
D3.2 Second report on analysis techniques for adaptive
systems

Project acronym: ADMORPH
Project full title: Towards Adaptively Morphing Embedded Systems

Grant agreement no.: 871259

Due Date: June 30th, 2021

Delivery: Month 18

Lead Partner: Lund University

Editor: Martina Maggio

Dissemination Level: Public

Status: In progress

Approved:

Version: 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation pro-

gramme under grant agreement No 871259 (ADMORPH project).

This deliverable reflects only the author’s view and the European Commission is not responsible for any use

that may be made of the information it contains.



ADMORPH – 871259

DOCUMENT INFO – Revision History

Date and version number Author Comments

17/06/2021, v1.0 Martina Maggio First complete draft

List of Contributors

Date and version number Author Comments

08/03/2021, v0.1 Martina Maggio Initialization

10/06/2021, v0.2 Christoph Kühbacher Section 4

12/06/2021, v0.3 Don Kuzhiyelil Section 8

14/06/2021, v0.4 Nils Vreman Section 7

15/06/2021, v0.5 Sobhan Niknam Sections 2 and 3

16/06/2021, v0.6 Stefanos Skalistis Sections 5 and 6

17/06/2021, v0.7 Martina Maggio Introduction and Conclusion

30/06/2021, v1.0 Martina Maggio Internal review comments

ADMORPH D3.2 Second report on analysis techniques for adaptive systems Page 1 of 48



ADMORPH – 871259

Contents

Executive summary 3

1 Introduction 4

2 System-level simulation of dynamically-evolving systems 5
2.1 Simulator overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Simulator validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Design-space exploration of dynamically-evolving systems 14
3.1 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Chromosome representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Search space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Adaptivity-aware real-time scheduling policies 26
4.1 Scheduling prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Support for different redundancy configurations . . . . . . . . . . . . . . . . . . . . 28
4.3 Changing the redundancy of parts of an application . . . . . . . . . . . . . . . . . . 30
4.4 Ongoing and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Models of computation and derived architectures to allow seamless reconfigura-
tion 31
5.1 Task model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Computing architecture model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3 Model Reconfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Timing analysis for certification in heterogeneous processing platforms 35

7 Providing formal guarantees on the adaptation layer 35
7.1 Background and related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.2 Theoretical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.3 Ongoing and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

8 Automatic validation of safety and security cases for adaptive systems 43

9 Conclusion 45

10 References 45

ADMORPH D3.2 Second report on analysis techniques for adaptive systems Page 2 of 48



ADMORPH – 871259

Executive summary

This deliverable is a report on the consortium’s work in Work Package 3, discussing all the tasks in
the work package: Task 3.1 System-level simulation of dynamically evolving embedded systems, Task
3.2 Design-Space Exploration of Dynamically Evolving Embedded Systems, Task 3.3 Adaptivity-aware
real-time scheduling policies, Task 3.4 Models of Computation and derived architectures to allow
seamless reconfiguration, Task 3.5 Timing Analysis for Certification in Heterogeneous Processing
Platforms, and Task 3.6 Providing Formal Guarantees on the Behavior of the Adaptation Layer.
The report presents the conclusion of Task 3.1 and the status near to conclusion of task 3.4, a
midpoint evaluation for Task 3.3, and the start of 3.2, 3.5 and 3.6.
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1 Introduction

In this report we provide an overview of the tasks connected to the analysis of self-adative system.
In particular, this work package focuses on how to evaluate the behaviour provided by these systems
at runtime.

In particular, this report focuses on preliminary work conducted to:

(i) Design a simulation tool that allows us to compare different scenarios and their expected
performance characteristics. This simulation should be conducted at the system-level and
should include the system - hardware and software - and its evolution. From the theoretical
perspective, we use Monte Carlo (MC) simulation as the main tool to perform many different
simulations in variable environments and with varying characteristics.

(ii) In parallel with the modeling and simulation of the system level characteristics of our embedded
systems, we need to derive models of computation. We started to work on the derivation of
models that include tasks with precedences (for example: we need to aquire a new image
from a camera before being able to understand if something has happened with respect to
previous frames). This is per se not new, but the novelty with respect to existing work lays
in this precedence list to be dynamically updated at runtime. For example, due to an attack,
we may determine that we need to aquire frames from different cameras in order to be certain
that nobody has tampered with the image acquisition process. At runtime our morphing
system will be able to recognise this, so we need to be able to handle the computation in
different scenarios.

