
D2.2: Report on Adaptation Methods

Project acronym: ADMORPH
Project full title: Towards Adaptively Morphing Embedded Systems

Grant agreement no.: 871259

Due Date: Month 30

Delivery: Month 30

Lead Partner: UniLu

Editor: Marcus Völp, UniLu

Dissemination Level: Public (P)

Status: final

Approved:

Version: 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation pro-

gramme under grant agreement No 871259 (ADMORPH project).

This deliverable reflects only the author’s view and the European Commission is not responsible for any use

that may be made of the information it contains.

ADMORPH – 871259

DOCUMENT INFO – Revision History

Date and version number Author Comments

21/05/2022 ver. 1.0 Marcus Voelp First draft

List of Contributors

Date and version number Beneficiary Comments

21/05/2022 ver. 1.0 Marcus Voelp Initial report structure

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 1 of 17

ADMORPH – 871259

GLOSSARY

BFT-SMR Byzantine Fault Tolerant Statemachine Replication

CPS(oS) Cyber Physical System (of Systems)

FIT Fault and Intrusion Tolerance

IPC Inter-process communication

QoS Quality of Service

SoS System of Systems

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 2 of 17

ADMORPH – 871259

Contents

Executive summary 4

1 Adaptation as Key Enabler of Individualistic and CPSoS-wide Resilience 5

2 State-of-the-Art since D2.1b (month 22) 6

3 Adaptation to Achieve Control-Aware Fault and Intrusion Tolerance 7

4 Adaptation to Recover and Make Resilient Control Tasks 9

5 Bounding Time of Adaptation and Reconfiguration 9

6 Network Monitoring and Adapting Connectivity 10
6.1 Diversity in NIDS for mitigating adversarial attacks 10

6.1.1 Approach overview . 11
6.1.2 Approach specification . 12

6.2 Summary and next steps . 13

7 Interfacing with the Coordination Language Compiler Infrastructure 14

8 Testing Runtime Systems and Adaptation Strategies 15

9 Conclusions 16

10 References 16

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 3 of 17

ADMORPH – 871259

Executive summary

Work package WP2 sets out to develop the adaptation building blocks necessary for maintaining
or, in extreme situations, gracefully degrading the systems’ quality of service guarantees. The
focus is on methods, protocols, tools and techniques, to increase the resilience of controllers of
Cyber-Physical-Systems of Systems (CPSoS), to optimize the mapping, partitioning and scheduling
of system components, to automate the design transformation towards a reliable, resource and
physical requirement aware system, and to analyze and limit system reconfiguration times.

This deliverable D2.2 reports on the adaptation methods and summarizes the achievements of
all tasks of WP2, which at the moment this deliverable is written are all active. This deliverable
builds upon and extends deliverable D2.1b.

Adaptation serves four main purposes:

1. to evade faults, including accidental ones and adversaries in their ongoing attacks;

2. to improve the resilience of systems after experiencing faults or during ongoing attacks,
possibly by degrading the systems’ quality of service, if necessary;

3. to return the system to a state that is considered safe and secure; and

4. to optimize the system whenever the perceived threat level drops (e.g., because the CPS
entered less harsh environments or because adversaries lost interest).

We report on our progress in adapting individualistic CPS and CPSoS-wide resilience (Sec-
tion 1), report on the SOTA since the last deliverable (in Section 2), look at adaptation to achieve
control-aware fault and intrusion tolerance (in Section 3) and to recover control tasks and make
them resilient (in Section 4). We report on our work to bound adaptation and reconfiguration times
(in Section 5), including how we deal with situations where reconfiguration cannot be bounded.
We report on challenges of integrating low-level control into the ADMORPH exchange format and
the coordination language compiler infrastructure (in Section 7) as well as how to test control
systems with a feedback loop for adaptation (in Section 8). Section 9 concludes.

