit the compiler to statically compute projections of the described DAG, one per
element in the Cartesian product of modes. This way modes can be integrated rather seamlessly
into the compiler as all static analyses can still be performed for each combination of mode
values.
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Figure 6: This figure shows the hierarchy of specifying options in different places. At the top
of the picture, the specification is more general but also weaker since these options can always
be overwritten by specification levels below it, unless the options is vital.

3.3 Compiler back-end extensions

The compiler back-end generates code targeting one of multiple runtime environments. These
alternative runtime environments technically come as libraries. Hence, the compiler back-end’s
code generator combines the application-specific glue code with calls to the runtime environment
library of choice. While our initial coordination compiler targeted a single rather generic Posix
thread based runtime environment as an early proof-of-concept we have meanwhile added code
generation support for three additional targets:

• a fault-tolerant runtime environment that implements the various fault-tolerance oriented
extensions of the TeamPlay coordination language introduced in Deliverable D1.1;

• a real-time runtime environment running on top of commodity-off-the-shelf hardware and
operating systems;

• the ADMORPH eXchange Format (AXF) serving the role of lingua franca among the
various project partners and their tooling.

Each of the above runtime environments warrants its individual code generator. Typical
areas which require application-specific glue code to be generated by our compiler are:

1. a representation of the coordination task graph of the application in question, as we need
the flow of the data, dependencies, and (fault-tolerance) settings;
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Figure 7: Steps to dissolve a sub-network. First the sub-networks are removed. Then the
indirect edges that go the sub-network edge are replaced with edges that go directly to the
attached component.

2. store the data into these buffers saved in the task graph;

3. take the contents of the buffers for when a component can execute;

4. generation of data structures to save the contents of the buffers for possible transport in
the application;

5. call copy functions specific to the types of data tokens for each outport;

6. code to call the component-implementing C function associated with the component with
the appropriate parameters taken from the buffers.

The choice of runtime environment and, hence, compilation target and code generator is made
via the TeamPlay configuration file, see Figure 5.
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4 Fault-tolerant runtime environment for TeamPlay

In order to support the various TeamPlay language extensions specifically geared at fault-
tolerance that we already described in Deliverable D1.1 we designed and implemented a corre-
sponding fault-tolerant runtime environment. Our proof-of-concept runtime environment dy-
namically reconfigures running applications upon detection of hardware failures. This runtime
environment targets both permanent (or crash) faults as well as transient faults, for instance
detected via n-modular redundancy. The runtime environment comes with a fault injection
facility for demonstration purposes.

We commence with desribing the design of the base runtime environment prior to adding
fault-tolerance capabilities and its various configuration parameters. This is followed by a
discussion of fault detection facilities and the concept of error tokens that aims at preventing
deadlocks in the execution of TeamPlay coordinated applications. At last, we go through the
various fault-tolerance techniques, as pointed out in Deliverable D1.1 and sketch out their
implementations on top of our base runtime environment.

4.1 Base system

The coordination approach we take requires us to make as few assumptions as possible about the
underlying target hardware configuration as our coordination approach aims to be hardware
architecture agnostic. We assume that the main property of CPS(oS) holds: CPS(oS) are
distributed (possibly heterogeneous) systems which are not necessarily in the same physical
location [5]. This means we deal with nodes of hardware components. We simulate these
distributed systems using a thread for each node with POSIX threads or pthreads [6].

One of the first decisions we need to make is: in what way do threads in the simulator
correspond to the real world? A straightforward idea is that each coordination component
corresponds with a thread. This has the advantage that it is not necessary to manage the
threads separately. Since the coordination task graph is static, each component knows which
thread to communicate their output data to. In other exogenous streaming coordination sys-
tems like S-Net [16] (which targets HPC systems), having components correspond with threads
is feasible. But when constructing a simulator for a CPS(oS) it is not realistic to assume that
there are always sufficient hardware components to accommodate each coordination component
separately. Hence we choose for an architecture in which the number of computation threads
is static, related to the number of hardware components in the CPS(oS) but unrelated to the
number of coordination components. This requires us to work with task queues, as each thread
can execute multiple components.

We choose for a design in which there are two types of threads, a main or control thread and
multiple computation threads. This design is illustrated in Figure 8. The control thread checks
whether components are ready and puts the tasks into their appropriate queues. It is activated
as soon as a component has finished computing and matches a centralised hardware component
in a real world architecture. The choice for a centralised system is motivated by security
concerns as it makes it more difficult to disrupt the entire system by taking control of a single
computation node. In reality, this centralised system will have to be hardened against security
faults. In order to deal with faults in this management hardware component, fault-tolerance
methods such as primary-backup or n-modular redundancy can be applied. The computation
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threads mirror the hardware components running the actual coordination component code from
the real world.

Hardware Component
(Simulated)

Computation Thread

Management Component

Control Thread N

Cyber-Physical System in Coordination simulator
Heterogeneous Workers

Simulation config

Figure 8: Illustration of the base architecture of the simulator. The management component is
simulated with the use of a control thread. The heterogeneous worker elements are simulated
by n computation threads.

4.2 Thread interaction

The interaction between the control thread and computation threads is displayed in Figure 9.
The blue block on the left and green on the right indicate whether the action takes place in
the worker threads or in the control thread. In the figure we show only one worker thread to
highlight the interaction with the control thread. The figures in the middle show the shared data
structures between the control and computation threads. The top data structure is the task
queue associated with the thread. The middle figure is the coordination structure containing the
coordination task graph. The bottom structure is the finished list which is used to communicate
that a thread is finished and tokens are added to the buffers. The tables in the figure show the
first four iterations on the simple coordination structure in the middle.

First we explain how the interaction works in an abstract manner, then we go over the
example listed using tables in the figure. When the control thread launches (top right node), it
goes through the source nodes and adds them to the task queues of the assigned threads. Each
of these threads has a counting semaphore which corresponds to the number of items in their
queue. When the semaphore reaches zero, the threads wait until new items appear in the task
queue.

When a thread is alerted that new items appeared in the task queue (top data structure),
it pops a component from the task queue (task queues are FIFO) to execute. After execution,
it stores the output data in the graph data-structure and appends the id of the executed
component into the finished list. The control thread is alerted that components are finished,
so it can check whether new items can be added to the task queues. The computing thread
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will then wait for the task queue semaphore. If the semaphore’s value higher than zero it can
continue popping another item from the task queue to start computing again.

After items are added to the task queues of the threads and the threads are alerted, the
management thread will wait until items appear in the finished list. This is indicated in
the figure by the bottom data structure with the dotted line facing right. This mechanism
is implemented with a condition variable as one cannot reset a counting semaphore when
the finished list is emptied. When items appear in the finished list, we need to check which
components can fire again. First, we need to check whether the predecessors of the finished
component can fire since, by firing, it can have opened a spot in the (bounded) FIFO buffers
of the predecessors. Then, we check whether the successors of this component can fire since it
has produced a token on its outports which may trigger the firing rule of the successor. Finally,
we check whether the component itself can fire again. This way of checking ensures we only
have to traverse the parts of the graph that have been changed. The components that can fire
are added to the task queues belonging to the threads and the threads are alerted so they can
continue computing. The components that are ready are added to the task queue. This marks
the completion of a cycle.

Now we will explain the example found in the figure. First, both threads will launch. The
worker thread sees that there are no items in the task queue (i.e., semaphore value is zero)
so it will wait. In the first cycle, the control thread adds the Source component to the task
queue. As the source component does not have any dependencies, it can fire as long as the
buffers can hold the data and it is not already present in any task queue. The task is put in
the task queue associated with the computing thread to which Source is assigned. The control
thread will increment the semaphore. This leads to the awakening of the worker thread, which
will pop Source from the FIFO queue. The worker thread will then execute the code associated
with Source component. After computation, the output token of Source will be added to the
buffer on the edge leading to the next component, A. The computing thread puts the id of
the Source component into the finished list and sends a signal to the condition variable on
which the control thread is waiting. The computing thread loops back to the first item (after
initialisation) and will wait until the control thread has added new items to the task queue
owned by the worker thread.

When the control thread receives the signal for the condition variable, it will loop trough the
finished list and check the task graph for components which are ready. This is done by looping
trough the predecessors, successors and the component itself, to see if they can fire. Sink has
no predecessors but it does have one successor, A, which can fire since Source just fired. Source

can also fire again. The components which can fire again are put into the task queue. Next,
component A is fired, the result is again stored in the buffer after the fired component, this time
leading to Sink. Then the control thread is again alerted that the worker thread has finished a
computation. The control thread notices that Source can be fired since it has no dependencies,
but it is already in a task queue, so it cannot be added again. Following the execution of A,
Sink can be fired, but A has insufficient tokens from Source to fire again. Now, Source is taken
from the task queue and executed, as it was added the previous cycle. The component checking
process of this cycle is identical to the first cycle, as Source and A are added again. Then for the
last round explained in this example, Sink will be popped from the task queue and executed.
In the control thread, A cannot be added to the task queue again since it was already added
when Source finished. Sink cannot fire again since the buffer on the edge coming from A does
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Figure 9: Schematic overview of the interaction between the computation components and the
management component. The dotted lines indicate a waiting process via thread communication
(e.g., condition variable or semaphore). The double-column tables show the components in the
list per iteration. The triple-column tables show the components which are checked for firing,
the third column shows whether they are added to the task queue.

4.3 Configuration file

Our simulation run-time uses a configuration file in which the user can specify options such
as the number of threads and options related to fault-tolerance. Figure 10 shows an example
of a configuration file. numThreads signifies the number of computation threads. Setting debug

(cont.) to true turns on debug prints. sleepTime is the period of the heartbeat worker threads
in microseconds. controlSleep is the period of the heartbeat control thread in microseconds.
heartbeatTries is the threshold of the counter incremented by the heartbeat control thread, if
the counter is higher than heartbeatTries, it is deemed to have crashed. heartbeatCheckerPrio

and heartbeatWorkerPrio are the real-time scheduling priority of the control heartbeat thread
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and heartbeat worker threads respectively. Setting standbyEarlyTaskCompletion to true allows
standby threads which start computation after the primary thread (i.e., first finished thread)
has finished to skip computing since the task is already delivered. The edgeBufferSize indicates
the number of tokens an edge buffer can hold.

numThreads = 6

debug = false

sleepTime = 100

controlSleep = 1000

heartbeatTries = 10

heartbeatCheckerPrio = 10

heartbeatWorkerPrio = 15

standbyEarlyTaskCompletion = false

edgeBufferSize = 20

Figure 10: Simulator configuration file example.

