ADMORPH

Y

=

p=_|

s\

| .y

)/

7

|

M

A

——

D2.1: Identified Adaptation Possibilities and Methods

Project acronym: ADMORPH
Project full title: Towards Adaptively Morphing Embedded Systems
Grant agreement no.: 871259

Due Date: Month 12
Delivery: Month 12

Lead Partner: UniLu

Editor: Marcus Volp, UniLu
Dissemination Level: Public (P)

Status: draft

Approved:

Version: 0.1

This project has received funding from the European Union’s Horizon 2020 research and innovation pro-

* Xk gramme under grant agreement No 871259 (ADMORPH project).

* ok This deliverable reflects only the author’s view and the European Commission is not responsible for any use

that may be made of the information it contains.

ADMORPH — 871259 ADMORPH £
DOCUMENT INFO — Revision History
Date and version number | Author Comments

12/12/2020 ver. 1.0

Marcus Voelp

First draft

21/12/2020 ver. 1.1

Marcus Voelp

Internal review

List of Contributors

Date and version number

Beneficiary

Comments

12/12/2020 ver. 1.0

Marcus Voelp

Initial report structure

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 1 of

ADMORPH - 871259 ADMORPH /@&

GLOSSARY

BFT-SMR Byzantine Fault Tolerant Statemachine Replication
CPS(0S) Cyber Physical System (of Systems)

FIT Fault and Intrusion Tolerance

IPC Inter-process communication

QoS Quality of Service

SoS System of Systems

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 2 of

ADMORPH — 871259 ADMORPH 4
Q.J,\,:.;y

Contents
[Executive summary| 4
T 5 Tndividualish [CPSoS-wide Resil | 5
1.1 Background and Related Work on Adaptive Resilience| 5
(1.1.1 Partial Synchrony:| o 5
(1.1.2 Partially Synchronous BF'T-SMR Protocols:| 5)
(1.1.3 Reconciling Synchrony:| 6
[1.1.4 Architectural Hybridization:|, 6
(1.1.5 Adaptive Resilience|o o 6
[1.2 An Abstract View on Controll 7
[1.2.1 Cascaded Control and Safety Kernels| 8
(1.2.2 “Normal” vs. Simplex Controll 9
[1.2.3 Control-aware resilience mechanismsl 9
.24 Consensual actuationl 10
2 Adaptation Opportunities and Methods| 10
2.1 Adapting the System along Attack Pathways|. 11
2.2 Adapting Internal Resiliencel 11
2.3 Adapting Functionality| 12
2.4 Adapting to Lowering Threat Levels] 12
B Covid-19 13
4 Conclusions| 13
5> References| 13

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 3 of

ADMORPH - 871259 ADMORPH /

Executive summary

Workpackage WP.2 sets out to develop the adaptation building blocks necessary for maintaining or,
in extreme situations, gracefully degrading the systems’ quality of service guarantees. The focus is
on methods, protocols, tools and techniques, to increase the resilience of controllers of CPS(0S), to
optimize the mapping, partitioning and scheduling of system components, to automate the design
transformation towards a reliable, resource and physical requirement aware system, and to analyze
and limit system reconfiguration times.

This deliverable is the first deliverable of workpackage WP.2. We report on preliminary work
done in the context of Task 2.1: Control-aware fault and intrusion tolerance (FIT), on identified
adaptation opportunities and methods.

Task 2.1 is the only task active in this period. Tasks 2.2 - 2.6 start in month M.13 and M.19
respectively. Task 2.1 suffered from severe hiring difficulties, which we describe in further detail
in Sec. 3l We decided to not defer the submission of this delivery, but instead to compensate by
providing an update on its subject matter in Deliverable D.2.2.

The goal of Task 2.1 is to develop FIT protocols and techniques to leverage application-domain
knowledge (here control) in the design of advanced resilience mechanisms.

Adaptation serves four main purposes:

1. to evade adversaries in their ongoing attacks;

2. to improve the resilience of systems during ongoing attacks, possibly by degrading the sys-
tems’ quality of service, if necessary;

3. to return the system to a state at least as secure as initially; and
4. to optimize the system whenever the perceived threat level drops.

