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GLOSSARY

BFT-SMR Byzantine Fault Tolerant Statemachine Replication

CPS(oS) Cyber Physical System (of Systems)

FIT Fault and Intrusion Tolerance

IPC Inter-process communication

QoS Quality of Service

SoS System of Systems
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Executive summary

Workpackage WP.2 sets out to develop the adaptation building blocks necessary for maintaining
or, in extreme situations, gracefully degrading the systems’ quality of service guarantees. The
focus is on methods, protocols, tools and techniques, to increase the resilience of controllers of
Cyber-Physical-Systems of Systems (CPSoS), to optimize the mapping, partitioning and scheduling
of system components, to automate the design transformation towards a reliable, resource and
physical requirement aware system, and to analyze and limit system reconfiguration times.

This is an updated version of deliverable D2.1, called D2.1b. Aside from more in depth analysis
of adaptation possibilities, we present a more concrete mapping to our envisaged consensual control
architecture and on the interplay between the CPS-local runtime monitor and adaptation manager
and the CPSoS-wide communication monitoring and adaptation.

Adaptation serves four main purposes:

1. to evade faults, including accidental ones and adversaries in their ongoing attacks;

2. to improve the resilience of systems after experiencing faults or during ongoing attacks,
possibly by degrading the systems’ quality of service, if necessary;

3. to return the system to a state at least as safe and secure as initially; and

4. to optimize the system whenever the perceived threat level drops (e.g., because the CPS
entered less harsh environments or because adversaries lost interest).

We identified a tension between the classical world of real-time and embedded systems, focusing
on predictability as first principle and hence known upper bounds for computation and commu-
nication latencies, and the body of knowledge on resilience mechanisms, in particular fault and
intrusion tolerance. The latter operate in what researchers in that domain call asynchronous or
partially synchronous systems and protocols, where such bounds are not given per se, in particular
while the system is under attack.

Our goal is to reconcile both worlds and to research and develop adaptive resilience mechanisms,
specifically for controllers, that are able to provide timing guarantees, not from the predictability
of all components, but from enough components not being affected by adversaries both in the value
and time domain.
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1 Towards Individualistic and CPSoS-wide Resilience

Concerning the specific contributions of this deliverable, it first provides a review of the state of
the art (SOTA) on adaptive resilience, from which it is possible to conclude about open issues and
opportunities that we explore in ADMORPH. Then, the deliverable introduces some fundamental
concepts on dependability and security, also describing baseline assumptions that pave the way
for defining appropriate system and fault models. The deliverable is then devoted to describe our
view on a generic fault and intrusion tolerant (FIT) control architecture, including a description of
its components, their role and interplay. Our view on how this architecture will support resilient
adaptation, and what kinds of adaptation we anticipate at this stage of the project, are then
described.

1.1 Fault and Threat Models

Correctness, and as we shall see in the next section, timeliness of CPS and CPSoS are threatened
by components of these systems failing due to accidental and intentionally malicious causes. A
system’s resilience to such faults is characterized by its ability to tolerate the occurrence of such
faults and to return the system to a state at least as safe and secure as initially. In this project
we consider a whole spectrum of faults.

On the one end of the fault spectrum are accidental faults, which follow known statistics and
are typically of a transient nature. That is, although transient accidental faults may manifest as
errors (e.g., by flipping bits in critical state) their rate of occurrance is typically known and can
in general be compensated through encoding techniques, such as error correcting codes (ECC),
encoded processing, lockstep execution and similar techniques. Moreover, their transient nature
implies that once a fault it corrected in a given place (e.g., by overwriting the flipped bit and the
ECC that contains it), its re-occurrence follows the same statistical pattern as initially and as for
all other locations. In particular, it is unlikely that the same fault keeps re-occurring over extended
periods of time, which, as we shall see next has consequences on how accidental faults affect the
timeliness of CPS and systems of them.

On the other end of the spectrum are targeted attacks by highly skilled and well equipped
adversaries, attacking the system for the purpose of causing faults intentionally and when and
where the effect of experiencing such a fault is most severe. Adversaries sometimes follow rational
incentives, such as maximizing their own profit, but in general such assumptions cannot be sus-
tained with high confidence. Adversaries whose primary objective is to disrupt service or, in case
of CPS, cause damage to the physical world, will not necessarily follow accidental fault statistics,
reveal their presence, or stop in their attack after the first partial success. Instead we have to as-
sume faults to persist, in a concealed manner, and adversaries to exploit the knowledge they have
gained from previous attempts to speed up and strengthen their attack. In particular, we have to
assume that adversaries will strategically select other replicas to, over time, gain knowledge how
to compromise enough of them to gain control over the majority, which jeopardizes naive fault
tolerance mechanisms and demands for resilience.
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1.2 Timeliness and Synchrony

Before discussing the principled resilience techniques, summarized in Table 1 and their adaptation
possibilities, let us revisit the standard models for characterizing the time-domain of the real-time
systems that are at the heart of CPS and CPSoS. In particular, we shall discuss the threats that
accidental and malicious faults impose on this domain.