4.4 Fault-Tolerance

In order to implement the suggested fault-tolerance mechanisms, we make several additions to
our base simulator. We start out by describing how we detect crash faults. This is necessary
as two out of our four chosen fault-tolerance methods, checkpoint/restart and primary-backup,
require error detection mechanisms that trigger these fault-tolerance methods when a fault
occurs. When a system suffers from a crash failure, we cannot assume that restarting the
hardware component will solve the problem. As depending on the hardware configuration,
data can be stored in non-volatile storage, which is lost after the restart. To prevent deviation
from correct service caused by lost data, we introduce error tokens. For the reconfiguration
process, mechanisms are required which reassign tasks to other threads with a compatible
architecture. Furthermore, we introduce a mechanism to deal with heterogeneous architectures
and spatial assignment of components to threads.

4.5 Crash fault detection

There are three major error detection methods for detecting node failure in distributed appli-
cations [36, 19]. The first of these methods is heartbeat, in which we actively ping the nodes to
know whether they have not crashed. In the second method, one passively waits for messages to
come in. This method is not predictable and thus not suitable for future real-time extensions.
The third method is to provide a challenge-response protocol in which the node calculates a
response to a provided input. This last method can also deal with value faults in addition to
detecting node failure. We choose heartbeat to deal with crash faults in our simulator as we
predict this is the most predictable method with the least amount of overhead.

In order to implement heartbeat, we need a way of checking whether a computation thread
has crashed. This is not straightforward, as using a signal and signal handler on an individual
thread does not guarantee which thread handles the signal [23]. Furthermore, we aim to treat
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the components as black boxes, so we cannot intrude into the user code to send the signal
periodically from there. To solve this problem, we add a separate heartbeat thread to each
computation thread. The heartbeat and a computation thread in the simulator, correspond with
one hardware component in the real world. We assume that the entire (real-world) hardware
component dies at once, so if the computation thread dies, the associated heartbeat thread
dies with it. Additionally, we introduce a main heartbeat thread or heartbeat checker thread
which periodically checks whether the heartbeat threads are still alive. The checker does this
by periodically looping trough the threads, incrementing a counter in memory shared with
each heartbeat thread, followed by a sleep. After the increment of the counter, the heartbeat
checker checks whether the counter is higher than a specified threshold, if it is higher, the
worker heartbeat thread (and by extension the hardware component) is deemed unresponsive,
i.e. it has crashed or is hanging. The worker heartbeat thread periodically resets the variable
incremented by the checker thread, this is also followed by a sleep.

With this mechanism, we have to take care that we do not get any false positives, i.e.,
threads that are detected as having crashed but are still alive. Since the scheduling of the
threads in the system running the simulator does not guarantee that the heartbeat worker
threads wake up immediately after their sleep, we enable the user to set the amount of sleep
each thread type takes as well as the threshold used by the heartbeat checker. This approach
requires us to balance these three values. Choosing the worker thread sleep time too close to
the heartbeat checker sleep time, will increase false-positives but will decrease the time it takes
before an error is detected. Lowering the threshold has the same result, the lower the threshold,
the faster errors are detected, but it also increases the chance of false-positives.

In order to further decrease the amount of false positives, we changed the scheduling type of
both types of heartbeat threads to use real-time scheduling policies supported by pthreads [22].
pthread_setschedparam supports two scheduling policies: FIFO and round robin. FIFO
scheduling (SCHED_FIFO) runs a thread to completion in first-in-first-out order. Round robin
scheduling (SCHED_RR) aims to give each thread an equal execution time, but involves a larger
number of context switches. FIFO scheduling does not work in our system because the heart-
beat threads are continuous tasks. Thus, we enabled round-robin scheduling on both types of
heartbeat threads. Additionally, we enable the user to set the priority of the heartbeat checker
thread and heartbeat worker threads as can be seen in Figure 10. In our case, choosing a higher
priority for the heartbeat worker threads lowers the chance of having false positives, since it
lowers the chance that the worker moves after the heartbeat control thread.

4.6 Error tokens

Channels in the coordination language do not only signify data streams, but also dependency
relations between components. When a thread fails and cannot be recovered, the components
that follow miss tokens as the computation failed and the input tokens are lost. We explain this
process and solution using the simple coordination application illustrated in Figure 12. This
example contains 4 components signified by a letter. Component Source produces a pair of
numbers and distributes them over its two outports. These outports lead to component A and
B respectively. The paths from components, A and B join towards component Sink. What is
important in the example is that the pair of numbers stay aligned, i.e. that the halves of the
pair created in Source are consumed by the same execution of Sink.
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Figure 11: Overview of the heartbeat error detection mechanism. The left, blue coloured area
in the image details the procedure for the worker threads while the right, green coloured area
details the main heartbeat thread which checks the other threads.

When component B crashes and the input data is not recoverable, B cannot fire. This
introduces a problem since component Sink depends on the crashed component B. Since B
cannot fire, we cannot reassign it to another hardware component. This causes the pair of
numbers to be misaligned, resulting in non-desired behaviour. One could argue that this kind
of behaviour works for some applications, in which alignment doesn’t matter but in the general
case, misalignment can cause service failure. Simply skipping one firing of component Sink
would work in this case but if there was another branch earlier in the application that leads to
after component Sink, then this later branch would be misaligned with the result of component
Sink.
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Figure 12: TeamPlay Coordination graph illustrating a branch. Component Source produces
a pair of numbers sent to components A and B respectively. A and B are then synchronised
with each other by Sink. If a thread executing either component A or B would crash without
fault-tolerance specified one needs a mechanism to prevent misalignment to occur between the
token going to the top-branch and the bottom-branch. For this we use error tokens.

Our solution to this problem is the introduction a fault-tolerance method, named error
tokens. These error tokens indicate that one of the previous dependence relations could not be
satisfied, i.e., that the following components cannot be executed without misalignment. When
a thread executing a component encounters an error token it will skip the computation and
produce sufficient error tokens on all outports of the component. This error token will propagate
through the entire graph, invalidating the tokens that result from the same source component
firing, i.e., invalidating one iteration of the application. In our example, this would mean that
all numbers produced in a single firing of Source would be invalidated with a crash.

4.7 Checkpoint/restart

Checkpoint/restart can be implemented in the coordination language by checkpointing the
FIFO buffers on the edges between the components, as the state of the entire application
resides in these buffers. This is done in practice by adding an extra buffer on each outport that
leads to a component. After the execution of the previous components, (i.e., the dependency
components), copies of the output tokens ares made. For primitive types, this is an easy task
but for user-defined types for which only a pointer is passed, the user needs to provide a copy
function. When the thread executing the component fails, a new structure of input tokens is
created from the checkpointed buffer and assigned to the task which takes place during the
rejuvenation phase. The entire rejuvenation process, in which checkpoint/restart plays a role,
is illustrated in Figure 14. We will visit this figure in full during the rejuvenation section.
In normal operation, we need to remove the checkpointed data upon finishing execution and
delivering the output, in order to prevent the buffers from overflowing.
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4.8 Primary-backup

In primary-backup, a standby component takes over the main component when a failure is
detected. Usually, this is done directly as the backup component synchronises with the active
component to ensure a quick switch. In our coordination language, we do not need this be-
haviour as, again, the state of the application is completely saved in the FIFO buffers. We
assign copies of the input tokens of the component to a number of threads equal to the number
of replicas. The first thread that finishes the computation actually delivers the output. If a
thread starts the computation after another thread has already delivered its answer, the thread
starting the second computation can skip the task. However, it is unlikely that this behaviour
is schedulable on real-time systems. Thus, we build an option into the simulator whether this
form of task completion is allowed. Disabling this setting gives us the worst case, all threads
compute even if the task is already delivered. When this setting is enabled, the task will only
be computed multiple times if the backup threads start the computations while the thread that
will finish the earliest has not yet finished. Again, the primary-backup rejuvenation process is
illustrated in Figure 14.

4.9 N-version programming & N-modular redundancy

Due to time constraints we were not able to implement N-version programming and N-modular
redundancy into into the simulator. We aim to explain a possible implementation of these
methods into the simulator. Here we explain how N-modular redundancy can be implemented
since N-version programming is a simple extension of N-modular redundancy in which you run
different versions instead of identical processes.

N-modular redundancy requires more control over the processes compared to primary-
backup since NMR utilises a voting process at the end. What we can use from the primary-
backup system, is that these processes do not have to execute at the same time. When all
processes are done or when one of the threads executing the processes has crashed or sustained
a timeout conform the coordination settings, the voting process is executed on a designated
voter node. This voter node requires a copy of all output tokens in order to execute the major-
ity voting process. Our application requires that the output of NMR is a single answer, since
the next component may not have NMR specified. This is why we cannot have a voter array
without having an extra voting step afterwards to choose one correct answer from the voter
replicas.

4.10 Component assignments & heterogeneous architectures

In order to simulate heterogeneous rejuvenation, we present an extension to the base system.
Before we can create the rejuvenation mechanism we need to know which thread can be recon-
figured to do which tasks. For this we need a mapping which defines which thread can simulate
what component.

In time-critical systems, TeamPlay components are assigned in both the time and space
dimensions to a hardware component. As the timing dimension is out of the scope of this work,
we introduce a spatial assignment of the components to threads. This way, the system provides
the minimum to test rejuvenation mechanisms for our fault-tolerance methods.
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In addition to this, we introduce the concept of a thread class. This class mirrors a specific
hardware architecture (as threads mirror hardware components) in heterogeneous systems.
When a component needs to be reconfigured because it has crashed, it needs to be assigned
to a component of the same class to ensure the software (e.g., component code) is compatible.
This is a simplified model as in reality it is sometimes possible to run components on hardware
in a different class, e.g., on a faster CPU (provided that it is compatible, as GPU code cannot
run directly on a CPU). The mapping of components to threads are passed to the simulation
run-time. It is not embedded in the coordination language as the number and types of threads
are hardware architecture-specific.

4.11 Memory sharing

Usually, using threads on a system means that data is passed using shared memory. In cyber-
physical systems (of systems) in the real world, this is generally infeasible. In our runtime, this
raises the question about where the input and output data of the components should be stored.
For this, we aim to solve the problem in a conceptual manner. First of all, we want to keep
the strain on the internal network that connects the hardware components low. Thus, we aim
to avoid sending the full content of the tokens back to the management thread for storage as it
can be a CPU and network bottleneck. This is especially true with larger data-structures, e.g.,
images and videos, which are common in CPS(oS) [30]. This requires us to save the data on
the hardware components that execute the component code and let others that need the data
request it over the network.

However, this proposed solution causes problems with fault-tolerance methods like check-
point/restart, as they require a copy of the data. This copy cannot reside on the same node,
as it is not guaranteed that the data is in volatile storage and it is not guaranteed that the
system can successfully restart, for example in the case of a physical failure. Our solution to
this problem is the assignment of a memory-companion to each node. This memory-companion
holds a copy of the checkpoint from the checkpoint/restart fault-tolerance method.