We identified a tension between the classical world of real-time and embedded systems, focusing
on predictability as first principle and hence known upper bounds for computation and commu-
nication latencies, and the body of knowledge on resilience mechanisms, in particular fault and
intrusion tolerance. The latter operate in what researchers in that domain call asynchronous or
partially synchronous systems and protocols, where such bounds are not given per se, in particular
while the system is under attack.

Our goal is to reconcile both worlds and to research and develop adaptive resilience mechanisms
(as far as Task 2.1 is concerned for controllers) that are able to provide timing guarantees, not
from the predictability of all components, but from enough components not being affected by
adversaries both in the value and time domain.

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 4 of

ADMORPH - 871259 /ADMORPH /

1 Towards Individualistic and CPSoS-wide Resilience

Concerning the specific contributions of this deliverable, it first provides a review of the state of
the art (SOTA) on adaptive resilience, from which it is possible to conclude about open issues
and opportunities that we will explore in ADMORPH. Then, the deliverable introduces some
fundamental concepts on dependability and security, also describing baseline assumptions that
pave the way for defining appropriate system and fault models. The deliverable is then devoted
to describe our initial view on a generic FIT control architecture, including a description of its
components, their role and possible interplay. Our view on how this architecture will support
resilient adaptation, and what kinds of adaptation we anticipate at this stage of the project, are
then described. The deliverable concludes with some considerations on the work done in this task
so far, referring to aspects that conditioned the progress of the work as initially planned.

1.1 Background and Related Work on Adaptive Resilience

RTES typically operate under system assumptions that the dependability community [20] sum-
marize under the synchronous system model. That is, RTES are typically assumed to operate in
environments where communication and computation are sufficiently predictable to derive upper
bounds (typically worst-case transmission or execution times). In the presence of highly skilled
and well equipped adversaries opposing the system, the implied assumption, namely that commu-
nication and computation bounds also hold while the system experiences severe accidental faults
or intentionally malicious attacks, cannot be justified with high confidence.

1.1.1 Partial Synchrony:

To tolerate situations where adversaries affect some of these properties, a large part of the depend-
ability community switched to partially synchronous system models [10], where bounds of this kind
only exist during frequently recurring “good” periods, while the system might exceed such bounds
during those times when it is under attack. Denial of service attacks are one prominent exam-
ple of a network-level attack that violates most if not all timing guarantees that one has derived
for normal situations. Other examples of attacks, affecting cyber-physical systems more directly,
include Aurora [§], Stuxnet [I2] and the attack to the Ukrainian power grid [15].

1.1.2 Partially Synchronous BFT-SMR Protocols:

Byzantine fault tolerant statemachine replication (BFT-SMR) protocols, built for such partially
synchronous system models, either aim to replace time-based omission detection with time-free
failure detection [I4], or, like in the seminal protocol PBFT [5], use time merely as a mean to
eventually react to faults. For example, PBFT implements a leader/follower scheme with the
leader defining the order in which requests should be executed, while followers confirm this order
or re-elect a new leader. Even though leader election is triggered by timeouts (e.g., if no consensus
could be reached on a client’s request), the protocol can be considered as time-free because the

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 5 of

ADMORPH - 871259 /ADMORPH /

safety of the system does not depend on this leader change to happen. Lifeness is affected and
regained during long enough “good” times.

We can therefore conclude this initial definition of terms, by saying that a system is time-free if
its safety does not depend on some form of reliable time source and by introducing the asynchronous
system model as one where communication and computation bounds cannot be known, even during
“good” times.

1.1.3 Reconciling Synchrony:

Obviously, asynchronous and partially synchronous systems cannot give the time bounds real-time
and embedded systems require, even in such harsh and unpredictable environments (e.g., during
ongoing attacks). Our goal is therefore to carefully craft resilience mechanisms to rely as much
as possible on time-free constructs, while guaranteeing timeliness as a property of, for example,
enough replicas operating in a timely manner. We admit that this will not be possible during all
times and explore adaptation, possibly in combination with architectural hybridization, to survive
long enough and place replicas outside the adversaries’ path of attack, where we hope to regain
the timeliness we need, at least for long enough to fail operationally into a fail safe state.