Real-time and embedded systems (RTES) typically operate under system assumptions that
the dependability community [28] summarize under the synchronous system model. That is, RTES
are typically assumed to operate in environments where communication and computation are
sufficiently predictable to derive upper bounds for computation and communication, called worst-
case execution (WCET) and worst-case transmission times (WCTT). Under such assumptions, it
is possible to communicate sufficiently often to synchronize clocks to for example form the sparse
time base of clock-driven systems or to ensure that at least locally, events occur at the same time
and in the same relative order.

Accidental and malicious faults threaten the coverage of the above timeliness assumptions, by
faults causing omissions in message delivery and execution to crash, to behave in an arbitrary
(Byzantine) manner.

To compensate, the dependability body of knowledge has focused on relaxed synchrony models,
such partial synchrony [11], or asynchronous systems where the above bounds hold only during
frequently recurring and sufficiently long “good” periods, during which the protocol will make
progress, respectively in which such bounds cannot be known to hold. Partially synchronous and
asynchronous systems cannot guarantee timeliness and are therefore generally ill suited for real-
time systems unless they are equipped with a fail safe synchronous core and unless failure in the
safe state into which such a core maneuvers the system are tolerable. In Section 5, we shall return
to this aspect in our discussion of complex vs. simplex controllers and in the role they play in a
cascaded control setting.

Attacks to cyber-physical systems have already been demonstrated, for example in the Au-
rora [9] project, and they have already been exploited in the wild (e.g., with Stuxnet [15] and the
cyber attack against the Ukrainian power grid [20]).

We shall later return to two important aspect that distinguishes accidental from intentionally
malicious faults: due to the stochastic nature of the former, it becomes increasingly more unlikely
to see the same fault re-occurring during subsequent execution sequences of increasing lengths, in
particular if faults are transient and stochastic independent. The same is not true for intentionally
malicious faults triggered by an adversary. Conversely, one cannot exclude the possibility of a
component failing again within a given time-span and because of accidental causes, even if the
mean-time-to-failure (MTTF) is larger than this span. Conversely, provided we construct the
system in the right way, adversaries would need a certain time to again mount an attack until
he/she again managed to compromise a component.

Let us exemplify what we just wrote again on the example of a bitflip. Despite a relatively high
MTTF for radiation induced bitflips hitting the same word in memory, it remains possible with
some probability. Whereas the same bitflip happening for example in consequence of a rowhammer
attack requires mounting this attack again, which takes a certain time, in particular if to mount
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it, the adversary must first compromise another component from which to mount this attack.

1.3 Classical Resilience and Architectural Hybridization

The classical design patterns, in particular to cope with transient, accidental faults, include:

1. monitoring components, for the purpose of detecting faults and intrusions,

2. isolating them, for the purpose of confining the propagation of faults, and

3. repairing failed components, by restarting and re-executing them, to return the system to a
state at least as safe and secure as initially.

During the time between detection and restart, the component is down and its functionality is only
available again after restart, which can take several seconds. Further, fault and intrusion detection
are typically incomplete in that not all faults are detected and that the system has to cope with
false alarms.

For systems that cannot tolerate downtimes of the sort described above or where re-occurrence
of the fault during re-execution cannot be excluded with high confidence, replication suggests itself
to mask occuring faults. Replication can be in the form of triple-modular redundancy (TMR)
or Byzantine-fault tolerant state-machine replication (BFT-SMR). The fundamental difference
between these two approaches is that TMR assumes a trusted invocation structure (i.e., all replicas
must receive the same inputs, at least approximately, at the same relative point in their execution
and are expected to produce (approximately) identical results). BFT-SMR protocols on the other
hand are equipped to deal with situations where replicas lie inconsistently to others (e.g., a leading
replica proposing operation A to one subset, while proposing B to another subset of replicas). This
inconsistent lying is called equivocation.