4.12 Rejuvenation

Strategies that deal with crash faults, checkpoint/restart and primary-backup require this mech-
anism as it is not guaranteed that crashed nodes operate normally when restarted.

Our final simulation architecture can be found in Figure 13. A hardware component from
the real world is mimicked by two threads, a computation thread and a heartbeat thread. These
hardware components form a group of heterogeneous workers, managed by the management
component. The management component consists of two threads. The control thread checks
and adds components to the task queue of the worker threads. The main heartbeat thread
monitors the heartbeat threads associated with the workers and launch the rejuvenation process.

The rejuvenation process is illustrated in Figure 14. The process can be split into two parts:
the invalidation and recovery of the task queue of the crashed thread and the reassignment of
the threads’ assigned components. The path of the rejuvenation process depends on which fault-
tolerance mechanisms are specified. First, we explain the middle path which is taken when no
fault-tolerance method is specified on the component. On this path, error tokens are produced
on the outports of the components in the task queue. The component is marked as finished
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Figure 13: Illustration of the simulation architecture. The thread configuration and simulation
configuration are input for the simulation runtime for the component to thread assignment
and simulation settings respectively. The cyber-physical system has four thread types in two
different component types. The management component consists of a control thread and a
heartbeat control thread. The control thread which checks whether components are ready. The
heartbeat control checks whether the heartbeat threads are still updating. The n heterogeneous
worker threads consist of computation threads and heartbeat threads. The computation threads
or worker threads execute the component code and interact with the control thread. The
heartbeat thread updates a variable to show to the heartbeat control thread that it is still
alive.

as the computation could not be saved by a fault-tolerance method. Then we arrive at the
rejuvenation process. This rejuvenation process works by finding a non-crashed thread in the
same architecture class with as extra condition that it is the thread with the fewest assigned
components, to prevent from one thread taking all crashed tasks, consequently becoming a
bottleneck for the application. We do not produce error tokens if a source component is present
in the task queue of the crashed thread as it can simply fire again since it does not have any
input tokens that need to be invalidated.

In checkpoint/restart the computation can be saved by re-running the task with the check-
pointed input tokens. Before this can occur, we need to reassign components to a different
thread, before the checkpointed data can be rerouted there. This rejuvenation step is the same
as without fault-tolerance methods except that with checkpoint/restart, tasks exist that could
potentially be saved. Note that a task cannot be saved with checkpoint/restart if it crashed
twice.

In primary-backup, a component is assigned to multiple threads. The number of threads
depends on the number of replicas defined in the coordination language. During the invalidation
of the task queue, we need to check whether a task has been delivered or not. If it has been
delivered then the computation does not need to be saved or invalidated. However, if a task
has not been delivered we need to check if the crashed thread is the last replica of this task.
If it is the last, the computation cannot be saved and we execute the same steps as without
a fault-tolerance mechanism. If there are still replicas assigned to this task we do not have to
do anything since they can deliver the task as they have copies of the input data, assuming
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Figure 14: Illustration of a crashed thread rejuvenation mechanism. The process can be split
into two parts. The first part is the invalidation of the task queue of the crashed thread (the
flowchart contained in the blue box up top). The second part is the reassignment of the threads
assigned components which is contained in the green box below.

that they do not also crash. In primary-backup, we add an extra requirement for finding a
new thread to which the task can be reconfigured to. This requirement is that there cannot
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be multiple assignments of the same component to the same task, as it defeats the purpose of
primary-backup. If there are no threads left that follow these requirements the replica is not
reassigned.

In our simulation, the task queue is in shared memory as the management component needs
to assign new components with input data to the task queue of the thread. In a real system,
you would send the task, (i.e., the component id) and where to find the input data. However,
we also need to save this information on the management thread. During rejuvenation, we
require a copy of this task queue in order to reassign the components of the crashed thread.
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5 YASMIN: Yet Another Scheduling MIddleware for ex-

ploratioN

Commercial-Off-The-Shelf heterogeneous platforms provide immense computational power, but
are difficult to program and to correctly use when real-time requirements come into play: A
sound configuration of the operating system scheduler is needed, and a suitable mapping of
tasks to computing units must be determined. Flawed designs may lead a sub-optimal system
configurations and thus to wasted resources, or even to deadline misses and failures.

We propose YASMIN, a middleware to schedule end-user applications with real-time re-
quirements in user space and on behalf of the operating system. YASMIN provides an easy-
to-use programming interface and portability. It treats heterogeneity on COTS heterogeneous
embedded platforms as a first-class citizen: It supports multiple functionally equivalent task
implementations (versions) with distinct extra-functional behaviour.

The work described in this section is a synergy between the ADMORPH project and the
Horizon-2020 project TeamPlay Time, Energy and Security Analysis for Multi/Many-core Het-
erogeneous Platforms (2018–2021, grant agreement no. 779882).

This work has led to a publication in MIDDLEWARE 2021 [31].

5.1 Application model

We consider non-safety-critical real-time systems composed of a set of tasks where each task
represents an indivisible (or atomic) feature of the end-user application. To embrace hetero-
geneity we adopt recent task models representing each task with a set of versions (v ∈ Vt)
[30], or variants [18]. All versions of a task expose the same interface (i.e. inputs, outputs),
but each version has its own worst-case execution time (WCET), energy consumption, etc. In
other words, all versions are functionally equivalent, but may exhibit distinct extra-functional
behaviour. Versions can be created using different compilation flags, targeting different archi-
tectures or coming from different implementations.

The immediate motivation for multi-version tasks lies in the usually different ISAs between
computing cores forming a heterogeneous platform. Given the complex architectures of the
platforms we target, it is commonly not a-priori decidable which tasks should exclusively run
on the CPU and which should exclusively run on one (or more) of the various accelerators.
Consider the example of an application with at least two tasks A and B, where each task has
two versions: one running only on a CPU core and one using a GPU. These two tasks are
independent and exhibit the same timing properties, i.e. period. Hence, they could potentially
run in parallel. On the targeted platform, however, only one GPU is available. Therefore, both
versions of A and B targeting the GPU cannot execute in parallel. However, the presence of
different versions allows us to run the GPU version of A at the same time as the CPU version
of B, or vice versa.

We empirically demonstrated in [29] that deciding which version to execute at each instance
of each task is not straightforward. This question is rather part of the overarching addressed
scheduling problem, and it is common that depending on global circumstances and objectives,
the same task may sometimes preferably be executed on the CPU and in other cases on the
GPU, see [30] for details.

The versatility of multi-version tasks goes even beyond the above: They can likewise provide
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task implementations particularly optimised for execution on a specific hardware unit, even in
the presence of generic ISA compatibility. Furthermore, application designers could easily play
with implementation variants that expose different non-functional behaviour (e.g. energy, time,
security) and let YASMIN select the one best suited under concrete context and objectives.

YASMIN supports sporadic tasks as well as periodic tasks. The minimal time interval T
(or period) separating two consecutive activations of a task is provided to our scheduler. We
also allow aperiodic tasks where activations are the responsibility of the end-user, as no regular
pattern can be given to the scheduler. Real-time tasks must complete their execution before
a deadline D relative to the period. We support the three main deadline schemes: implicit
(D = T ), constrained (D ≤ T ) and arbitrary to the period.

YASMIN further supports tasks divided into subtasks with precedence constraints, thus
forming a task graphs. We only deal with Directed Acyclic Graphs (DAG). Other graph-based
task models, such as Synchronous DataFlow (SDF) [20], must a-priori be transformed (or
expanded for SDF) to comply with a DAG task model. Each edge in a graph represents a
causal dependence between two tasks. This causal constraint may be a data dependency, or it
can be used to prevent side-effects between them. The source node of an edge must complete its
execution before activating the sink. As in most graph-based task models, YASMIN supports
activation patterns and relative deadlines described at the graph level: The whole graph is
considered sporadic or periodic. Only the root node (which has no predecessors) is activated at
an activation event triggering all subsequent nodes while the leaf node (which has no successors)
must complete before the deadline. When dealing with graph-based task models, YASMIN
considers versions attached to nodes of the graph, i.e. subtasks.

5.2 YASMIN design & implementation

We designed YASMIN as a library to be compiled individually and linked to the end-user
program. YASMIN is highly modular and allows (1) the use of various scheduling policies and
(2) easy switching between them at compile time using macros. The internal structure of our
library adaptively morphs to meet the requirements of each scheduling strategy through macro
definitions given in a configuration file.

We implemented YASMIN in structured C-code following real-time coding guidelines to
enable the use of WCET analysis tools, such as AbsInt’s aiT [12] or Heptane [17]. We system-
atically refrain from using dynamic memory allocation, and loops are statically bounded. To
accomplish this, we make use of C-header configurations to define constants used throughout
the library, e.g. the number of threads or the number of tasks.

YASMIN is compatible with any POSIX compliant OS. However, we also rely on the non-
POSIX pthread set affinity np function that binds a thread to a specific core. Similar require-
ments can be found in previous works [26, 33].

5.3 YASMIN API

The library is configured at compile time using a configuration file. In this file, pre-processor
definitions set, among others, the type of scheduling, the type of mapping and the priority
assignment. Each different scheduling strategy requires different mandatory information to
perform adequately. The code of the different functions of the API is morphed to adapt its
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behaviour following the configuration, e.g. information to declare a task differs between off-line
and on-line strategies. The configuration is applied to the whole compiled binary, only one
scheduling policy is allowed at a time. In order to switch to another policy the application
must be recompiled with new parameters.

Table 1: Full API of YASMIN

struct TData { char *name,
u64 period,
u64 deadline,
u16 virt core id,
u64 release offset}

Structure to describe a task.
Some fields are optional depending on
the configured scheduling policy.

void init(void) Initialise the coordination runtime library.

void cleanup(void) Wait for all worker threads to finish and close.

bool start(void) Start to execute the tasks of the application.

void stop(void)
Stop pushing new tasks into the ready queue.
All tasks already pushed will be executed.

TID task decl( TData *d) Declare a task to the scheduler.

void task activate( TID t) Activate a non-recurring task for immediate schedule.

VID version decl( TID t,
FuncPtr f,
void *f static args,
VSelect props)

Add a version to the task
with user specific properties.

HID hwaccel decl(
char *name)

Declare a hardware accelerator

void hwaccel use(
TID t,
VID v,
HID a)

Declare a hardware accelerator used by a task version.

channel decl(
cid, datatype,
size)

Macro to declare a channel of type type identified
by cid containing size items of type datatype.

channel connect(
TID src, TID dst,
cid)

Macro to connect a source and a destination task
using the specified channel identified by cid.

channel push(
cid,
datatype d)

Macro to push a value of datatype in the FIFO
identified by cid. To be used in user function body.

channel pop(
cid,
datatype *d)

Macro to pop a value of datatype in the FIFO
identified by cid. To be used in user function body.