1.1.4 Architectural Hybridization:

Architectural hybridization [19] includes trusted-trustworthy components that follow a distin-
guished system and fault model (e.g., they may operate or even communicate synchronously and
fail by crash only) for the purpose of making the whole system will be more resilient by relying
on functionality of these trusted subsystems. The argument that justifies this exceptional role,
i.e., why trusted-trustworthy components can be made resilient by construction, stems from their
simplicity, which is still a matter of ongoing research.

1.1.5 Adaptive Resilience

Barring a more elaborate review of the state-of-the-art in adaptive resilience, which we will prepare
as requested in the technical review, we will focus here primarily on recent works about adaptive
BFT-SMR protocols.

Most of the state-of-the-art on adaptive resilience mechanisms [4, [I7, [6, [I], in particular in
terms of Byzantine fault and intrusion tolerance techniques, suffer from the above described di-
vergence of the dependability and real-time/embedded systems communitiess, which will require
some reconsolidation effort to obtain time-free, partially synchronous resilience mechanisms (capa-
ble of withstanding time domain attacks) that exhibit predictability and timeliness as an emerging
property.

In the first class of time-agnostic, but not real-time capable protocols, WHEAT [18] decreases
client latency by selecting as leader the best connected replica. AWARE [3] improves over WHEAT
by continuously monitoring connectivity and reconfiguring based on these observations. Adapt [2]
builds on Abstract and Aliph [I] to perform Al-driven dynamic adjustments of the payload proto-
col.

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 6 of

ADMORPH - 871259 /ADMORPH /

Unlike the above protocols, which primarily focus on optimizing the system, we are currently
investigating means to react to situations where the perceived threat level increases. An early result
from this ongoing work is that group-membership based BFT-SMR protocols [4, 17, 1], because of
the impossibility identified by Chandra et al. [7], necessarily require consensus to adapt to threats
increasing adversarial strength and this consensus must be synchronous and hence provided as part
of the trusted-component functionality. Otherwise, without time bounds on reaching consensus
about the new configuration, it will be impossible to outpace adversaries, which are naturally not
constrained by the partial synchrony we assume them to cause. Obviously, because the complexity
of such a trusted wormhole would by far exceed the complexity of traditionally used trusted
components, such a solution is not very desireable.

Our ongoing research therefore focuses on the one side on proactive means to prepare for
situations where the system has to adapt to increasing threats and on the other side on more
lightweight mechanisms that enable consensus at a much lower complexity, but limited to the
individualistic system. In the following we describe how these and similar resilience mechanisms
apply inside a single system.

1.2 An Abstract View on Control

Before we proceed, it will help to abstract from the concrete usage scenarios that drive our devel-
opments (see also Deliverable D.5.1) to then return in D.2.2 and see how the individual resilience
mechanisms can interplay in an adaptive manner.

Figure (1] illustrates what we believe are essential building blocks for securing individual CPS,
making them resilient to accidental faults and attacks of varying strengths. Individualistic re-
silience of each CPS will be essential for obtaining CPSoS-wide resilience because the impact each
individual CPS has on the physical world can, if this CPS gets compromised, be subverted into a
threat to other CPS or worse, the humans operating in their proximity. For example, by exploiting
a vulnerability in the radio telemetry subsystem of their Jeep Cherokee [11], researchers Charlie
Miller and Chris Valasek had full remote control over their vehicle and from there its only a mat-
ter of imagination and good or bad intend whether such a compromised vehicle is turned into a
cyberkinetic weapon against the platoon of cooperatively driving cars.

Our primary goal is therfore to make, through adaptation, each individual CPS strong enough
to offer a minimal residual safety and security, and to ultimately recover, possibly with the help
of healthy CPS in the individual’s proximity.