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 4 of 17

ADMORPH – 871259

Network Monitoring
and AdaptationNetwork Monitoring

and Adaptation

Optimization and Analysis

ADMORPH System Architecture

Run-time scheduler

PikeOS Kernel

Linux (native / virtualized) OS-Layer

Runtime-
Layer

Voting and Monitoring
Support

Adaptation Mechanisms

Application-Support

Resilience Wrapper

High-Level Control

Consensual Control

Complex Control

Communication
Monitoring and
Adaptation

Simplex ControlSimplex ControlSimplex Control

Use
Cases

Configuration
Possibilities

Controller
Characteristics

Fault/Attack-Tolerant
Control Design

C++
Compiler/Linker

Scheduling and
Timing Analysis

Teamplay Compiler
(“Cecile”)

Design Space
Exploration

Binaries

Runtime Monitor /
DOER Checker

Avionics Railway

Individual Cyber Physical System (CPS)

A
D

M
O

R
P

H
 E

xc
h

an
ge

 F
o

rm
at

Annotated
Task Set (DAG)

PikeOS
Native Apps

Code generation /
Data Exchange

Naval

CPSoS

Figure 1: ADMORPH architecture: The figure shows the main components of the
ADMORPH architecture and their interplay in relation to the three use cases. Shown
is the tool support (left), the runtime components (right), and the interaction with
other CPS of the CPSoS (back).

1 Adaptation as Key Enabler of Individualistic and

CPSoS-wide Resilience

In ADMORPH and WP2 specifically, we take a holistic view on CPSoS and its components. We
assume fault and threat models of incremental and possibly changing strength. This can be in
terms of accidental faults or intentionally malicious faults, such as targeted attacks mounted by
adversaries. Accidental faults are induced by the environment and change when the CPSoS changes
where it is operating. Intentionally malicious faults change based on their intent, access to attack
tools and skills of the team (see D2.1b for a more detailed discussion of fault and threat models).

Adaptation is the key to cope with faults, on the long run, provided the system can tolerate
faults long enough for adaptation to become effective. In addition, adaptation will serve optimizing
functional and non-functional properties. In this WP and Deliverable, we focus on adaptation in
relation to faults and threats. As mentioned above, adaptation serves four purposes in this context:

1. to evade faults by relocating services to a different set of resources;

2. to improve resilience by including more resources in the tolerance of faults;

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 5 of 17

ADMORPH – 871259

3. to rejuvenate the system by recovering faulty or compromised resources when possible; and

4. to match the systems’ resilience to the perceived threat by allocating more or less resources
to the defense.

We will report adaptation methods and their interplay by zooming into the runtime elements
of the ADMORPH architecture, illustrated in Figure 1. ADMORPH supports both internal and
external adaptation of tasks. Internal adaptation implies that the task or component knows by itself
how to morph in order to tolerate faults and will trigger such measures autonomously. External
adaptation are goverened by the ADMORPH toolchain and happen in a coordinated manner at
predefined points in time. We use the former for time-critical configurations, such as restarting
low-level control replicas to absorb the faults of compromised ones within a few control epochs.
The latter governs more involved reconfiguration, such as transitioning to a new configuration at
the end of a schedule’s hyperperiod. In particular, internal adaptation is tasked to tolerate faults
long enough so that external adaptation has the time to evade the cause and return the system to
a secure state.

In the following, we will report on

• adaptation to achieve control-aware fault and intrusion tolerance (in Section 3),

• recovery and resilience of control tasks (in Section 4)

• bounding reconfiguration times (in Section 5) and in particular keeping them low enough so
that timeliness can be maintained in spite of faults and subsequent reconfiguration to recover
from them,

• network-level monitoring and adaptation (in Section 6),

• interfacing with the coordination language compiler infrastructure (in Section 7), and

• testing runtime systems and adaptation strategies (in Section 8).

We start by reporting on the SOTA advances since deliverable D2.1b.

2 State-of-the-Art since D2.1b (month 22)

In addition to the threats reported in D2.1b, Sargolzaei et al. [?] identified a new type of emerging
threats: Time-Delay-Switch (TDS) faults. These faults are either injected by an adversary or the
result of an accidentally faulty communication channel (e.g., sensor to actuator). In the former
case, attacks will follow a planned strategy in order to fully compromise the system and cause
damage. The latter will typically be of a stochastic nature and most often transient in nature.
TDS manifests as unknown time-variable delays in a control signal, such as the feedback signal
from the control regulator to the plant or the controller internal state update.

Several works have been dedicated to monitoring faults and attacks, including TDS attacks,
by estimating the state in the control system [?].

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 6 of 17

ADMORPH – 871259

Zhang et al. [?] developed a framework to lay out the worst-case behavior during design time
such that TDS faults can be mitigated.