In synchronous, time-triggered systems, TMR typically applies time-based omission detection
(for example by expecting a result within a bounded amount of time, while considering late re-
sults as originating from faulty replicas). Although suitable for accidental faults, timed protocols
become brittle in the presence of intentionally malicious faults, as has been demonstrated [10]. In
particular, they are likely to fail under time-domain attacks that are capable of affecting multiple
replicas simultaneously. In Krueger et al. [16, 17], we have developed a mitigation strategy for
such time-domain attacks, by randomizing the schedule to ensure replicas are not co-scheduled and
not scheduled deterministically after the same accomplice task. As such, time-domain attacks im-
pact severely only a subset of replicas, which can be compensated with additional correct replicas
operating in a timely manner.

Time-free failure detection [19], or, like in the seminal protocol PBFT [6], the use of local
timers merely as a mean to eventually react to faults, eliminate the above vulnerability to time-
domain attacks, however at the costs of guaranteeing progress only during the “good” times of the
underlying partial synchrony model.
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Resilience Fault Model Masking Comments
Mechanism trans. pers. crash accid. mal. immediate

detection x x x (x) (x) - ability to detect

re-execution x - x x -* - same attack

re-location x x x x -* - same attack

diversification -
+ re-execution x - x x x -

+ re-location x x x x x -

replication (same) x x x x -* x same attack

replication (n-ver.) x x x x -* x exhaust

replication (dyn. div) x x x x x x

Table 1: Overview of basic resilience mechanisms and their effectiveness in the pres-
ence of different faults (transient vs. persistent and crash, accidental, intentionally
malicious faults). Cells are marked as supported x, partially supported (x), and not
supported -. Comments abbreviate the reasons explained below. Obviously detection
only lets the system know of an error and requires additional means to act on it (e.g.,
by falling back to a fail-safe state or by invoking one of the other mechanisms). Im-
mediate masking indicates whether the mechanism is able to conceal the presence of
the fault or whether the system can return to correct behavior only after handling the
fault. Without dynamic diversification, adversaries oppose the same set of replicas.
Sooner or later, they will exhaust the healthy majority.

1.3.1 Architectural Hybridization:

Architectural hybridization [26] includes trusted-trustworthy components that follow a distin-
guished system and fault model (e.g., they may operate or even communicate synchronously and
fail exclusively crashing or not at all). The purpose of these components is to provide a limited
functionality that is however essential to make the system more resilient or that avoids complicated
and costly situations in homogeneous protocols. The arguments that help justify distinguishing
the fault models of trusted components versus the rest of the system are rooted in the isolation
of these components (limiting access to them through well-defined interfaces) and by the sim-
plicity of the functionality they have to provide. For example, USIG, the trusted component of
MinBFT [27] and similarly CASH, the trusted component of CheapBFT [14], merely offer signa-
tures over trusted monotonic counters, which suffices for the BFT-protocol to avoid equivocation
by disallowing different messages to be sent with the same counter value.

The above mentioned synchronous local subsystem that is able to enter a fail safe state could
be an instance of such a subsystem, but more generally the research question linked to this con-
struction principle is: “What is the minimal functionality that needs to be trusted to achieve the
system’s desired safety and security properties?”. We shall return to this aspect in Section 5 where
we introduce our approach to securing control at the low-level of the CPS architecture.
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Table 1 gives an overview of the principled techniques that can be applied to handle faults
of different kind. As can be seen, simple re-execution or re-location (e.g, after detecting a fault,
which in general remains imperfect and/or requires domain specific knowledge, e.g., about plausi-
ble sensor values) has limited effectiveness on intentionally malicious tasks, unless combined with
diversification strategies to present adversaries a moving target. The same is true for replication
schemes, where replicas are identical. Even static n-version programming fails over time, as ad-
versaries exhaust the healthy majority. Immediate masking, that is the ability of a system to
conceal fault handling and configuration delays requires replication to hide the behavior of faulty
nodes behind a healthy majority operating in consensus. We shall see in Section 5 how leveraging
ADMORPH results on inherent control stability of plants allow us to weaken immediate masking
and tolerate faults through re-execution after rejuvenating replicas fast enough.

2 Adaptive Resilience

Most of the state-of-the-art on adaptive resilience mechanisms [5, 22, 7, 2], in particular in terms
of Byzantine fault and intrusion tolerance techniques, suffer from the above described divergence
of the dependability and real-time/embedded systems communities, which will require some re-
consolidation effort to obtain time-free, partially synchronous resilience mechanisms (capable of
withstanding time domain attacks) that exhibit predictability and timeliness, ideally as an emerg-
ing property.