What makes us confident that concentrating on the CPS will extend smoothly to CPSoS is that
we can already identify self-similarities in the techniques and principles applied within the CPS.
For example, much like a fernleaf repeats its own pattern, cascaded complex control (e.g., learning-
based, complex components as they are required for autonomous driving, or in our case taxiing
on the airfield) may well be tolerated to fail, or be protected by more lightweight mechanisms if
they can rely on the abstraction of a resilient controller, capable of preventing both time- and
value-domain faults from manifesting at the level of the actuator. The same general pattern recurs
when coordinating the actions of a multitude of CPS in a CPSoS. If each CPS individually exhibits
the notion of an in principle resilient system (possibly with degrading QoS in extreme situations),

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 7 of

ADMORPH - 871259 ADMORPH A@Si

2200=4
P
NA

|

Zaf

lightweight resilience

for complex control, integration of
in particular if safety established
can be retained later safety measures

Complex
Cascaded
Controlley

Controller

control-aware
resilience
mechanisms
(e.g., hold and restart)

consensual-only

Monitoring of
actuator access

components and
guidance of resilience
mechanisms

Simplex

“‘M

Figure 1: Abstract view on a generic control architecture, its resilience measures
and their interplay. Shown are three cascaded control subsystems with archetypical
task graphs (blue and orange boxes) and resilience mechanisms (in red). Simplex
control can take over and override the decision of the regular controller of the plant
to enforce safety and security properties. The complex cascaded controller leverages
this combined regular/simplex control subsystem for more complex decision making
(e.g., Al driven and learning enabled).

Sensors

CPSoS wide cascaded controls may leverage this internal resilience and the fact that individuals
no longer fail in the most pessimistic manner, but perform a detectable, coordinated and fail
operational reduction of QoS into fail safe states.

Despite the late start of Task 2.1, we have already been able to identify a few significant building
blocks towards this resilience, which we depict in Figure [T}

1.2.1 Cascaded Control and Safety Kernels

Underlying the separation into a “normal” controller and a cascaded higher-level controller is the
observation that many properties of the plant (e.g., its stability or its ability to follow a certain
directive, such as a trajectory). Once this split is identified and the cascaded controller separated
and isolated, faults in the complex controller can propagate to the “normal” controller only through
the directives / high-level control signals it emits or due the timing of the very same. If timing
and value of this control signal can be validated and compensated (e.g., by injecting the high-level
control signals of a fail operational maneuver) and if the “normal” controller would be resilient to
attacks, then it would be possible from a safety perspective that the complex controller fails in an
arbitrary way (of course degrading the quality of service of the system).

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 8 of

ADMORPH - 871259 /ADMORPH /

The role of the safety kernels is to ensure exactly that, namely with knowledge of the application
at hand to ensure that emitted high-level control signals are correct relative to the sensor readings
of the plant and relative to the internal state of the complex controller, which we will externalize
to these safety kernels though additional “internal” sensors.

Recovery patterns for returning to full quality of service will focus on reestablishing the complex
controller, possibly on a different subset of the system resources away from the adversaries’ attack
path.

1.2.2 “Normal” vs. Simplex Control

Unfortunately, not all of the desired plant properties can be decomposed into such cascaded prop-
erties, with the simpler ones already exhibiting most of the safety we desire. However, often the
same safety-related properties can be achieved sometimes also by simpler, but in general unde-
sirable low-level control decisions. If this is a case, we obtain additional resilience by supporting
Complex/Simplex design patterns. Such patterns are characterized by a simplex controller being
able to take over and overwrite the control decisions of a more complex (in our case “normal”)
controller, in particular in those situations where safety is at risk. A prominent example is a
simplex autopilot, tasked to perform aggressive, fuel demanding maneuvers in case the complex
autopilot fails to return the system into a safe state [13] (and similar for aerial vehicles [21]).

Again, the resilience pattern suitable for “normal” controllers of this kind is by recovery, because
the simplex controller can take over in case the plant risks entering a state where safety is at risk,
although again at the cost of degrading quality of service.

One of the research questions is to identify the control components that are part of the cascaded
system and of the “normal” control system to then search for simpler, safe but not necessarily
comfortable variants to form the simplex controller.

A second pertains to the resilience mechanisms of the simplex control system. As there is no
further underlying controller to take over in case safety is at risk. Redundancy-based mechanisms
suggest themselves at this level, which leads us to the next question.

1.2.3 Control-aware resilience mechanisms

The vast majority of resilience mechanisms are generic and therefore agnostic of the application
they protect. This leaves unused much of the potential that an application-aware resilience mech-
anism could reveal. In case of control, we know from our partners at Uni Lund, Maggio et al. [16]
that some properly controlled plans can already tolerate several omission faults if the previous
control signal is held during omission and if the controller is researted. Leveraging this knowledge
and the fact that the individual tasks, a controller is comprised of, rather exibit a graph structure
than client-server invocation patterns, we can design control-aware resilience mechanisms to tap
into this potential.