3 Adaptation to Achieve Control-Aware Fault and Intru-

sion Tolerance

Figure 2: ADMORPH control architecture: The control architecture considers high-
level controllers feeding commands into low-level controllers, which themselves are
subdivided into a complex control task and simplex controllers, ready to take over in
case complex fails. A replication control component coordinates the replication and
hence the resilience of the simplex controller. It reacts to reconfiguration requests
from the runtime monitoring and adaptation component.

Figure 2 shows the control architecture of ADMORPH. In many situations, including our use
cases, high-level controllers steer the behavior of more low-level control loops that run at much
higher frequency and have as additional task the stability of the plant. A common example are
advanced cruise control systems, which aim at keeping the distance, lane and velocity, while a lower-
level controller follows the path they dictate. Similar controls can be found in our taxiing use case,
whereby the high-level controller might as well reside outside the controlled CPS, communicating
steering commands through wireless connections. Low level controllers can themselves consist of
multiple instances of complex and simplex control components, the latter possibly replicated.

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 7 of 17

ADMORPH – 871259

We have identified the following adaptation possibilities in such systems:

1. Functional adaptation, by transitioning between multiple high-level controllers and the func-
tionality they provide (e.g., manual vs. automated steering, but also internal vs. external
control). Such adaptations typically happen in the form of configuration changes at pre-
defined points in time and are coordinated by the coordination language, its compiler and
tool chain. Functional adaptations at non-pre-defined points in time are event-triggered
mode changes and must be considered ahead of time, including the transition period.

2. Resource adaptations of the current functionality (e.g., in response to changing loads or
resource unavailabilities). Such adaptations are as well steered by the coordination language
framework.

3. Threat-related adaptations, such as increasing / decreasing the internal resilience of compo-
nents in response to observed higher or lower perceived threat levels. Adaptation at this
stage needs to be a combination of proactive planning of the resources used in case of im-
minent stronger threats and fast runtime adjustments of the components itself to ensure the
system is in the desired state one the threat manifests [6].

4. Adaptation of the runtime monitor, in terms of strategies, depth of analysis and monitored
components. Adaptation of the above kind typically entails also adapting the monitoring
subsystem whose responsibility it is to observe components and identify abnormal behavior.
Adapting also the observation and handling strategies allows monitoring to focus on the risks
at hand.

The above strategies may lead to adaptations at runtime. These are internal to the control
architecture to quickly respond to unforeseen situations and by leveraging excess resources and
planned configurations that have already be anticipated during the design-space exploration. Such
adaptations may include:

• take over by the simplex subsystem in case complex fails to provide correct information in
time

• adjustment of the simplex replication policy by transitioning from a detection quorum, which
establishes resilience over subsequent control epochs to immediate masking

• relocation of continuously failing controllers to spare resources

• adaptation of the frequency of rejuvenation

The above control-aware fault-and-intrusion tolerance techniques are enabled by the inherent sta-
bility of the plant.

We have implemented the above adaptation methods into the control infrastructure presented
in D2.1b and evaluate them in our inverted pendulum demonstrator. Next steps include interfacing
with the coordination language and compiler to limit the selected additional resources to those
foreseen by the design-space exploration.

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 8 of 17

ADMORPH – 871259

4 Adaptation to Recover and Make Resilient Control

Tasks

Over time, control tasks fail or become compromised by adversaries aiming to take over the system
and cause harm to the environment in which it operates. Recovery of such control tasks and the
resources they use is essential to maintain healthy majorities and to continue tolerate failures. We
have therefore extended both the state-capturing capability of the replicated controller and the its
ability to restart replicas in a stateless manner with the means to also bring up additional replicas.
These new replicas start from binaries that are drawn from a pool of pre-compiled and pre-analysed
images that are sufficiently diverse to cancel adversarial knowledge how to attack replicas of this
kind. Starting without state, the replication controller then injects the captured state and keeps
these replicas up to date in the control tasks at hand before transitioning the responsibility to
actually control the plant to them. This way, additional replicas can be created and later brought
into the active voting group once they are up and running. In the next section, we detail why this
two staged approach is required, i.e., why replicas must first be operational before we can consider
their outputs in the majority decisions that control the cyber-physcial system and systems of the
same.