In the first class of time-agnostic, but not real-time capable protocols, WHEAT [24] decreases
client latency by selecting as leader the best connected replica. Adapt [3] builds on Abstract
and Aliph [2] to perform AI-driven dynamic adjustments of the payload protocol. AWARE [4]
improves over WHEAT by continuously monitoring connectivity and re-configures based on these
observations. We are currently investigating the effects of manipulating one’s transmission time
on the reconfiguration of AWARE. Also, unlike the above protocols, which primarily focus on
optimizing the system, we have investigated means to react to situations where the perceived threat
level increases [23]. In such situations, the BFT-SMR protocol must activate additional replicas
to compensate for the stronger adversary, which normally requires reaching consensus about the
configuration of the system [5, 22, 2]. Building upon the group membership impossibility result by
Chandra et al. [8], Simoes-Silva et al. [23] were able to show that this is impossible in a partially
synchronous system and suggest reaching agreement proactively on how the system should react
in case threats increase.

The above works unanimously assume the strongest fault model, namely malicious threats. Of
course several alternatives become possible when threats are of a more benign nature, such as
crash and omission faults or only transient faults, or when time-domain attacks are excluded.

For example, assuming crash and omission faults, Rodrigues et al. [25] and Wang et al. [31]
investigate coordination of replicated execution in event triggered systems, an aspect that will not
be necessary in time-triggered systems [1] as long as time-domain attacks are excluded. Unlike
event-driven systems, which schedule tasks in consequence of their triggering event (e.g., the arrival
of a message from a remote sensor), time-triggered systems require such communication to happen
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at a specific time slot, prior to the slot where replicas computing their response, after which
they send their replies to remote actuators in subsequent slots. Guarding communication thereby
prevents replicas from acting outside their allocated slots.

Miedema et al. investigate single-event upsets and how adjusting DAGs with alternative paths
improve tolerating such faults. See Deliverable D1.2 for further details.

3 Adaptation Opportunities and Methods

In the following, we will report on several adaptation opportunities and methods, which we already
identified and on the additional research we plan to conduct. As illustrated in Deliverable D1.1,
adaptation will be the key to compensate accidental faults and to fend off adversaries mounting a
targeted attack to the system. Adaptation will act along the following four lines:

1. to replace and relocate components along the attack pathway, creating a moving target
defense to buy the time that is necessary to repair and recover compromised components
and in turn strip adversaries from their foothold in the system;

2. to adjust the internal resilience of components, by replacing configurations with more resource
demanding configurations that exhibit a better resilience to match the perceived threat level;

3. to adjust the resource mapping of a component in case some resources become unavailable;

4. to adjust the functionality of the system to guarantee a degraded service in case not enough
resources remain to sustain the full functionality of the system; and

5. to optimize the system whenever the perceived threat level drops.

It is important to realize that the first three happen while the system has detected the presence
of an imminent threat, whereas the latter applies in those situations where the system has gained
confidence that it is no longer exposed to the high risks it has prepared for. Lines 2–4 equally
apply to accidental faults and targeted attacks, whereas replacing and relocating components
along the attack pathway (Line 1) is only necessary to fend off adversaries. Of course, relocation
also happens as a consequence of resources becoming unavailable (e.g., due to permanent failure
of a resource). In the presence of targeted attacks, adaptation along Lines 1–4 must outpace
adversaries in adapting faster to improve system resilience before the adversary can exploit the
current vulnerable state from which the system tries to evade.

3.1 Adapting the System along Attack Pathways

Components are characterized by their state and executable and will interact with other com-
ponents through well defined communication interfaces (e.g., the inter-process communication
mechanism (IPC) provided by the PikeOS microkernel). Relocating a component from a faulty
core and redirecting IPC connections to or from this components evades faulty resources and
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presents adversaries a fresh instance, in particular if a component is not replaced by an instance
the adversary was already able to analyze, but instead by instances the adversaries has not seen,
yet. Depending on whether or not the state has been compromised, it may be either transferred
from the previous component or re-instantiated from scratch or from a checkpoint. Adaptation
of a component generally entails adaptation of other elements of the system, most notably the
schedule, which defines how applications are mapped and multiplexed to resources.

Dynamically changing the attack pathways in the manner described above also allows the
system to evade from accidentally failing resources, because the new instance will be mapped to
a different subset. However, such relocation must happen more generally, including for resources
that are not on the pathway. Hence, we introduce Line 3. Remapping tasks to a different subset
of resources requires adversaries to redo the work they have already spent to prepare the attack of
the old instance.