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 9 of

ADMORPH - 871259 /ADMORPH /

1.2.4 Consensual actuation

With all this in place, a majority of correct control signals should be available and just needs to
be applied at the plant’s actuators. However, most plants are resilience agnostic, in particular
about the fact of changing responsibilities when we adapt the low level controller and relocate for
example a replica to a differnt core. Therefore, to prevent a compromised control replica from
interfering with the plant at exactly the right moment where no further overwrites by the other
replicas will be possible, we ensure consensual-only access to actuators by means of architectural
hybridization and a trusted-trustworthy component. Consensual-only access implies that only the
majority decision among all active replicas will be forwarded to the actuator and otherwise the
previous value will be held.

2 Adaptation Opportunities and Methods

In the following, we will report on several adaptation opportunities and methods, which we already
identified and on the additional research we plan to conduct. As illustrated in Deliverable D1.1,
adaptation will be the key to compensate accidental faults and to fend off adversaries mounting a
targeted attack to the system. Adaptation will act along the following four lines:

1. to replace and relocate components along the attack pathway, creating a moving target
defense to buy the time that is necessary to repair and recover compromised components
and in turn strip adversaries from their foothold in the system;

2. to adjust the internal resilience of components, by replacing configurations with more resource
demanding configurations that exhibit a better resilience to match the perceived threat level;

3. to adjust the functionality of the system to guarantee a degraded service in case not enough
resources remain to sustain the full functionality of the system; and

4. to optimize the system whenever the perceived threat level drops.

It is important to realize that the first three happen while the system has detected the presence
of an imminent threat, whereas the latter applies in those situations where the system has gained
confidence that it is no longer exposed to the high risks it has prepared for. In consequence, any
adaptation of the former three kinds has to outpace the adversary in adapting faster to improve
system resilience before the adversary can exploit the current vulnerable state from which the
system tries to evade.

2.1 Adapting the System along Attack Pathways

Components are characterized by their state and executable and will interact with other com-
ponents through well defined communication interfaces (e.g., the inter-process communication
mechanism (IPC) provided by the PikeOS microkernel). Relocating a component from a faulty
core and redirecting IPC connections to or from this components evades faulty resources and

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 10 of

ADMORPH - 871259 /ADMORPH /

presents adversaries a fresh instance, in particular if a component is not replaced by an instance
the adversary was already able to analyze, but instead by instances the adversaries has not seen,
yet. Depending on whether or not the state has been compromised, it may be either transferred
from the previous component or re-instantiated from scratch or from a checkpoint. Adaptation
of a component generally entails adaptation of other elements of the system, most notably the
schedule, which defines how applications are mapped and multiplexed to resources.

Dynamically changing the attack pathways in the manner described above evades accidentally
faulty resources because the new instance will be mapped to a different subset of resources and
it requires adversaries to redo the work they have already spent to prepare the attack of the old
instance.

Let us exemplify this for an attacked component with a network connection to the outside.
Such a component typically interacts with a network stack and network interface card (NIC) driver,
which implement the communication protocol (e.g., TCP/IP) and network hardware interaction,
respectively. Naturally, being exposed to the environment, the NIC driver and network stack are
typical candidates for a first compromise of the system. However, aside from ongoing transmissions
and open connections, the internal state of the network stack and NIC driver is largely disconnected
from the state of the receiving component. It is therefore possible to periodically rejuvenate the
stack into a state frozen after initialization and to repeat NIC initialization to remove adversaries
that have entered this most external layer of the system. Rejuvenating and replacing the networked
component, requires adversaries to repeat the work they have already performed for compromising
this network layer before they can identify and exploit vulnerabilities in the receiving component.
The latter is of course provided we can present the adversary with an instance he was not able to
analyze.