5 Bounding Time of Adaptation and Reconfiguration

Normally, reconfiguration is limited to starting the new components and the tasks they implement
it and transitioning responsibility to them. However, faults may also affect the resources that
have been used to run these tasks and components. To not exhaust these resources, in particular
in the presence of transient faults, resources must be rejuvenated and reconfigured themthelves.
The latter typically implies rebooting the failing resource and testing it to see whether the fault
persists.

Similarly, reconfiguration at software level creates new tasks, merges them into the existing
schedules and sets up their communication to coordinate with the remainder of the system. Such
reconfiguration is highly task and system dependent and may have a runtime that may by far
exceed the deadline of the re-configured tasks, even when several of them can be missed.

Primary objective of Task T2.3 is to limit configuration times in order to guarantee bounded
down times. We do so by integrating fault models into the scheduling analysis of redundant
dataflow tasks. This way, we determine the WCET of such tasks in the presence of errors down
to a specific probability.

Some aspects might however still lead to unbounded reconfiguration times, such as repeated re-
boots of a resource after a crash or reactivation of the same software vulnerability. These situations
typically indicate a systematic and persistent failure in the hardware resource and or the software
component that is re-instantiated. For this reason, we will investigate software diversification and
relocation possibly to computing resources of different characteristics and the implied consequences
on the WCET of this software component. Our plan is to have pre-analyzed images pooled as well
as a few resources on stand-by that can then be integrated by either slightly adapting the schedule

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 9 of 17

ADMORPH – 871259

or by rescheduling an entire subsystem.
However, even though the above measures will bound the reconfiguration times of the system,

we expect most of these bounds to be significantly larger than the worst case response times
of tasks in the system. In particular, we consider the case where the system would become
unsafe during reconfiguration if control is not maintained throughout the reconfiguration itself.
This is where fault tolerance comes into play to buy the time that is necessary to bring up the
new subsystems. A second challenge, related to the previous one, is the fact that although each
component will be reconfigured in a bounded amount of time, component interdependencies may
push the overall reconfiguration time beyond the limit what can be absorbed by our tolerance
measures. Therefore, instead of creating reconfiguration cascades by accepting the downtime of a
system while a depending system is reconfiguring (which may easily lead to transitive effects), we
aim to decouple reconfiguration and inclusion into the operational group as much as possible.

In our control architecture, we have already implemented this decoupling of reconfiguration
and inclusion by preparing our system to reconfigure in the following three steps: First, the new
configuration starts up, by creating new replicas, by starting components implementing the new
functionality or by starting new resources (kept as spares). Second, the new configuration connects
with the existing setup, including by ensuring that the new configuration receives state updates and
sensor inputs and is as well already monitored. Third, once this preparation phase concludes and
all components report their readiness to be included, we transition control to them by atomically
updating voters and associated components to consider the new subsystems instead of the previous
configuration.

6 Network Monitoring and Adapting Connectivity

CPSoS must not only adapt the individual cyber-physical systems, but also the network of the
same in case communication gets jammed or in case certain communication links fail. To that end,
we develop machine learning techniques for monitoring the network, both for accidental faults
and to detect intrusions. A particular research question is, thereby, how to deal with attacks to
the network intrusion detection system itself, which we address by exploiting different forms of
diversity to defeat attacks. These range from diverse model datasets and execution platforms to
redundancy in the network layer itself.

We have already defined several strategies for exploiting the above diversity on which we elab-
orate in the following.

6.1 Diversity in NIDS for mitigating adversarial attacks

Cyber-Physical Systems (CPS) are often the target of cyber-attacks, sometimes perpetrated by
highly motivated attackers [7]. ML-based NIDS can be used as a defense mechanism to mitigate
some of these threats [1]. However, the NIDS itself can be targeted by adversarial machine learn-
ing (AML) attacks itself, which is a problem that is not sufficiently well covered in the literature.
According to [2], learning-based cybersecurity systems should consider adaptive adversaries that

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 10 of 17

ADMORPH – 871259

target the proposed system by searching for and exploiting ML weaknesses. We propose a dis-
tributed intrusion detection approach that considers diversity to face this issue. The approach
allows the NIDS-based monitoring system be become more resilient to attacks by exploiting soft-
ware and data diversity.