Let us exemplify the latter for an attacked component with a network connection to the outside.
Such a component typically interacts with a network stack and network interface card (NIC) driver,
which implement the communication protocol (e.g., TCP/IP) and network hardware interaction,
respectively. Naturally, being exposed to the environment, the NIC driver and network stack are
typical candidates for a first compromise of the system. However, aside from ongoing transmissions
and open connections, the internal state of the network stack and NIC driver is largely disconnected
from the state of the receiving component. It is therefore possible to periodically rejuvenate the
stack into a state frozen after initialization and to repeat NIC initialization to remove adversaries
that have entered this most external layer of the system. Rejuvenating and replacing the networked
component, requires adversaries to repeat the work they have already performed for compromising
this network layer before they can identify and exploit vulnerabilities in the receiving component.
The latter is of course provided we can present the adversary with an instance he was not able to
analyze.

3.2 Adapting Internal Resilience

Many components or conglomerate of components already exhibit some form of internal resilience
to accidental and malicious faults. For example, triple modular redundant systems, or more
generally replicated systems implementing Byzantine agreement operate n replicas out of which
f replicas may become compromised before the adversary gains control over the conglomerate
of these replicas. n and f are typically related (e.g., n ≥ 3f + 1 for homogeneous, partially
synchronous consensus [6]). Thus, increasing n also increases f and the internal resilience of this
conglomerate.

By homogeneous consensus protocol, we refer to a protocol running in a homogeneous system.
In such a system, all components follow the same fault model. In contrast architectural hybridiza-
tion [10, 26] allows identifying trusted-trustworthy components that follow a distinguished fault
model (e.g., they fail only by crashing, while the remaining system may exhibit arbitrary, possibly
Byzantine faults).

In the most general case, changing the membership of which components belong to a group
of replicas boils down to a consensus problem, requiring agreement for addition and removal.
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It therefore depends on the system model whether reaching such an agreement faster than the
adversary compromises more than the initial f replicas is still possible. We are currently exploring
possibilities to proactively prepare for such an adjustment to later be able to react without first
having to reach consensus how this reaction should look like. In particular, we investigate how the
inherent resilience of a plant to missed, wrong or held actuation helps performing these adaptations
more efficiently.

For example, the state-of-the-art body of knowledge requires 2k additional replicas to operate
safely and securely through attacks while up to k replicas are repaired and returned to a state at
least as secure as initially. The ability to tolerate some deadline misses in the case of continuous
disagreement among smaller quorums allows us to delay the activation of these replicas or to avoid
them in the first place.

3.3 Adapting Functionality

Deliverable D5.1 already identifies how the ADMORPH use-case scenarios can adapt their func-
tional and non-functional properties to adjust to those situations where not enough resources
remain to sustain full system functionality. We draw functionally reduced components from an
initial pool of deployed alternatives, but consider also means to supply such a pool dynamically.

3.4 Adapting to Lowering Threat Levels

As already mentioned, the fundamental difference between the above three and this fourth adapta-
tion opportunity is the time until which the adaptation must have happened in relation to the time
the adversary needs to break into the system. When optimizing, the system is already confident
about the absence of faults and attacks at the system’s current threat level. Therefore, there is no
bound until which the adaptation must succeed other than the desire to quickly return to a more
efficient modus operandi and to do so in steps that will not jeopardize the timing guarantees the
system has to provide. In particular, optimization can always be aborted to react to increasing
threat levels.

4 An Abstract View on Control

Before showing more concretely how the above strategies map to the resilient control framework,
developed in WP.2, let us abstract from the concrete usage scenarios that drive our developments
(see also Deliverable D.5.1) to then return in D.2.2 and see how the individual resilience mechanisms
can interplay in an adaptive manner.

Figure 1 illustrates common building blocks of a CPS. Control typically happens at various
levels with the lowest level directly interfacing with the plant through actuators, while observing the
state of the plant through sensors. At this level, any incorrect control signal sent to the actuators
risk jeopardizing the stability of the plant and possibly safety of the system. Common resilience
patterns therefore include interposing actuation signals with trusted circuits to ensure k-out-of-m
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Figure 1: Abstract view on a generic control architecture. Shown is a cascaded high-
level controller that interacts with a complex/simplex pair to operate a plant.

monitors agree with the control signal, respectively to perform a majority among replicated control
tasks. The complexity of the latter thereby impacts how trustworthy the whole low-level control
loop is.