2.2 Adapting Internal Resilience

Many components or conglomerate of components already exhibit some form of internal resilience
to accidental and malicious faults. For example, triple modular redundant systems, or more
generally replicated systems implementing Byzantine agreement operate n replicas out of which
f replicas may become compromised before the adversary gains control over the conglomerate
of these replicas. n and f are typically related (e.g., n > 3f + 1 for homogeneous, partially
synchronous consensus [5]). Thus, increasing n also increases f and the internal resilience of this
conglomerate.

By homogeneous consensus protocol, we refer to a protocol running in a homogeneous system.
In such a system, all components follow the same fault model. In contrast architectural hybridiza-
tion [9, 19] allows identifying trusted-trustworthy components that follow a distinguished fault
model (e.g., they fail only by crashing, while the remaining system may exhibit arbitrary, possibly
Byzantine faults).

In the most general case, changing the membership of which components belong to a group
of replicas boils down to a consensus problem, requiring agreement for addition and removal.
It therefore depends on the system model whether reaching such an agreement faster than the
adversary compromises more than the initial f replicas is still possible. We are currently exploring

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 11 of

ADMORPH - 871259 /ADMORPH /

possibilities to proactively prepare for such an adjustment to later be able to react without first
having to reach consensus how this reaction should look like. In particular, we investigate how the
inherent resilience of a plant to missed, wrong or held actuation helps performing these adaptations
more efficiently.

For example, the state-of-the-art body of knowledge requires 2k additional replicas to operate
safely and securely through attacks while up to k replicas are repaired and returned to a state at
least as secure as initially. The ability to tolerate some deadline misses in the case of continuous
disagreement among smaller quorums allows us to delay the activation of these replicas or to avoid
them in the first place.

2.3 Adapting Functionality

Deliverable D5.1 already identifies how the ADMORPH use-case scenarios can adapt their func-
tional and non-functional properties to adjust to those situations where not enough resources
remain to sustain full system functionality. We draw functionally reduced components from an
initial pool of deployed alternatives, but consider also means to supply such a pool dynamically.

2.4 Adapting to Lowering Threat Levels

As already mentioned, the fundamental difference between the above three and this fourth adapta-
tion opportunity is the time until which the adaptation must have happened in relation to the time
the adversary needs to break into the system. When optimizing, the system is already confident
about the absence of faults and attacks at the system’s current threat level. Therefore, there is no
bound until which the adaptation must succeed other than the desire to quickly return to a more
efficient modus operandi and to do so in steps that will not jeopardize the timing guarantees the
system has to provide. In particular, optimization can always be aborted to react to increasing
threat levels.

3 Covid-19

Workpackage WP.2 is affected by Covid-19 related hiring difficulties at the two partners, which
were supposed to start in this WP from month 1: FC.ID and UNILU. We have taken measures
to compensate for this delay by covering those parts of the work at PI level that cannot be
delayed without also delaying other partners. To this end, we have identified and defined the main
two building blocks — safety kernels to monitor the system and guide adaptation decisions, and
trusted voters to establish a root of trust for the majority of resilience agnostic devices — and
are in the process of implementing them as part of the runtime support system (WP.4). These
two mechanisms will already support adapting the replication degree of controllers and will be
subsequently extended towards more advanced resilience patterns.

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 12 of

ADMORPH - 871259 /ADMORPH /

4

Conclusions

In this deliverable we gave account of the progress achieved in WP.2 and how the active partners
compensated Covid-related hiring difficulties. We identified the importance of individualistic re-
silience in CPSoS and provided an abstract view of a control architecture we believe is capable of
achieving this resilience in an adaptive manner. Moreover, we identified adaptation opportunities
and methods.

5
1]

2]

[10]

References

Pierre-Louis Aublin, Rachid Guerraoui, Nikola Knezevi¢, Vivien Quéma, and Marko Vukolié¢.
The next 700 bft protocols. ACM Trans. Comput. Syst., 32(4), 2015.

Jean-Paul Bahsoun, Rachid Guerraoui, and Ali Shoker. Making BF'T protocols really adaptive.
In 2015 IEEFE International Parallel and Distributed Processing Symposium, pages 904-913.
[EEE, 2015.

Christian Berger, Hans P Reiser, Joao Sousa, and Alysson Bessani. Resilient wide-area byzan-
tine consensus using adaptive weighted replication. 2019.