6.1.1 Approach overview

Our main objective is to mitigate traditional adversaries, which target the CPS being protected
by the NIDS, and also mitigate the adversaries that target the NIDS itself, in particular its ML
infrastructure. We propose an architecture that explores different forms of diversity (Figure 4).
According to [5], diverse components have different vulnerabilities, and the greater distance/differ-
ence between them, then the lower chances of the same vulnerability occurring. Therefore, when
using redundant components as means to tolerate attacks, diversity of the redundant components
is essential to ensure that the attacker cannot simply replicate the attack to be successful. Diver-
sity will force the attacker to find and explore different vulnerabilities in each component, thus
ensuring that the system survives attacks and operates correctly for a longer amount of time.

The multiple forms of diversity that we consider and propose are the following:

• Diversity of View, which consists in exploiting different feature sets. If an attacker changes
one of the views, it is possible to identify it through the other views.

• Diversity of Model, in which multiple and different models are used. The attacker will
have to know the characteristics of different models, as needed to evade all them by applying
different algorithms. Moreover, as reported in the literature, some ML algorithms are more
robust than others against AML according to the vulnerability.

• Diversity of Workers, which consists in having the NIDS being replicated, which each
replica being different from the others. To compromise the NIDS, the attacker has to com-
promise multiple workers. If an attacker compromises only one of the workers, it is possible to
remove the compromised machine from the system without significant losses for the intrusion
detector, working only with the remaining workers.

The approach overview is depicted in Figure 3. It is composed of a master node and n workers
defined by the security manager. The master node is responsible for deploying the worker nodes
and globally consolidating all local views from the workers. We note that this master function
is an abstract function, which is not (and should not) be performed in a single component. In a
real deployment, this function has to be implemented in a distributed and also replicated way, for
instance by distributing it among the multiple worked nodes. Known techniques for Byzantine
Fault Tolerance (BFT) can be used for this purpose, so at this point we do not explicitly focus on
this aspect and we simply represents the function as central function.

The worker node is responsible for listening to network traffic at a given point. It has a diversity
layer composed of different models trained with different views and algorithms. Also, the worker is
responsible for sending its status frequently to the master node. The specification of each worker

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 11 of 17

ADMORPH – 871259

Figure 3: Proposal - Distributed and Resilient Network Intrusion Detection System
Overview.

node is defined when the master node instantiates it. That approach works by monitoring only
network traffic to detect suspicious activity.

It is important to emphasize that our point here is not just to create many systems replicas.
While such a strategy could work for accidental failures, it won’t be effective for cybersecurity
attacks. Creating many system replicas without diversity will result in an environment running the
same system’s vulnerabilities. In that case, the adversary could put down the entire environment
by exploiting a single vulnerability, common to all replicas.

6.1.2 Approach specification

Figure 4 provides a detailed view of the proposed architecture. The Network Assets component
represents the network devices on the CPS. Those devices are connected to the network producing
traffic. The role of the master is essentially deploying and managing the worker nodes. The
worker nodes are deployed in a given network point, listening to the traffic. The network traffic is
collected through a network packet analyzer, e.g., Wireshark or TCP-dump. The traffic is sent to
the feature extractor, which transforms raw data into features that better represent the underlying
network flow. The feature extractor extracts many different feature sets, called views. Views are
sights from the same event, which look at the different features. Those built views feed many
models. The models’ layer is composed of n models, trained with many different combinations.
The combinations range from different views to different classifiers. The model output or inferred
values are sent to consolidate the local view. At this point, we are applying the majority vote.
Where each model signs one vote, and the most voted class is picked as the winner class. Then, the
worker reports its consolidated view to the master node, consolidating all the workers’ views and
raising alarms if anomalies are detected. Again, we note that this consolidation of the final decision

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 12 of 17

ADMORPH – 871259

Figure 4: Proposal - Distributed Network Intrusion Detection System Detailed View.

(which is simpler) can be (and should be) also done in a distributed way, to avoid introducing a
single point of failure/attack in the system.

6.2 Summary and next steps

This deliverable explored the stat-of-the-art of dependable network monitoring that supports sys-
tems adaptation. We proposed a distributed network intrusion detection system that employs
distinct diversity as its main characteristic to mitigate adversarial attacks.