4.1 Cascade Control Systems

Cascade control is a pattern to extend the functionality of a lower-level controller by controlling
the desired value to which the low-level controller should settle. A prominent example of such
a high-level controller is trajectory generation, leveraging additional sensors such as Lidar and
cameras to obtain information about a vehicles environment in order to find a safe trajectory
for crossing this environment. The high-level controller then passes low-level control the desired
location on the trajectory, which low-level control follows by adjusting the steering signals to
remain on track. Often the complexity of high-level controllers and hence their vulnerability to
accidental and malicious faults exceeds the complexity of the low-level controller by far. In the
cascaded configuration, we therefore prevent the high-level controller from interacting with the
plants directly, which allows us to intercept and validate desired values and to shield the low-
level controller from operating on incorrect inputs. Also the control loop frequency for high-level
controllers tend to be much higher (e.g., in the second range for trajectory generation), which
allows applying more costly validation on the generated values.

Since the low-level controller can not be protected as described above, we apply the simplex/-
complex split discussed next and replicate the simplex part for further safety and security against
accidental and malicious faults.
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4.2 Complex / Simplex Controller Pairs

To further reduce the complexity of critical control tasks, controllers can be split into simple
control loops, which focus exclusively on maintaining safety of the plant, but possibly at the costs
of high energy consumption or while operating the system in an uncomfortable way. A prominent
example is a simplex autopilot, tasked to perform aggressive, fuel demanding maneuvers in case
the complex autopilot fails to return the system into a safe state [18] (and similar for aerial
vehicles [29]). The complex part of such a simplex/complex controller pair aims at avoiding such
undesired behavior, trading off controller simplicity and hence accepting a higher susceptibility to
accidental and malicious faults.

The simplex/complex controller pair forms a control loop with the plant where in case safety is
at risk the simplex controller takes over control from the complex controller to return the plant to
safety. This switch is typically triggered by a monitor detecting a flaw in the complex controller’s
state or detecting sensor value that leave the margin where the complex controller may operate
without intervention of the simplex.

5 Resilient Control

Individualistic resilience of each CPS will be essential for obtaining CPSoS-wide resilience. This
is because each individual CPS acts in the physical world and must therefore be safe irrespective
of the swarm. Unhandled accidental faults risk this safety and compromise subverts the CPS into
a threat to other CPS or worse, the humans that operate in their proximity.

Attacks of the above kind have already been shown. For example, by exploiting a vulnerability
in the radio telemetry subsystem of their Jeep Cherokee [12], researchers Charlie Miller and Chris
Valasek had full remote control over their vehicle and from there its only a matter of imagination
and good or bad intend whether such a compromised vehicle is turned into a cyberkinetic weapon
against the platoon of cooperatively driving cars.

Our primary goal is therefore to adapt CPS to make each individual strong enough to offer a
minimal residual safety and security, and to ultimately recover, possibly with the help of healthy
CPS in the individual’s proximity.

What makes us confident that concentrating on the CPS will extend smoothly to CPSoS is that
we can already identify self-similarities in the techniques and principles applied within the CPS.
For example, much like a fernleaf repeats its own pattern, cascaded complex control (e.g., learning-
based, complex components as they are required for autonomous driving, or in our case taxiing
on the airfield) may well be tolerated to fail, or be protected by more lightweight mechanisms if
they can rely on the abstraction of a resilient controller, capable of preventing both time- and
value-domain faults from manifesting at the level of the actuator. The same general pattern recurs
when coordinating the actions of a multitude of CPS in a CPSoS. If each CPS individually exhibits
the notion of an in principle resilient system (possibly with degrading QoS in extreme situations),
CPSoS wide cascaded controls may leverage this internal resilience and the fact that individuals
no longer fail in the most pessimistic manner, but perform a detectable, coordinated and fail
operational reduction of QoS into fail safe states.
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Figure 2: Resilient control, monitoring and adaptation framework and its embedding
into the Admorph architecture (top left). As can be seen, the cascaded and simplex/-
complex control pair pattern from Figure 1 embeds smoothly into our framework
and is supported by resilience wrappers for the high-level controller and a replication
control unit for the simplex controller, which we replicate with the help of a trusted-
trustworthy voter. Runtime monitoring and adaptation observes these units (dashed
lines) and reconfigures the system as needed.

In the following, we introduce our monitoring framework and some of the resilience patterns
we have developed to obtain resilient control. Figure 2 illustrates this framework.

5.1 Accidental Fault and Attack Tolerant Control Design

Our resilient control framework embeds into the Admorph architecture at the application support
level and provides resilience mechanisms, monitoring and adaptation for resilient control, both at
high-level and at low-level for controllers with direct access to plants.