Carlos Carvalho, Daniel Porto, Luis Rodrigues, Manuel Bravo, and Alysson Bessani. Dy-
namic adaptation of byzantine consensus protocols. In Proceedings of the 33rd Annual ACM
Symposium on Applied Computing, pages 411-418, 2018.

Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Proceedings of the
Third Symposium on Operating Systems Design and Implementation, OSDI "99, page 173-186,
USA, 1999. USENIX Association.

Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proactive recovery.
ACM Trans. Comput. Syst., 20(4):398-461, November 2002.

Tushar Deepak Chandra, Vassos Hadzilacos, Sam Toueg, and Bernadette Charron-Bost. On
the impossibility of group membership. In Proceedings of the Fifteenth Annual ACM Sym-
posium on Principles of Distributed Computing, PODC 96, page 322-330, New York, NY,
USA, 1996. Association for Computing Machinery.

CNN. Xmouse click could plunge city into darkness, experts say”, April 2018.

Miguel Correia, Nuno Ferreira Neves, and Paulo Verissimo. How to tolerate half less one
Byzantine nodes in practical distributed systems. In Proceedings of the 23rd IEEE Interna-
tional Symposium on Reliable Distributed Systems, 2004., pages 174-183. IEEE, 2004.

Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. J. ACM, 35(2):288-323, April 1988.

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 13 of

ADMORPH - 871259 ADMORPH /

[11] Andy Greenberg. Hackers remotely kill a jeep on the highway—with me in it, July 2015.
[12] Gregg Keizer. Is stuxnet the 'best” malware ever?, Sept. 2010.

[13] Seong Kyung Kwon, Ji Hwan Seo, J. Lee, and K. Kim. An approach for reliable end-to-end
autonomous driving based on the simplex architecture. 2018 15th International Conference
on Control, Automation, Robotics and Vision (ICARCYV), pages 1851-1856, 2018.

[14] Gérard Le Lann and Ulrich Schmid. How to implement a time-free perfect failure detector
in partially synchronous systems. Technical Report Research Report 28/2005, Technische
Universitat Wien, 2005.

[15] Robert M. Lee, Michael J. Assante, and Tim Conway. Analysis of the cyber attack on the
ukrainian power grid, March 2016.

[16] Martina Maggio, Arne Hamann, Eckart Mayer-John, and Dirk Ziegenbein. Control-System
Stability Under Consecutive Deadline Misses Constraints. In Marcus Volp, editor, 32nd
Euromicro Conference on Real-Time Systems (ECRTS 2020), volume 165 of Leibniz Inter-
national Proceedings in Informatics (LIPlcs), pages 21:1-21:24, Dagstuhl, Germany, 2020.
Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik.

[17] Michael K Reiter. A secure group membership protocol. IEEE Transactions on Software
Engineering, 22(1):31-42, 1996.

[18] Joao Sousa and Alysson Bessani. Separating the WHEAT from the chaff: An empirical design
for geo-replicated state machines. In 2015 IEEE 34th Symposium on Reliable Distributed
Systems (SRDS). IEEE, sep 2015.

[19] Paulo E. Verissimo. Travelling through wormholes: A new look at distributed systems models.
SIGACT News, 37(1):66-81, March 2006.

[20] Paulo Verissimo and Luis Rodrigues. Distributed Systems for System Architects. Springer,
2001.

[21] Prasanth Vivekanandan, Gonzalo Garcia, Heechul Yun, and Shawn Keshmiri. A simplex
architecture for intelligent and safe unmanned aerial vehicles. In RTCSA, 2016.

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 14 of

	Executive summary
	Towards Individualistic and CPSoS-wide Resilience
	Background and Related Work on Adaptive Resilience
	Partial Synchrony:
	Partially Synchronous BFT-SMR Protocols:
	Reconciling Synchrony:
	Architectural Hybridization:
	Adaptive Resilience

	An Abstract View on Control
	Cascaded Control and Safety Kernels
	``Normal'' vs. Simplex Control
	Control-aware resilience mechanisms
	Consensual actuation

	Adaptation Opportunities and Methods
	Adapting the System along Attack Pathways
	Adapting Internal Resilience
	Adapting Functionality
	Adapting to Lowering Threat Levels

	Covid-19
	Conclusions
	References