NIDS is a well-known cybersecurity mechanism to detect cyber threats that give support for
system adaptation. The proposed architecture employs NIDS ML-based, which is recommended
according to the CPS environment. Its environment is dynamic and usually composed of dozens
or hundreds of network devices producing traffic. Usually, the CPS domain produces a significant
amount of data, and there is a need to analyze current traffic in time. The NIDS ML-based can
analyze network data and identify new attacks as time passes without needing a specialist to create
security rules. The intrusion detector ML-based learns rules from the data.

The diversity was not sufficiently explored in the NIDS literature, but it is well-known in cy-
bersecurity in general. As previously cited, OS and classifier diversity contributed to vulnerability
reduction. When we talk about AML, there is a challenge that it is not possible to deploy all known
techniques to mitigate AML attacks. Usually, those techniques decrease the model’s accuracy and

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 13 of 17

ADMORPH – 871259

increase computational complexity.
The proposed approach exploits the diversity concept. Instead of consuming the computational

resources to create systems replicas (which does not work for cybersecurity), the alternative is to
deploy multiple software variants with the same functionalities but different designs. Also, using
many views from the same event, looking at different perspectives. The assumption is that the
diversity technique will help mitigate adversaries indirectly by deploying systems diversity and
data diversity, which, according to literature, contribute to vulnerability reduction.

The preliminary studies resulted in a survey paper about AML in NIDS, which describes attacks
and defense techniques used in the literature. One of the contributions of our survey is about the
feasible techniques of AML in the NIDS context. Usually, the techniques used in AML to NIDS
come from other areas that have no or weak constraints in the feature space, such as object
detection or spam, and the network is a constraint domain. The adversary can not arbitrarily
change the network packet field. Having explored the state of the art, our next steps are: 1)
building relevant datasets. Since the literature on NIDS lacks datasets and datasets for the CPS
domain, are even more scarce. 2) Building models exploiting the proposed architecture, employing
various ways diversities. Also, building models for baseline solutions, exploiting the state of the art
approaches used to mitigate adversaries. 3) Evaluating the proposed architecture by comparing
the results to the baseline models through traditional ML and AML metrics and improving models.

7 Interfacing with the Coordination Language Compiler

Infrastructure

Interfacing with the coordination language compiler infrastructure is based on the ADMORPH
Exchange Format (AXF), a text-based graph representation with additional attributes. For task
sets that can be represented as directed acyclic graph, AXF will soon allow interfacing with the
AROMA compiler and runtime system and it supports running TeamPlay coordination codes on
AROMA supported hardware, such as the Kalray MPPA.

However, we have also already identified several challenges to integrate implicitly synchronizing
tasks and tasks with different inherent periods. Communication in the AXF needs to be expressed
explicitly. Moreover, since the whole task set is characterized as graph, periodic tasks would need
to be unrolled and all instances up to the hyperperiod be represented. In particular, reconfiguration
of tasks would only be possible at the end of this hyperperiod respectively at certain reconfiguration
boundaries that cut across the DAG.

To address the above challenges, we are are currently reserving additional resources for low-
level control tasks to adapt internally for the purpose of tolerating faults until the time for a more
elaborate adaptation of the system comes within reach. We are currently investigating how to
better integrate internal and external reconfiguration and the interplay between the two.

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 14 of 17

ADMORPH – 871259

Figure 5: Testing framework

8 Testing Runtime Systems and Adaptation Strategies

Being able to test runtime systems and adaptation strategies, in particular in extreme situations,
is a crucial for safety critical systems. Tests are commonly performed in a testing framework,
such as the one depicted in Figure 5, which we use in ADMORPH. The system under test, which
in our case contains both the main hardware and software components and the adaptation layer
which feeds back into the software, adapts it and changes its behavior, is provided test inputs and
generates in return the test outcomes at a certain measurable performance. The latter are fed into
an analysis to determine performance bounds and test confidence.

In Mandrioli et al. [3, 4], we have investigated the specific setup where software inside the
system under test has a feedback loop that allows it to adapt to various situations. In particular,
we have investigated how to test such system. One example of such a feedback loop concerns the
number of replicas for a controller to adapt to different threat levels and fault rates. Another
example adjusts video processing on the fly.