Table 1 presents the API of YASMIN. All functions are prefixed with yas , which we left
out in the paper for conciseness. This API is common to all scheduling strategies, allowing
for an easy switch at compile time with modifications of the user code if all information are
provided.

The end-user program must first call the init function that initialises different structures of
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our library. Then, the user must declare the various tasks using task decl and their associated
versions with version decl. See Section 5.4 for details.

YASMIN supports graph-based tasks. We provide a mechanism to declare and manage
FIFO channels required between causally dependent tasks within a graph. The pre-processor
macro channel decl defines the FIFO channel buffer. Connecting two tasks to use this channel
is done with channel connect. The channel can be accessed from within user tasks with the
channel push and channel pop functions. With graph-based tasks only the root nodes need to
have a period attached. Subsequent nodes are automatically activated by the scheduler, once
all required incoming data are present in their input channels.

Hardware accelerators can be declared with hwaccel decl and linked to a task version with
hwaccel use.

At this stage no user code has yet been executed, and no scheduling has been performed.
It is after the call to start that the scheduler starts to run the application. Calling the stop
function stops the scheduler. Then, either the main program performs the finalisation of the
application with cleanup, or the schedule can be resumed with a new call to start. It is only
possible to alter the task set while the schedule is not running, hence enabling multi-mode
scheduling[15]. Functions to alter the task set are for conciseness removed from the following
API tables.
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(a) Global on-line scheduling
strategy. The ready task queue
is shared among worker thread.

CPU core 0

Worker 
 thread

t

ttt Priority ordered 
task worker queue

CPU core

Scheduler
 thread

ttt

CPU core N

Worker
 thread

t

ttt Periodic task list

t
Aperiodic 
task

...

(b) Partitioned on-line schedul-
ing strategy. A scheduler thread
pinned to another core feeds each
worker thread ready task queue.
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(c) On-line dispatcher with an off-
line scheduling strategy. Each
worker thread is pinned to a core,
and a scheduling loop iterates on
its ready task queue.

Figure 15: Overall architecture for each scheduling class.

5.4 Heterogeneity & multi-version components

With embedded platforms hardware accelerators are usually a scarce resource, i.e. there is
typically only one GPU. If multiple tasks need access to the accelerator then they might need
to wait for the resource to become available. To avoid this form of congestion we introduce
multi-version tasks. A task may have one implementation targeting the GPU, one using some
other specific hardware accelerator and yet another one targeting the CPU. Our scheduler
detects that the computing unit targeted by the task is busy, and that it is preferable to use
another version of the task running on a readily available compute unit.
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Should our scheduler not be able to determine a matching version where all hardware
resources are available and if the current task has a higher priority than the one currently
using the targeted compute resource, we apply a Priority Inheritance Protocol (PIP) [27] and
reschedule the task.

Going further with versions, we provide multiple methods to select the version to use for
the current job. At the time of writing it is possible to select the version depending on the
current energy capacity of the platform, depending on an energy/time trade-off, depending on
the current execution mode2, depending on a bit mask permission or with a call to a user-
defined function. Note that due to our technique to configure YASMIN only one method is
actually used at runtime, but we can easily switch between the various options at compile time.

Each of these methods to select the version of a task requires different information from
the user. These parameters are set when declaring a version using version decl through the
VSelect props argument. The type of this argument is a structure morphed to cope with the
selected method. For example, if the method to select the version is based on the energy
then the structure includes two fields to provide the energy budget of the task, and a user
function to request the platform-dependent battery status. The different structure types are
activated/deactivated at compile time using a macro defined in the configuration file.

Limitations: Usually task (versions) targeting a specific hardware accelerator nonetheless
start on a CPU core before they move the main workload to the accelerator and eventually
complete their run again on a CPU core. For the time being, we consider the resource busy
from the beginning of the initial CPU part to the end of the final CPU part. In the near future
we plan to add an asynchronous mechanism, where CPU cores can be used by tasks while the
accelerator-bound task actually runs on the accelerator.

5.5 Partitioned & global on-line scheduling

We rely on the concept of shielded processor, as described in [33, 8]. The idea is to reserve cores
to only execute real-time tasks in order to minimise interference with system tasks. On each
of the reserved cores we spawn one thread responsible for executing the real-time (RT) tasks.
These so-called worker threads serve as containers for the execution of the user RT tasks, which
see them as virtual CPUs.

An on-line scheduler must activate tasks following their arrival time (period), decide which
version of the task to execute and dispatch tasks to a worker thread (or virtual CPU). Two
modes are available: (1) Global when all tasks can be executed on any virtual CPU and (2)
Partitioned when all tasks have a predefined target virtual CPU. During compilation code is
morphed to using the selected mode by means of configuration macros. Hence, only one of
the two options effectively is compiled into the resulting binary and thus available at runtime.
Switching between global and partitioned scheduling modes requires the modification of a single
macro definition and a recompilation.

Figures 15a and 15b illustrate our overall architecture for the global and for the partitioned
scheduling strategy, respectively. In either case each worker thread is pinned to a specific
core. With global scheduling all worker threads share a common ready queue, whereas with
partitioned scheduling each worker thread has its own ready queue.

2For example, multi-security mode where different implementations of an encryption algorithm can be
switched at runtime by changing the mode of execution.
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In either case, global or partitioned, the ready queue is filled by a separate scheduler thread
that is likewise pinned to its private core. Unlike in [33], who also use an external scheduler
thread, our scheduler thread does not constantly check for new tasks to activate. Instead, we
only periodically check for new tasks to schedule, i.e. between two activations the scheduler
thread waits in one of two ways, depending on the user-provided configuration:

• sleep (default): calls some kernel code, which is hardly timing-analysable,

• spinlock : enable a more precise overhead analysis at the cost of potential energy waste.

The period of the scheduler thread is determined using the greatest common divisor (GCD) of
all the declared task periods.

Using a separate scheduler thread, that executes on its private core, decreases parallelism,
as one core less is available to execute user RT tasks, but it increases predictability by min-
imising interference with user RT tasks. For example, in the Linux scheduler task preemption
is realised by a periodic interrupt handler that stops the currently executing thread on each
core. This interrupt handler of the kernel checks if there is a higher priority task to execute.
This interruption mechanism must be accounted for in the worst-case response time (WCRT) of
user real-time tasks. However, in practice, it is very difficult to estimate the time spent in this
interrupt handler, introducing substantial pessimism in the WCRT of tasks. Using a separate
scheduler thread to check for higher priority tasks avoids such pessimism. In Section 5.7 we
elaborate further on how we deal with preemption.

In addition, it is possible to configure the Linux kernel to prevent the aforementioned peri-
odic user thread interrupts: a value of −1 needs to be written in the virtual file /proc/sys/k-
ernel/sched rt runtime us. We refer, the interested reader on how to increase user control over
time in Linux to [32].

YASMIN supports static and dynamic priority assignments following task periods (rate
monotonic), deadlines (deadline monotonic, earliest deadline first) or any statically user-defined
priorities. Once RT tasks have been added to their assigned ready queue and dynamic priority
assignment is enabled, the scheduler computes the priorities of all tasks present in each ready
queue and reorders the ready queue by decreasing priority. Hence, the task with the highest
priority is always at the head of the ready queue.

YASMIN supports recurring and non-recurring tasks. Both types of tasks must be declared
before use, but only recurring tasks require a period to be given in the TData structure. Then
a user-function may activate a non-recurring task at any time. Alternatively, YASMIN will do
so in case of a graph dependency.

Limitations:
We do not yet handle arbitrary tasks in a conventional way using a periodic server. This is

left for future work. However, the current state-of-the-art already allows us to further support
graph-based task model.

We do not support job migration. A job (task instance) spawned on a virtual CPU cannot
be migrated to another one. However, we do support task migration: job i of some task may
run on one virtual CPU while job i + 1 runs on a different virtual CPU.
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5.6 Off-line scheduling

Unlike any similar approach we have found in literature, YASMIN natively supports off-line
computed schedules. An off-line schedule is computed before executing the application using
the timing properties of the task set. In our run-time implementation an on-line dispatcher
dispatches tasks at the predefined time following a given time table and a given mapping.

Figure 15c presents the overall architecture for the off-line scheduling strategy. Each worker
thread is pinned to a specific core and has access to a predefined sequence of RT tasks ordered
by increasing release time. Upon creation each worker thread starts executing a control loop
running the RT task in order. To respect the release time of each task (computed off-line),
special delay slots are added in between RT tasks that make the worker threads wait for a
pre-computed duration. In analogy to our implementation of the on-line scheduling strategies,
delay slots can be configured to sleep or to spinlock.

If the static scheduler is aware of multi-version tasks, the version can be pre-selected off-
line. This has the advantage of reducing the size of the resulting binary size as it only needs
to embed the actually required task versions.

Limitations: We do not support preemption in off-line generated schedules. This limita-
tion could easily be overcome by splitting the preempted task into two separate subtasks. We
consider heterogeneous resource management to be handled by the off-line scheduling step. A
task can, hence, target an accelerator without requesting access to the on-line dispatcher.

5.7 Further implementation aspects

This section describes other design issues we encountered and how we addressed them in YAS-
MIN.

Accessing time: We access time using the POSIX primitive clock gettime where the given
clock can be set using the configuration file. As default, CLOCK MONOTONIC is employed.
It gives a monotonically increasing clock with nanoseconds precision. The POSIX standard
does not specify what the time 0 means. In Linux time 0 corresponds to system boot time.
Our library stores the time at which the schedule is started using API call start. Afterwards,
all timing information is computed using this initial starting time.

Pre-emption: YASMIN supports pre-emption with on-line scheduling policies only. Upon
sorting, similar to [26], the scheduler thread sends a signal (PREEMPTION SIGNAL), using
the pthread kill POSIX primitive, to each worker thread executing tasks with a lower priority
than that of the head of the ready queue. This signal is caught by the thread which looks in the
ready task queue for a higher priority task at the head of the ready queue. If a higher priority
task is found, the execution context of the pre-emptee is saved (task with lower priority), and
a context switch to the pre-emptor is operated (task with a higher priority). Upon pre-emptor
completion the process of finding a higher priority task is repeated until the pre-emptee becomes
the highest priority task and the context is switched back to this task.

Context switching: Similar to [26] we use an architecture-dependent swapcontext func-
tion (in assembly code), which is called when switching execution context upon pre-emption.
We draw inspiration from the GLibC swapcontext implementation, but leave out extra syscalls.
At the time of writing, our swapcontext implementation is available for ARM 32/64 bits as
well as X86-64 architectures.
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Locking: Internally we implement synchronisation primitives, i.e. mutex locks and bar-
riers, in two different manners: A first implementation uses the POSIX API implemented in
the kernel and GLibC. A second implementation relies on lock-free algorithms from [24]. It
is possible to select one of the two options at compile time using the configuration file. We
believe that lock-free algorithms form a superior choice for static WCET analysis, but spinlocks
exhibit higher energy consumption. On the other hand, it is hard to analyse kernel and GLibC
calls, but this solution offers better energy performance at the cost of predictability due to the
kernel replacing the worker thread by an internal idle task. Selecting one or the other option
depends on user preferences regarding predictability and energy conservation.