The Run-Time Monitoring and Adaptation Agent draws configuration possibilities from de-
sign space evaluation and triggers adaptations once critical situations are detected in one of the
controllers or in the controlled plant. For that, the monitoring component of the agent draws
information from the plant’s sensors but also from additional sensors in the resilience wrappers
and in the voter to see when adaptation is necessary. The adapration part of the agent then pre-
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pares a new configuration, while leveraging the old configuration to still mask faults until the new
configuration is ready. Once this is the case, the agent atomically transitions control to the new
configuration using a special interface at the voters. This way, downtimes and cascading effects
are avoided because the new configuration can be prepared while the old one is still operational
and functional, although it must be expected that soon this resilience will be exhausted. Hence
the adaptation to switch to a new configuration before this happens.

The developed resilience mechanisms leverage the advanced controller characteristics obtained
from the ADMORPH fault tolerant control design tools described in Maggio et al. [21] and Vreman
et al. [30]. The former shows conditions under which a plant can tolerate its controller to miss a
certain number of deadlines, before stability is at risk. The latter extends this to a holistic stability
analysis and reveals an even larger number of tolerable deadline misses, provided no deadline is
missed in several subsequent executions of the control task.

We leverage the former in our replication control component to operate critical control tasks
(e.g., the simplex controller) in a replicated manner, but with a number of replicas that are only
sufficient to detect faults, but not mask them. Replication control regains masking capabilities
through a re-execution strategy, which we explain below.

Should the monitor detect frequent errors during such a re-execution, it may leverage the result
from the second paper [30] and trigger a reconfiguration of the system. The plant will remain
stable during the time required for this reconfiguration but must then experience a phase where
subsequent deadlines are hit by the control task. In the presence of accidental faults and targeted
attacks, this is only possible if the controller is then changed to mask faults immediately. As we
have shown in Table 1, this asks for active replication with sufficiently many replicas to proactively
rejuvenate and diversify replicas to prevent adversaries from exhausting healthy majorities.

AI-assisted monitoring and adjustment of the network ensures that communication with other
CPS in the CPSoS remains stable. In the worst case, fail safes are identified and entered should
communication remain disrupted.

5.2 Cascaded Control and Safety Kernels

Cascaded control gives rise to a design principle originally developed in the context of split appli-
cations [13, 32]: identify and split control into a large high-level and small low-level controller, such
that the small and therefore more trustworthy controller ensures safety of the system, while the
large high-level controller offers additional functionality. Returning to the above trajectory follow-
ing example, this split is not yet perfect, unless the low-level controller is able to ensure absense
of collision while following this route. However, then, no matter what trajectory the high-level
controller suggests, the cascaded low-level controller will verify and follow the trajectory only as
long as it is safe. One further requirement for such a design is that the low-level controller will
always be able to enter a fail safe state should it be asked to follow a faulty trajectory. Stopping
on the runway is no such state and therefore requires other mechanisms, which we explore in Task
4.5 of WP.4. Rather than relying solely on local components, low-level control could also receive
guidance from peer CPS in the CPSoS and may therefore benefit from remote nodes taking over
the role of the high-level controller, adapting until the faulty component can be replaced.
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From the above, the reader may assume that the complex/simplex pair forming the low-level
controller necessarily has to implement all additionally safety checks. This is possible, but not
required if a safety kernel in the monitor assumes this role. Safety kernels offer application-specific
validation of monitored outputs and may serve as an indicator to adapt the high-level controller
locally or to switch to remote takeover.

5.3 Leveraging Complex/Simplex Pairs

Leveraging complex/simplex pairs is a further means to split functionality into a necessarily trusted
(simplex) and tolerably untrusted part (complex). While complex remains within safe bounds,
simplex or a corresponding safety kernel in the monitor observe complex to identify when complex
causes the plant to leave a region where simplex must take over to not risk safety. The monitor
then adapts the system to divert control to simplex. However, in such a configuration, a single-
instance simplex controller, as depicted in Figure 1, forms a single-point of failure, while being
large enough to not justify trusting this controller to not fail. For this reason, we replicate the
simplex controller to mask faults as they occur. Further reasons to replicate the simplex controller
stem from high safety integrity levels, where failure rates of less than 10−7 accidentally caused
failures per hour must be met on hardware that is only qualified for 10−5 − 10−6. Replication
can be deployed as a standard configuration with n ≥ 2f + 2k + 1 replicas that actuate the plant
after reaching consensus and that are rejuvenated and diversified to tolerate accidental faults while
presenting adversaries a moving target. However, as discussed above, it will also be possible to
leverage the inherent stability of the controller to achieve masking with a number of replicas n
that are only sufficient to detect faults (i.e., n ≥ f + 1).