Drawing from statistics, one typically finds three methods to test a system. Monte Carlo
investigates the average behavior of a system by observing how the system reacts to examples
randomly drawn from an input distribution. However, while this accurately represents the system
behavior in the average case, we must also look at extreme situations. Extreme value theory argues
about such extreme behavior based on the observed maxima to determine the likelihood of missing
the extreme in the observed case.

Our approach is based on scenario theory, which tests the confidence β of having missed a
scenario above the probabilistic bound ε in a number n of tests.

We are currently investigating the level at which tests are best performed (e.g., hardware-in-
the-loop vs. software-in-the-loop) to achieve a good testing coverage. Moreover, we investigate how

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 15 of 17

ADMORPH – 871259

the testing of control software can be guided by the control design process in a general manner.
In other words, we identify properties that the behaviour of the controlled system (composed of
physical plant and controller) should expose, based on the control design. We are developing a
testing methodology that would allow us to certify that the closed-loop behaviour is coherent with
the controller specification.

9 Conclusions

In this deliverable, we have presented the recent advances made in Task T2.1 – T2.6 of WP2
and our findings in terms of adaptation methods and how to embed them into the ADMORPH
architecture. Although adaptation is governed by offline-computed strategies, possibly originating
from design-space exploration, the actual adaptation performed at runtime requires care to secure
fast response times of the individual CPSoS building blocks. In particular tasks with stringent
timing requirements may need to be equipped with internal resilience mechanisms to absorb faults
of an accidental and malicous nature. We have identified and already partially implemented
several strategies for adapting to different situations, for bounding reconfiguration times and, in
particular, for decoupling reconfiguration from the operational behavior of components, specifically
controllers. The latter secures low response times by already bringing the new configuration into
an operational state before responsibility is transferred.

Next steps include investigating how to more closely integrate internal adaptation and the
coordination language and how to secure the monitoring and adaptation layer from faults.

10 References

[1] Zeeshan Ahmad, Adnan Shahid Khan, Cheah Wai Shiang, Johari Abdullah, and Farhan Ah-
mad. Network intrusion detection system: A systematic study of machine learning and deep
learning approaches. Transactions on Emerging Telecommunications Technologies, 32(1):e4150,
2021.

[2] Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke, Fabio Pierazzi, Christian
Wressnegger, Lorenzo Cavallaro, and Konrad Rieck. Dos and donts of machine learning in
computer security. In Proc. of the USENIX Security Symposium, 2022.

[3] Martina Maggio Claudio Mandrioli. Testing self-adaptive software with probabilistic guaran-
tees on performance metrics. In ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE 2020), November 2020.

[4] Martina Maggio Claudio Mandrioli. Testing self-adaptive software with probabilistic guarantees
on performance metrics - extended and comparative results. IEEE Transactions on Software
Engineering (TSE 2021), January 2021.

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 16 of 17

ADMORPH – 871259

[5] Miguel Garcia, Alysson Bessani, Ilir Gashi, Nuno Neves, and Rafael Obelheiro. Analysis of op-
erating system diversity for intrusion tolerance. Software: Practice and Experience, 44(6):735–
770, 2014.

[6] Douglas Simoes Silva, Rafal Graczyk, Jeremie Decouchant, Marcus Voelp, and Paulo Esteves-
Verissimo. Threat adaptive byzantine fault tolerant state-machine replication. In 2021 40th
International Symposium on Reliable Distributed Systems (SRDS), pages 78–87, 2021.

[7] Jean-Paul A Yaacoub, Ola Salman, Hassan N Noura, Nesrine Kaaniche, Ali Chehab, and
Mohamad Malli. Cyber-physical systems security: Limitations, issues and future trends. Mi-
croprocessors and microsystems, 77:103201, 2020.

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 17 of 17

	Executive summary
	Adaptation as Key Enabler of Individualistic and CPSoS-wide Resilience
	State-of-the-Art since D2.1b (month 22)
	Adaptation to Achieve Control-Aware Fault and Intrusion Tolerance
	Adaptation to Recover and Make Resilient Control Tasks
	Bounding Time of Adaptation and Reconfiguration
	Network Monitoring and Adapting Connectivity
	Diversity in NIDS for mitigating adversarial attacks
	Approach overview
	Approach specification

	Summary and next steps

	Interfacing with the Coordination Language Compiler Infrastructure
	Testing Runtime Systems and Adaptation Strategies
	Conclusions
	References