Protecting against page fault: Similar to [26] we lock our library code in memory using
the POSIX primitive mlockall. This prevents swapping out the code of our library.

Interrupts: We set the kernel to use threadirq, and we shield the processor using isolcpu.
Hardware interrupt handlers are composed of two parts, a top and a bottom part. We cannot
do much about the top part that usually is pinned to a specific core. For the bottom part, if
they are not pinned to a specific core, then the same configuration as for software interrupts
applies. If they are specific to a core, and this core runs a worker thread, or the scheduler
thread, then their schedule is left to the underlying OS. Care must therefore be taken to ensure
that the priority of our worker threads, and/or scheduler threads allows these bottom part
interrupt handlers to execute.

Standard compliance: We engineered our library to facilitate its analysis by standard
WCET tools as much as possible. Nonetheless, our library is a middleware that acts in between
the kernel and end-user application, forcing us to the kernel API with syscalls. But most of the
syscalls are performed outside of the start and stop, hence not interfering with the real-time
end-user tasks. In addition, we provide the options to either use lock-free implementations of
synchronisation primitives or the POSIX versions. Thus, our library can be used in a deployed
environment as much as prototyping a real-time system.

Moreover, we verified our code using PC Lint Plus [35] against MISRA-C 2012 rules. At
the time of writing, 80% of the code base as been checked due to the various configuration
possibility.
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6 ADMORPH eXchange format

Multiple tools in the ADMORPH project provide or consume the same data. An example is the
dataflow graph of the application, which is generated by the TeamPlay compiler and required
by the scheduling analysis. Information like task execution times or the deadline for the overall
graph execution is provided by the application specification.

To simplify the exchange of such data, a common format was developed, enabling the
interconnection between different tools in the ADMORPH project. This format is named
ADMORPH eXchange Format and a minimal set of node types and attributes was specified to
exchange data between the TeamPlay compiler and the scheduling analysis. The format can
easily be extended, for example with additional attributes, to connect more tools that provide
additional data.

This work also concerns Task T2.5, Interfacing the coordination language compiler infras-
tructure of Work Package WP2. Nonetheless, we decided to already report on our on-going
work in this Deliverable D1.2 and will provide an update in the upcoming Deliverable D2.2.

6.1 ADMORPH eXchange format design

The ADMORPH eXchange format (AXF) is based on the DOT format3. Graphs in the AD-
MORPH Scheduling Runtime Environment (RTE) contain two different kinds of nodes repre-
senting functional behaviour (actor nodes) and data (data nodes). These two kinds of nodes
can be distinguished by their attributes so that no special keyword had to be introduced. Ad-
ditional attributes, for e.g. processor assignment or execution times, can be introduced, as
long as their names do not collide with the attributes described in this document or with the
standard DOT attributes. DOT also provides keywords to assign attributes to all nodes, edges
or the whole graph via attribute statements. To structure a graph, it can be subdivided into
multiple subgraph blocks.

6.1.1 DOT Grammar

A slightly simplified version of the full DOT language is sufficient to specify the structure
of graphs compatible to the ADMORPH Scheduling RTE. Features that are not part of the
simplified version are ignored by the RTE.

Terminals are shown in bold font and non-terminals in italics. Literal characters are given
in single quotes. Square brackets [ and ] enclose optional items and vertical bars | separate
alternatives. Keywords (digraph and subgraph) are case-independent.

graph : digraph [ID ] ’{’ stmt list ’}’
stmt list : [stmt [’;’ stmt list ]]

stmt : node stmt | edge stmt | subgraph
attr list : ’[’ a list ’]’

a list : ID ’=’ ID [ ’,’ a list ]
node stmt : ID [attr list ]
edge stmt : ID ’->’ ID [attr list ]
subgraph : subgraph ID ’{’ stmt list ’}’

3http://graphviz.org/doc/info/attrs.html
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An ID is one of the following:

• Any string of alphabetic ([a-zA-Z]) characters, underscores (’ ’) or digits ([0-9]), not
beginning with a digit

• A numeral [-]?[0-9]+(.[0-9]+)?

• Any double-quoted string (”...”) possibly containing escaped quotes (\”)

IDs are strings and so abc 2 and ”abc 2” are semantically equal. It is possible to use keywords
as IDs but in this case quotes are mandatory.

6.1.2 Data Nodes

Data nodes contain information about the data which is transferred from one actor node to
another. In our model, data can be either a single element or fixed-size list of homogeneous
elements. Further, data nodes can have either zero or one preceding nodes and arbitrary many
succeeding nodes. There are five custom attributes regarding data nodes. For which nodes an
attribute is mandatory is noted in parentheses.

ptype: This attribute has four possible values, namely input, output, constant and
inner, which correspond to the four types of data nodes. Input nodes and
constant nodes are entry points in the graph and do not have predecessors.
The difference is that the data of constant nodes stays the same for all graph
executions. Output nodes represent data created by graph executions which
can either be used externally or as input data in subsequent executions. Nodes
of this type always have a predecessor but may also have successors. Inner
nodes are those that do not fall into the other categories. These nodes always
have a predecessor and one or more successors.

size: In order to be able to determine the memory requirements of a data node,
there is another attribute to specify the size of a single element. The value of
the size attribute represents the numbers of bytes required to store one data
element.

pdata:
(constant

data nodes)

The pdata attribute is exclusive for constant data nodes. Its purpose is to
specify concrete data values. The correct format is a sequence of bytes in
hexadecimal notation with two digits for each byte whose length must corre-
spond to value of size.

pname:
(input and

output nodes)

Input and output nodes have a name attribute which has the purpose to
give programmers a more convenient access to graph nodes. Names can be
arbitrary strings. The only restriction is that names must be unique within
the class of data nodes, i.e. two input nodes must have distinct names but an
input node may have the same name as an output node.

Data nodes do not store information about the type of data they contain. Instead, type
information is restored by the RTE based on the parameters and return types of actor node
functions at runtime. Some example data nodes are provided in Figure 16.
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1 p_fork_in [size=1, ptype="input", pname="input"];

2 p_fork_out_1 [size=4, ptype="inner"];

3 p_fork_out_2 [size=4, ptype="inner"];

4 p_left_out [size=4, ptype="inner"];

5 p_right_out [size=4, ptype="inner"];

6 p_middle_out [size=1, ptype="output", pname="output_1"];

7 p_join_out [size=1, ptype="output", pname="output_2"];

Figure 16: Some data nodes, with one input node, four inner nodes, and two output nodes.

6.1.3 Actor Nodes

The purpose of actor nodes is to describe the application’s functional behaviour. Actor nodes
can have an arbitrary number of preceding data nodes (its inputs) but always have one suc-
ceeding data node (its output). With regard to actor nodes, the DOT language is expanded by
four custom attributes.

atype: Specifies the operation the actor node executes on the input data. Beside
functions like map or reduce, the type that is typically used within the AXF
is generic. Actor nodes of this type simply execute the function specified by
the following attribute.

afunc: Most types of actor nodes apply a function on their input data. This attribute
is used to specify the function name.

In Figure 17, some example actor nodes are listed.

1 a_fork [atype="generic", afunc="fork_function", shape=box];

2 a_left [atype="generic", afunc="left_function", shape=box];

3 a_middle [atype="generic", afunc="middle_function", shape=box];

4 a_right [atype="generic", afunc="right_function", shape=box];

5 a_join [atype="generic", afunc="join_function", shape=box];

Figure 17: Five actor nodes, each calling the function specified in the attribute afunc during
its execution.

6.1.4 Graph Edges

To specify compatible graphs, edges must always be directed. Since the order of parameters
matters for most functions, two custom attributes had to be added. The paramindex attribute
allows to specify the order of inputs for actor nodes with more than one predecessor. For actor
nodes with only one predecessor the attribute is optional (but of course has to be 0 if set).
To select one of multiple outputs of an actor node, the attribute resultindex has to be used.
Example edges between the nodes of the previous examples are listed in Fig. 18.
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1 p_fork_in -> a_fork;

2 a_fork -> p_fork_out_1 [resultindex =0];

3 a_fork -> p_fork_out_2 [resultindex =1];

4 p_fork_out_1 -> a_left;

5 p_fork_out_2 -> a_middle;

6 p_fork_out_2 -> a_right;

7 a_left -> p_left_out;

8 a_right -> p_right_out;

9 p_left_out -> a_join [paramindex =0];

10 p_right_out -> a_join [paramindex =1];

11 a_middle -> p_middle_out;

12 a_join -> p_join_out;

Figure 18: Data nodes and actor nodes are connected with directed graphs.

6.1.5 Example Graph

Combining the three previously listed parts builds a simple but complete graph, as depicted in
the example in Figure 19.

p fork in a fork

p fork out 1

p fork out 2

a left

a middle

a right

p left out

p middle out

p right out

a join p join out

Figure 19: An example graph consisting of data nodes and actor nodes.

6.2 Compiling TeamPlay to ADMORPH eXchange format

While similar, the TeamPlay coordination language and the ADMORPH eXchange Format
have a few distinct differences. Table 2 shows an overview of some of the major differences in
encoding DAG applications.

Even for aspects where the formats are conceptually in agreement (e.g. both deal with
task code as linkable C/C++ functions), there are differences. This lack of tight coupling
is intentional, as it allows further evolution of the coordination language independent to the
eXchange format. Furthermore, the goal of the exchange format is not to support every feature
implemented in the coordination language. Instead, it exists to provide a way to exchange DAG
applications between different tools. As such, only the intersection of features between the
coordination language and downstream users of the language is relevant. Consequently, many
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Feature TeamPlay-encoding AXF-encoding

Tasks Nodes (“components”) Actor nodes
Graph Encoding

Dependencies Edges (“channels”) Data nodes

Start task(s) Have no input channels Are connected to initial
data node

Task Identification
End task(s) Have no output chan-

nels
Are connected to final
data node

Name In coordination lan-
guage

Unnamed

Data Types
Size In configuration file As attribute on data

node

Callable Each task a C function Each task a C function

Input provided as Each input as a pointer Input and output coa-
lesced into a single ar-
gumentCalling Convention

Output retrieved as Each output as a (mu-
table) input pointer

Table 2: Various differences between the TeamPlay coordination language and the ADMORPH
eXchange Format (AXF)

features found in the coordination language (e.g. modes or versions) do not have a representation
in the exchange format.