5.4 Replication Control

Operating replicas with a quorum that only allows for detecting faults, requires coordinating repli-
cation and equipping the replicated controllers with additional functionality to enable extremely
fast restart and recovery. The basic idea is to let the detection quorum contribute actuation pro-
posals for the same sensor input until enough proposals could be collected to reach agreement. In
case no error is detected, this is the case immediately after the f + 1 replicas propose a request.
The voter will conolidate these proposals and actuate the plant. In case of error, a total of f + 1
matching proposals must be collected of which in each round only one is guaranteed to be correct
(due to our fault assumption of up to f faulty and one healthy replicas). Our approach is to
rejuvenate replicas after each round so that all but persistent faults are removed, but instead of
the rejuvenated replicas acting as themselves, we rotate their identities and provide them with
the same sensor signals as in the previous round in case an error was detected in that round.
This continues until enough matching proposals arrive to reach agreement. Obviously, one must
in addition prevent agreement on faulty actuation outputs. For accidental faults, we equip the
voter with a means to decide on a round based encoding of the output, such that stuck proposals
will match only in the round in which they got stuck. For the same reason, we cannot tolerate
compromise of more than f replicas faster than the time we require to reach consensus, which can

This Document Contains Technical Data Classified as EU NSR and USA 9E991.

Page 17 of 21



ADMORPH – 871259

span up to f + 1 rounds. Further implementation details, in particular on the voter to support
such replication control, follow in Deliverable D.2.2.

Let us here only briefly mention the mechanism that is required to allow for an extremely fast
restart of replicas every round. Inherent in most control tasks is a structure that can be briefly
summarized in the following pseudocode:

1 while (true) {

2 read sensors

3 compute control law

4 actuate plant

5 wait for next round

6 }

In particular, Line 3 obtains most of the information from the sensors captured in Line 2 and
only relies on rather small amounts of internal state. For example, PID controllers merely maintain
the previous actuation signal to compute an error for the derivative portion and an accumulator
to compute the integral part of PID. More complex controllers, such as adaptive model predictive
control, may update the control matrix, but again this matrix is relatively small in size and updates
are rare compared to the cells that are read. For this reason, we leverage voting and the tight
coupling of replicas for a second operation, namely to keep these elements in consensually updated
memory. In addition, we introduce support for providing sensor values from previous instances,
by capturing sensor values in a read-only mapped ring buffer, such that replicas may revert back
to the values of previous rounds if an error was detected. All remaining state (like stack, heap,
etc.) that does not comprise read-only data, can be reset at the beginning of the above while
loop. Allowing for an extremely fast rejuvenation, by just resetting the controller and alternating
between occasionally replaced read-only mapped code images to create a moving target defense.
The resulting pseudocode becomes:

1 control(id , round):

2 i f (voter.mismatch) {

3 ctrl_round = voter.round

4 } e l se {

5 ctrl_round = round

6 }

7 read sensor from ringbuffer at ctrl_round

8 compute control law

9 propose // as replica (id + (f+1) * (round mod (f+1)))

10 the actuation output

11 all updates to controller internal state (e.g., acc , prev)

12 wait for next round

Here, id is the identifier of the replica executing thread and round is the current round. The
thread starts in continuation style with empty stack and heap in the function control and is returned
there by the OS every round. Observing the voter, it can now identify whether the previous vote
already succeeded. If not, it will read the sensors from the ringbuffer of the round where replicas
failed to reach agreement. Being equipped with these values and assuming a deterministic control
law, the thread computes the actuator output and all control state updates in Line 8 and then
acts in a rotating manner as the replica id, id + f+1, id + 2(f+1), etc., which is enforced in the
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voter. Proposals are made both on the actuator output and on updating the controller internal
state (e.g., the error and accumulator in case of PID), which leads to the actuation of the voter
and possibly consensus and a return of the voter to a matching state.

Internally, the voter keeps all proposals of this thread and its peers from previous rounds until
a matching quorum of f+1 identical proposals could be found, in which case it actuates the plant
and updates the consensually updated and otherwise read-only shared memory in which all replicas
keep controller internal state. ECC ensures that this memory remains intact despite accidental
faults.

6 Conclusions

In this extended version of the deliverable D.2.1, denominated as D.2.1b, we have extended our
analysis of adaptation possibilities to tolerate accidental faults and targeted attacks. We highlight
in particular the adaptation possibilities of the application support layer that leverages adaptation
to secure control from faults and attacks and that ultimately leads to our framework for monitoring
and controlling plants in a resilient manner.

7 References

[1] The Time-Triggered Architecture, pages 285–297. Springer US, Boston, MA, 1997.

[2] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and Marko Vukolić.
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