Conversion between the formats is handled by the TeamPlay compiler. Edges are converted
to data nodes, synthetic start and end data nodes are added, and special wrapper functions
are generated to meet the calling convention of the exchange format. A diagram showing how
compilation to the exchange format is shown in Figure 20. All TeamPlay input files are parsed
as normally, and made available to the a dedicated AXF Generator component. While the
TeamPlay compiler can perform analysis on the task graph encoded in the coordination file,
any result must be communicated to a downstream user via the AXF file. At this time, features
such as processor assignment of tasks (partitioning) or static schedules are not supported by
the file format, and as such useful analyses are limited to e.g. schedulability analysis.

6.3 Runtime environment

The ADMORPH Scheduling RTE uses directed acyclic graphs (DAGs) as program representa-
tions. These graphs are imported from graph descriptions following the ADMORPH eXchange
Format (AXF). To execute such programs, a schedule of the executions of all the tasks, i.e. the
individual actor nodes in the graph, has to be calculated. Internally, the RTE consists of three
parts, which are responsible for graph import, scheduling and graph execution. The different
parts communicate only through exchanging graphs and have no additional dependencies be-
tween each other. This allows to replace parts of the RTE individually, for example to explore
different scheduling techniques. Fig. 21 shows an overview of the structure of the RTE, where
the lines connecting the parts represent interfaces for graph exchange.
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Coordination file

Coordination Compiler

Syntactic & 
Semantic
Analyses

Scheduling
policy generator

Code
Generator

Target 
Compiler & Linker

Binary file + RTE

Config file
Non-Functional 
Properties File

AXF
Generator

C++ Task Wrapper
(.axf.cpp)

Component
object files
Component
object files

Dot File (.axf.dot)

ADMORPH Exchange Format

RTE

...

Figure 20: Overview of the ADMORPH eXchange Format compilation process

6.3.1 Graph Import

The RTE imports graphs from files in the ADMORPH eXchange Format, as described above.
A graph description explicitly contains information about all nodes, data dependencies and
memory requirements. Additional information can be provided through the AXF file, which are
partially supported already, like actor worst-case execution time (WCET), and the maximum
allowed execution time of the overall graph. Further attributes will be supported in the future,
for example fixed mappings of actors to processors.

Graph Import Layer

Scheduling Layer

Graph Execution and
Execution Time Measurement Layer

Figure 21: Structure of the ADMORPH Scheduling RTE
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6.3.2 Scheduling

Based on the task dependencies specified in the graph, and the WCET of the individual tasks,
schedules are calculated to find a feasible mapping of actors to processors. The current RTE
implementation uses a variant of the HEFT scheduling heuristic (heterogeneous earliest finish
time), but alternative scheduling algorithms could be used as well.

6.3.3 Graph Execution

This part of the RTE receives graphs from the scheduling part of the RTE and executes them
according to the respective schedule. During the application development phase, the RTE can
measure the execution times of the tasks to provide a maximum observed execution time for
the tasks on the target hardware. These measured execution times can be used instead of an
externally provided WCET, and can be inserted in the AXF as additional actor node attributes.
The actor node execution time measurement also supports heterogeneous architectures, where
the task execution times are determined on all of the different processor cores available.
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7 Analysing the impact of various redundancy levels

against single event upsets

The TeamPlay coordination language has evolved and provides new fault-tolerance capabilities.
Certain kinds of faults lend themselves well for evaluation and validation within a wall-time
simulator, using fault injection as discussed in Section 4. However, the effects of transient faults
and the timing impact of their mitigation can only be analyzed by looking at long-running
application behaviour. A wall-time simulator would take too much time to gather meaningful
data over the behaviour of an application in the presence of transient faults. Instead, we analyse
long-running application behaviour using simulated time. To that end, we have enlisted the help
of the existing model checking tool UPPAAL. For seamless integration with the remaining tool
flow, a UPPAAL compilation target has been added to the TeamPlay coordination language
compiler.

This work has led to a publication in MCSoC 2021[25]

7.1 Need for a simulated-time simulator

Our simulator from Section 4 is capable of showing and validating the exact behaviour of
the application when a permanent fault occurs. Faults are triggered by fault injection, which
prompt any fault-tolerance capabilities to respond. While the simulator can show the correct
behaviour of these capabilities, the simulator cannot tell when a fault will happen. The rate
of permanent faults is a property of a combination of the environment and the hardware.
However, the number of permanent faults that can be tolerated is limited as at some point
no functioning hardware remains. As such, the simulator can be used to ascertain how many
permanent faults can be tolerated. Then, this number can be used by the designer of the
application to choose appropriate hardware, matching the fault behaviour of the hardware to
the needs and properties of the application. If for example this application has to run for a
long time, additional redundant hardware may be chosen, or hardware that is less likely to
experience a permanent failure.

This method of extracting behaviour from the application and using it to choose hardware
need not always apply when considering transient faults. A transient fault is, by its very
definition, transient. It does not permanently leave the hardware in a degraded state. As
such, after a fault-tolerance technique has handled the impact of the transient fault, the entire
application returns to perfect working order. Consequently, the application has the capacity to
handle an unlimited number of transient faults, provided they occur sufficiently spaced apart
to allow for the mitigation of them.

As such, the rate of transient faults and the software need to be evaluated together. Any
fault-tolerance techniques protecting against transient faults may easily be overwhelmed if the
number of such events exceeds a certain threshold within a given time window, or if the events
occur at particular unfortunate moments. We simulate the timing effects of transient faults on
each task, together with an online scheduler and a particular fault-tolerance implementation.
This allows us to compare the long-running behaviour of different fault-tolerance techniques,
as well as approximate the probability of encountering catastrophic behaviour (i.e. deadline
overrun) as a result of transient faults.
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start UnmetDependencies

Unscheduled

Ready

Running, t <= Ci

Finished

open deps[i] == 0
any dep satisfied?

queue peek() == i

start?
t = 0

t >= Ci
task finished[i]!

task transient fault[i]?

Figure 22: SWIFT-CR task model: the task runs under SWIFT instruction-level fault detection,
and uses checkpoint-restart to reschedule the task after a fault has been detected.

Type # replicas Fault detection Fault mitigation

PLR-CR 2
Process Level Redundancy[34]

Checkpoint-Restart at the task level
PLR-3 3 Internal

FUNC-CR 2 Process Level Redundancy
(sync at function calls)[34]

Checkpoint-Restart at the task level
FUNC-3 3 Internal

TTMR 3 Time Triple Modular Redundancy[2] Internal

SWIFT-CR 2 Instruction Level
Redundancy[10, 28]

Checkpoint-Restart at the task level
SWIFT-R 3 Internal (SWIFT-R[10])

Table 3: Modelled fault-tolerance implementations

7.2 TeamPlay applications as UPPAAL models

UPPAAL is an existing model checking tool for modeling, validating and verifying real-time
systems modeled as networks of timed automata. As we are only interested in the timing effects
of various fault-tolerance techniques, our UPPAAL compilation target does not consider the
actual implementation of each task. Rather, it generates a task process model based on the
non-functional properties of the task.

Figure 22 shows an example of such a UPPAAL process model. Multiple of such models,
together with models of processors and a scheduler, are composed together to simulate runtime
timing behaviour. While the exact description and nature of a UPPAAL model is out of the
scope of this document, one way to think about it is as a state machine, where state transitions
can be additionally constrained on time. The model in Figure 22 models timing behaviour
when implementing SWIFT[28] for fault detection, together with checkpoint-restart for fault
mitigation. Faults are detected instantly, which is reflected by the immediate transition from
Running to Unscheduled when a transient fault occurs. The overhead introduced by using
SWIFT is included in the model parameter Ci.

Table 3 shows an overview of modeled fault-tolerance implementations. We differentiate
between fault-detection (two replicas) and fault mitigation (three replicas) techniques. Where
fault mitigation techniques typically offer completely transparent fault mitigation, the added
overhead of the third replica may make them uninteresting for many applications. As such,
we also consider fault detection using only two replicas, combined with CR to allow mitigation
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Figure 23: Comparison of various fault-tolerance implementations’ timing behaviour

when a fault has actually occurred.
Figure 23 demonstrates the output of the toolchain. To construct this figure, 100 task graphs

have been generated using Task Graphs For Free (TGFF). This figure plots the capacity of each
fault-tolerance technique to meet the deadline across a range of deadlines. The deadline is shown
as a multiple of the fault-free WCRT (worst-case response time) Rfault-free. A fault-tolerance
implementation which would have a miss percentage of 0% at deadline D = 1.0 × Rfault-free

would indicate that the use of fault-tolerance has no impact on the WCRT.
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8 Specifying formal guarantees for the adaptation layer

The aim of this task is to specify the formal guarantees that the adaptation layer has to meet
in order to ensure the correct functioning even in the presence of an attack or of a fault. We
focus on control systems that receive their sensor input and has to compute a corresponding
control signal to actuate.

In Deliverable D1.1 we provided background on control theory and focused on two require-
ments in terms of when a fault should be resolved.

(i) The fault/attack should be resolved within Rmax time. This means guaranteeing
Ranomaly ≤ Rmax. In this case, we are stating that there can be subsequent events but
each of them cannot last more than a given amount of time.

(ii) Given Ranomaly, we would like to find Rrecovery such that, if the adaptation layer can
guarantee that the system is in a fail-safe state for Rrecovery then it has returned to
nominal conditions in which another event can happen. Notice that we are in no way
constraining that Ranomaly ≤ Rmax and the two requirements are independent.

We previously discussed the first of these two requirements. In our remaining time, we
focused on the second requirement.

8.1 Anomaly and recovery time Ranomaly and Rrecovery

The question that we try to answer is the following: given a duration Ranomaly we want to find
the recovery time needed to return to a safe state, Rrecovery.

Specifically, given a system, we define a burst interval M (Ranomaly/Tperiod, where Tperiod is
the sampling period of the control system) as an interval of controller activations in which the
control task executing Cd consecutively misses n deadlines, regardless of the strategy used to
handle the misses. We assume that the burst interval M is followed by a recovery interval R
(Rrecovery/Tperiod), defined as an interval in which the control task consecutively hits h deadlines.

During the burst interval, the deadline misses of the control task are handled using a deadline
handling strategy as specified in the analysis above. From an industrial viewpoint, the proposed
fault model is highly relevant.

We look at both stability and performance. For stability we define two types of stability:
static-cyclic stability and miss-constrained stability.

We now describe how the system matrices above can be used to analyse stability, starting
with the cyclic burst case. Recall that a closed-loop control system under normal operation
is stable if and only if the (fixed) system matrix A is Schur stable. This criterion is also
valid for cyclic patterns, where A now represents the product of all closed-loop state matrices
experienced in a full burst–recovery cycle. We can hence use the criterion in order to find the
smallest number of deadline hits h such that n consecutive misses do not destabilise the system.
It is important to note that h is the number of consecutive hits necessary for the system to
recover to such an extent that another burst interval would not destabilise the system. This is a
sufficient condition and not necessary, meaning that if a miss occurs during the recovery interval
this does not immediately imply that the closed-loop system is destabilised. We summarise the
analysis in the following definition.
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Figure 24: Miss-constrained stability (dark coloured area) and static-cyclic stability (light
coloured area) when different strategies are used. Each square represents a window of size
` = n+h. The dark area satisfies both the stability criterion whilst the light area only provides
static-cyclic stability. The white squares denote unstable combinations of hits and misses.

Definition 1 (Static-Cyclic stability analysis). We denote the stability analysis presented
above with the term static-cyclic stability analysis. The system under analysis cycles through a
sequence of n misses followed by a sequence of h hits. The sequence repeats and the eigenvalues
of the closed-loop state matrix have absolute value less than 1.

We now turn to the second type of stability analysis. Given the same system and two
possible models of computation, with n deadline misses or with n⊂ deadline misses, where
n⊂ < n guaranteeing static-cyclic stability of the first one (n misses) does not immediately imply
that static-cyclic stability is guaranteed also for the second one (n⊂ misses). This motivates a
second stability definition.

Definition 2 (Miss-constrained stability analysis). To guarantee Miss-constrained stability, a
system has to be stable under arbitrary switching between all the possible n realisations (i.e.,
closed-loop matrices) that comply with all the possible task models n⊂ ≤ n and also include
the case in which the system does not miss deadlines.

Checking stability under arbitrary switching is unfortunately quite involved. We use the
joint spectral radius to check this condition (including the system under normal operation
among the possible switching alternatives), similar to [21]. It should be noted that, for the
same parameters n and `, static-cyclic stability is always implied by miss-constrained stability;
hence the latter analysis is more conservative, that is, it guarantees stability in fewer cases. We
take a system as example and show the corresponding results in Figure 24.

Alongside stability, it is common to look at the performance of the closed-loop system.
Performance can be defined in different ways, often depending on the application [4]. Whichever
way is chosen, a common way to quantify performance is to define a cost function and evaluate
the cost function during the execution of the controller. In our work, we use a quadratic cost
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function
J[k] = E

(
eT[k]Qee[k] + uT

[k]Quu[k]

)
, (1)

where T is the transpose operator. The cost function penalises deviations from the reference
value as well as usage of the control signal. E denotes expected value, and the positive semidef-
inite weighting matrices Qe and Qu weigh the different terms against each other. A small cost
value means that the controller successfully makes the error approach zero, using a small control
signal.

If we know the stochastic properties of the external input signals (setpoint r[k] and noise
w[k]) we can calculate the value of the cost function analytically. For simplicity and without loss
of generality, we will from now on assume that r[k] = 0 (i.e., we want to regulate the output to
zero) and that w[k] is a zero-mean Gaussian white noise process with variance R. More elaborate
disturbance models can be realised by introducing additional states in the plant model.

We now show how to evaluate (1). Let Pk denote the covariance of the closed-loop state
vector at time k,

Pk = E
(
x̃[k]x̃

T
[k]

)
. (2)

The state covariance evolves according to

P[k+1] = AP[k]A
T + BwRBT

w . (3)

where Bw is the input matrix that multiplies the noise. Given P[k], we can calculate the cost
for time step k as

J[k] = E
(
x̃T

[k]Qx̃[k]

)
= tr

(
P[k]Q

)
(4)

where tr computes the trace of the matrix. In (4)

Q =

CT
p QeCp 0 0

0 0 0
0 0 Qu

 (5)

is the total cost matrix. The stationary cost of the system is defined as J∞. More specifically,
this is the cost the system converges to when operating under normal conditions:

J∞ = lim
k→∞

J[k]. (6)

Under normal operation, after a transient phase, the cost does not deviate from the nominal
cost J∞, meaning that there exists an instant k̄ for which J[k] reaches the steady-state value
J∞, or formally ∃k̄ s.t. ∀k > k̄, J[k] ≈ J∞.

We use the cost function in Equation (4) as a time-varying performance metric. Before a
burst interval, we assume that the system is in the neighbourhood of its steady-state covariance
P∞ and performance J∞. When a burst interval of n missed deadlines occurs, we track the
performance function and wait until it returns in a small interval around J∞, after which we
can consider the system has returned to its nominal state.

Definition 3 (Performance recovery interval). We define the recovery length interval h∗ as the
smallest h such that the cost threshold is satisfied for all k ≥ h when using a given strategy to
handle deadline misses.
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Definition 4 (Maximum normalised cost). We denote the maximum normalised cost of the
system by

JM = max
k

J[k]

J∞
, (7)

where J[k] is the cost computed according to (4) when using a given strategy to handle the
deadline misses.

Despite the system being stable for long burst intervals and able to recover, the performance
loss could still be intolerable. Consequently, we would like to find the greatest burst interval
length such that the system does not violate some predefined performance threshold JT .

Definition 5 (Performance-aware burst interval). We define the number of misses that a control
system can tolerate, given a performance threshold JT , as n∗, the largest n such that

JM ≤ JT . (8)

We can find n∗ by iterating the performance analysis until the smallest n violating the
threshold is found. We then take a step back to get the value of n∗.

Compared to the stability analysis, the performance analysis also takes into account state
deviations and uncertainty due to disturbances. The disturbance term wk is neglected in the
stability analysis as it does not influence the system stability. However, its presence (as the
presence of any disturbance) changes the dynamic behaviour of the system. For the performance
metric, the state covariance matrix evolves according to both the noise intensity and the system
dynamics. The result is that the performance analysis provides us with a conservative (but more
realistic) recovery interval, that takes system uncertainties into consideration.

8.2 Application to an example system

In this section, we apply the analysis to a case study, analysing stability and performance. We
show detailed results with one single plant and a controller devised for that plant.

The chosen plant is part of a representative set of processes [3] for control problems that
commonly arise in the process industry.4 The goal is to regulate the control error to zero, and
control is assumed to be cheap. A low-frequency load disturbance is assumed to be acting on the
system, so we extend the discrete-time plant model with a disturbance state with near-integrator
dynamics (eigenvalue 0.999). We then follow an established control design procedure [13] and
design a PI controller for the plant. This results in the following matrices that completely

4The plant could for instance represent a chemical tank where the level is controlled by pumping chemicals
through a pipe. The level of the chemicals in the tank and the uncertainty in the pipe diameter are the plant
states x[k]. Furthermore, the amount of chemicals pumped through the pipe is the control signal u[k].
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Table 4: The recovery interval length h necessary to remain cyclic-stable stable after a burst
of n consecutive misses for the different strategies.

n hKZ hKH hSZ hSH

1 1 1 1 1
2 1 1 1 1
3 1 1 1 1
4 1 1 1 1
5 1 1 1 1
6 1 1 1 2
7 1 1 1 2
8 1 1 1 2
9 1 1 1 2
10 1 1 1 2
11 1 1 1 2
12 1 1 1 2
13 1 8 1 2
14 1 8 1 9
15 1 8 1 9

describe the example5:

Pd :


Ad =

0.932 −0.170 −0.276
0.170 0.312 0.324

0 0 0.999

 ,

Bd =
[
−0.276 0.324 0

]T
,

Cd =
[
−0.276 −0.324 0

]
, Dd = 0

Cd :
{
Ak = 1, Bk = 0.415, Ck = 0.796, Dk = 1.921

(9)

Analysing the static-cyclic burst stability of the system means finding the smallest h for
which the matrix that represents the combination of misses followed by hits has eigenvalues in
the stability region. Given a fixed n, the check is iterated, incrementing h until the conditions
are satisfied. Table 4 shows the recovery interval lengths h when n varies from 1 to 15 for the
different strategies Kill and Zero (KZ), Kill and Hold (KH), Skip and Zero (SZ), Skip and Hold
(SH).

We notice the Zero actuation strategies are static-cyclic stable already for h = 1 for all the
presented burst interval lengths. However, for the Hold strategies h depend on n.

We also tested the miss-constrained stability for the system for various amount of burst
interval lengths n. Figure 24 summarises our findings. The vertical axis counts the number of
misses n and the horizontal axis counts the number of subsequent hits h. The dark areas in

5The original plant from [3] is a first order system with a time delay. The stability analysis presented in this
section is able to handle time delays, however, the performance analysis assumes that the system has no intrinsic
delay (other than the one induced by the one-step delay controller). However, the delay can be approximated,
for example using a first-order Pade approximation [14]. We approximate the delay to obtain the plant matrices
in Equation (9).
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Table 5: Performance Recovery Interval h∗ required to recover from a burst of n consecutive
misses for strategies.

n h∗KZ h∗KH h∗SZ h∗SH
1 38 12 38 17
2 38 16 38 18
3 38 17 38 25
4 55 25 55 26
5 55 25 56 27
6 56 26 56 27
7 56 26 56 27
8 56 26 56 27
9 56 26 57 27
10 56 33 57 34
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Figure 25: Time evolution of the normalised cost (J[k]/J∞) when different strategies are used
and the system is subject to a burst interval of length n = 3. The dashed part of the line
indicates the period of time in which the burst interval occurs. The solid line represents the
recovery interval, in which the deadlines for the control task are satisfied. The black line marks
the peak, whose value is also written in the figure.

the figure show the combinations of misses and hits for which the system is miss-constrained
stable. The light squares in the figure show combinations for which the system satisfies the
static-cyclic stability condition but is not miss-constrained stable. The white squares show
configurations for which the system is not stable, that is, does not satisfy the static-cyclic
stability condition. Stability is primarily governed by the dynamics of the system. The Zero
actuation strategies have some unstable configurations that can be related to the system order
and the time delay in the system. Furthermore, the behaviour of KH appears to have a static-
cyclic stable configuration for a fixed recovery interval h = {8, 9, 10} regardless of the burst
interval (the columns corresponding to these values of h are entirely marked as static-cyclic
stable). Similarly, SH is static-cyclic stable for h = {9, 10, 11, 12}. This is presumably due to
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Figure 26: Time evolution of the normalised cost (J[k]/J∞) for different burst interval lengths
n ∈ [1, 4]. The solid lines represent the curves that satisfy the upper bound JT = 2 on the
performance degradation (represented by the black solid horizontal line). The dotted plot
for the Skip&Hold strategy shows the performance for n = 4, which violates the threshold
constraint.
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Figure 27: Maximum normalised cost JM over the burst interval length n ∈ [1, 20] for different
strategies. The vertical axis is displayed with logarithmic scale.

n matching a stable oscillatory mode in the closed-loop system dynamics. However, this mode
is not miss-constrained stable, thus lacking robustness towards the burst interval being shorter
than expected.

If we apply the analysis presented in Deliverable D1.1, we find the maximum number of
consecutive deadline misses for which the system can tolerate an arbitrary pattern of deadline
hits and misses, whilst guaranteeing stability. Stability under consecutive deadline misses is
guaranteed for {nKZ , nKH , nSZ , nSH} = {10, 4, 13, 1}. These guarantees are more conservative
than the ones given by both the static-cyclic and miss-constrained stability case. Our investi-
gation here asks a different question: how many hits should follow a sequence of n misses to
return to nominal conditions (in which we are able to handle another fault)?

The stability analysis shows promising results for the recovery interval length. However,
the following performance analysis motivates why stability alone is not enough to determine
the behaviour of the system. In fact, we argue that the system is stable but does not behave
well.

We now investigate the system cost. Figure 25 plots the normalised cost of the system
(J[k]/J∞) for n = 3 with different strategies. The dashed part of the plot shows when we
experience the misses, while the solid lines corresponding to the cost that follows the misses
(and the part of the plot in which the controller hits its deadlines). Higher normalised cost
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values mean a decrease in performance (a normalised cost of 2 means that the performance
is halved with respect to the case in which no deadline is missed). The black line shows the
maximum we obtain, that is the maximum performance loss factor we experience due to the n
deadline misses.

In Figure 25, the cost keeps increasing even when the system exits the burst interval after
n = 3 deadline misses. During the burst interval, the plant deviates from its desired state,
whilst the controller state is not being updated (as the controller does not complete its jobs).
Once the recovery interval is entered, the control state is based on an old system state, resulting
in the calculated control signal being outdated. The controller needs a few samples to converge
to a state that better represents the correct course of action, thus reducing the control cost.
However, despite the controller converging to a better state, the dynamics of the system still
affect the performance. The secondary peaks seen in Figure 25 therefore correspond to the
oscillatory effects the time delay imposes on the system.

From the figure it is apparent that the Zero actuation strategies lowers the performance of
the system by factors JM,KZ and JM,SZ (from Definition 4) greater than 30. With the stability
analysis presented in Deliverable D1.2 and with the stability analysis presented in this section
(shown in Table 4) Zero would be the preferred choice. In fact, it seems to stabilise the system
more easily. The performance analysis however shows that this comes with a performance loss
that might be unacceptable. In comparison, Kill&Hold and Skip&Hold increase the cost by a
factor JM,KH = 1.57 and JM,SH = 1.8 respectively.

The extraordinary decrease in performance of the Zero actuation strategies correlates with
the system noise. The integrator in the control law mitigates the effect of the (near) integrated
noise. However, once the controller misses a deadline and the output is set to zero, the distur-
bance state drives the plant rapidly away from the desired state. This does not affect the Hold
actuation strategies due to the actuator still holding the last control signal, thus mitigating the
noise effect.

We now look at the performance recovery length interval h∗ from Definition 3. To find it,
we increase h until we satisfy the performance condition for a recovery threshold ε = J∞

100
.6

Table 5 shows the minimal recovery interval length h∗ corresponding to n = [1, 10]. Comparing
Tables 4 and 5, we see that the stability analysis provides more optimistic bounds on the
recovery interval length than the performance analysis. The performance should thus be taken
into account when analysing the system behaviour.

We investigate how the performance-aware burst interval n∗ from Definition 5 changes
depending on the strategy used to handle the misses, given a threshold JT = 2. Figure 26
shows the performance degradation given different miss interval lengths (i.e., n ∈ [1, 4]) for
{KH,SH}. Selecting zero immediately violates the threshold constraint JT even with a single
miss. The figure therefore focuses on hold and shows the two alternatives for deadline handling
strategy. Using Kill&Hold, we obtain n∗HK = 4, while using Skip&Hold we observe n∗SK = 3.
The dashed line in the plot for Skip&Hold shows the normalised performance degradation plot
for n = 4. The corresponding necessary recovery interval lengths h∗ can be found in Table 5.

Going back to our initial aim, and recalling that Tperiod is the sampling period of the control
system, we can then state that for a given Ranomaly = nTperiod, and based on the strategy used,
we can find Rrecovery = h∗ Tperiod.

6The results have been verified using JitterTime [9]. JitterTime evaluates the total state covariance of mixed
continuous/discrete time linear systems driven by noise, with arbitrary timing behaviour.
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9 Publication and dissemination

The work done in WP1 has led to the following publications during the reporting period:

1. Martina Maggio, Arne Hamann, Eckart Mayer-John, Dirk Ziegenbein: Control System
Stability under Consecutive Deadline Misses Constraints; Euromicro Conference on Real-
Time Systems (ECRTS 2020).

2. Lukas Miedema, Benjamin Rouxel, Clemens Grelck: Modeling Single Event Upsets in
UPPAAL SMC for Real-time DAG Scheduling; 15th Junior Researcher Workshop on
Real-Time Computing (JRWRTC 2021), part of the 29th International Conference on
Real-Time Networks and Systems (RTNS 2021).

3. Lukas Miedema, Benjamin Rouxel, Clemens Grelck: Task-level Redundancy vs
Instruction-level Redundancy against Single Event Upsets in Real-time DAG Schedul-
ing; 14th IEEE International Symposium on Embedded Multicore/Many-core Systems-
on-Chip (MCSoC 2021).

4. Paolo Pazzaglia, Arne Hamann, Dirk Ziegenbein and Martina Maggio: Adaptive Design
of Real-Time Control Systems subject to Sporadic Overruns; Design, Automation and
Test in Europe Conference (DATE 2021); Best Paper Award in the Embedded and Cyber-
Physical Systems Track.

5. Nils Vreman, Anton Cervin and Martina Maggio: Stability and Performance Analysis of
Control Systems Subject to Bursts of Deadline Misses; Euromicro Conference on Real-
Time Systems (ECRTS 2021); Outstanding paper & Best Paper Award.

6. Benjamin Rouxel, Sebastian Altmeyer, Clemens Grelck: YASMIN: a Real-time Mid-
dleware for COTS Heterogeneous Platforms; 22nd ACM/IFIP International Middleware
Conference (MIDDLEWARE 2021).

This report has necessarily compressed (and left out) some of the details that are presented
in the scientific publications above. This report also includes additional material, that comple-
ments the publications above. In particular some of the content presented in Section 8.2 is a
deeper investigation on the topics of the ECRTS 2021 paper.

In addition to the dissemination events directly associated with above mentioned publica-
tions, various aspects of work conducted in the context of Work Package 1 have among others
been presented at the following venues:

1. Design, Automation and Test in Europe Conference (DATE 2021), Special Initiative on
Autonomous System Design (ASD 2021), Virtual.

2. ICT COST Action Meeting Connecting Education and Research Communities for an
Innovative Resource Aware Society (CERCIRAS), Novi Sad, Serbia.

3. 21st Workshop on Programming Languages and Foundations of Programming (KPS
2021), Kiel, Germany.
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10 Conclusion

This deliverable reports on the work accomplished by the various partners in the context of
work package 1: Specification of Adaptive Systems since month 10. Besides the considerable
achievements by the consortium partners individually, collaboration between partners is on a
good way. The joint work on the ADMORPH Exchange Format AXF is an example of this.

Our work in Task T1.1 is progressing in various directions. We have carefully revised and
extended the TeamPlay coordination language and adapted the coordination compiler front-
end accordingly. Including support for UPPAAL modelling we have built four code generators
and two fully-fledged runtime environments plus an additional runtime environment connected
to TeamPlay via the ADMORPH eXchange Format (AXF).

The next steps are to complete these various lines of on-going research. For example, we
plan to integrate fault-tolerance capabilities into the real-time runtime environment YASMIN.
Likewise we plan to continue our modelling work with UPPAAL.

Task 1.2 on validation of the coordination language is still in its infancy. Our aim is to
model essential parts of the ADMORPH use cases by means of the TeamPlay coordination
language. For the time being this must be considered future work. Retrospectively, we should
have formally postponed the start date of this task in line with the extension of the project,
but in practice this issue remains a formality.

In Task 1.3 we analysed control systems and their behaviour in the presence of bursts of
deadline misses We provided a comprehensive set of tools to determine how robust a given
control system is to faults that hinder the computation to complete in time, with different
handling strategies.

Our analysis tackles both stability and performance. In fact, we have shown that analysing
the stability of the system is not enough to properly quantify the robustness to deadline misses,
as the performance loss could be significant even for stable systems. We introduced two per-
formance metrics, linked to the recovery of a system from a burst of deadline misses.

A limitation of the presented performance analysis is that it only applies to linear control
systems. However, the approach can easily be extended to analyse time-varying linear systems
and can also be used for local analysis of a nonlinear system that should follow a given reference
trajectory. In fact, to illustrate the applicability to real (e.g., nonlinear) systems, we applied
the analysis to a Furuta pendulum and compared the results of simulations obtained with
a model of the process to the real execution data.7 The results support our claim that the
proposed performance analysis is a valid approximation of the real-world system performance.
We performed additional tests on a large batch of industrial plants, using modern control design
techniques. From our experimental campaign, we conclude that the choice of actuation strategy
affects the control performance significantly more than the choice of deadline handling strategy.
In the remaining time, we will focus on consolidating the scientific results and developing
teaching and dissemination material based on the explored examples.

In the conclusions of the work package’s previous Deliverable D1.1 we expressed our hopes
and back then realistic expectations regarding the easining of the pandemic-induced restrictions

7The results are presented in the paper “Stability and Performance Analysis of Control Systems Subject
to Bursts of Deadline Misses”, presented at ECRTS 2021, co-authored by Nils Vreman, Anton Cervin and
Martina Maggio. A paper preprint is publicly available at: http://admorph.eu/wp-content/uploads/2021/

06/ecrts21_preprint.pdf. A video, showing the results of the Furuta pendulum experiments is available at:
https://www.youtube.com/watch?v=0P0K_7lvKVU.
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in autumn 2020. However, reality as we know it has proven these expectations to be too
optimistic. Personal exchange has still been negatively impacted by the various measures taken
locally and across Europe throughout the current reporting period. We remain confident that
personal interaction and collaboration will soon become effective, and we will slowly return to a
pre-Covid-19 style of working, just in time to still develop a positive impact on the ADMORPH
project.
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[4] Karl Johan Åström and Tore Hägglund. Advanced PID Control. The Instrumentation,
Systems and Automation Society, 2006.

[5] Radhakisan Baheti and Helen Gill. Cyber-physical systems. The impact of control tech-
nology, 12(1):161–166, 2011.

[6] Blaise Barney. POSIX threads programming. National Laboratory. Dispońıvel
https://computing. llnl. gov/tutorials/pthreads, 5:46, 2009.
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