(iii) Once we understood the varying characteristics of our computation model, we need to be
able to handle these characteristics in terms of resource distribution. For example, two cores
may be needed to perform the same analysis on two different images simultaneously, such
that our answer can still be produced in real-time. Maybe, we would find that two cores are
not enough, and we need to use dedicated hardware like FPGAs or a graphic card for the
image processing in order to meet the original application requirements.

(iv) Finally, we want to be able to formally guarantee the behaviour of reconfigurable and morphing
systems.

The next sections will enter into details on what has been done for each of the work package
objectives. In particular, Section 2 discusses the system level simulator developed in Task 3.1,
Section 3 enters into details on the design-space exploration problem that allows us to determine and
execute systems in the most appropriate system configurations from Task 3.2. Section 4 provides
results on the study conducted in Task 3.3 of adaptive scheduling policies. Section 5 discusses our
results on the model of computation that we intend to use from Task 3.4. Section 6 briefly recaps
our intention for timing analysis in Task 3.5. Section 7 discusses our initial results on providing
formal guarantees for the adaptation layer, obtained in Task 3.6. Section 8 discusses our initial
investigation from Task 3.7 on how to automatically provide safety guarantees for certification and
validation.
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2 System-level simulation of dynamically-evolving systems

In this section, we first briefly recap the main characteristics of the system-level simulator that
we developed to analyze and evaluate adaptively morphing embedded systems. The simulator
has been extensively discussed in Deliverable D3.1 and (for conciseness) we assume the reader is
familiar with the content of the previous deliverable. Then, we present the results of our extensive
experimental campaign to validate the functionality of the simulator.

2.1 Simulator overview

In the previous D3.1 report, we talked about the need for the run-time self-adaptivity of an
embedded system to ensure reliability and/or prolong the system lifetime. We further explained
that several factors, e.g., the number and types of processing cores in the underlying platform
and adaptivity policy, need to be decided during the early stage of the designing process of such
an adaptive embedded system, causing a potential explosion in terms of size of the design space.
For exploring such a design space and possibly finding near-optimal design instances, we further
introduced our novel fast system-level simulator, called Simuflag. The main structure of this
simulator is shown in Figure 1. Here, we briefly remind the reader how this simulator works. The
full details were given in D3.1.

The simulator takes two types of inputs: 1) system-level modeling of an adaptive system, and
2) parameters related to the environment and the context that the system will be evaluated in.
More specifically, the model of the adaptive system consists of a platform, application workload(s)
together with initial application(s) mapping on the platform, and an adaptivity policy to handle
processor failures. On the other hand, the contextual parameters represent the environment in
which the simulator operates and can be altered within the simulator concerning the user’s needs.
For instance, some contextual parameters are the environmental temperature, fault model(s), fault
distribution, neighbor thermal influences, static power consumption for the processors on the
platform. Then, the simulator evaluates the time to failure (TTF) and power/energy consumption
of the system concerning the contextual parameters. These parameters are essential for assessing
the goodness of different system-level designs of mission- and safety-critical systems, targetting in
the Admorph project, that require a long operational time.

The simulator works in timesteps, i.e., the time between each two consecutive processor failures,
where during each timestep several calculations are performed to advance the given system to the
next timestep. A system that is being simulated is always in one of the three phases: functioning
correctly, handling a failure, or has failed. The system is always initialized in the first phase by
default. Once a failure has occurred, concerning the given ageing model, the system will move to
the second phase. In the second phase, there are two possibilities. The applications on the failed
processor can either be successfully remapped to some of the alive processors concerning the policy,
which results in the system returning to the first phase, or one or more applications can not be
mapped on any alive processor. When the latter occurs, the system has permanently failed and
enters the third phase when the simulator will report the desired outputs.

The essence of the simulator is the combination of three individual models that are interacting
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Figure 1: Schematic overview of our proposed simulation framework

with each other in order to simulate the behavior of an adaptive system over the course of time.
The three models are, respectively, the platform, thermal, and ageing models. The algorithm of
the simulator will work in timesteps where in each timestep the TTF will be accumulated and the
models will be updated based on the system state (e.g., any updated thermals will affect the ageing
of the system).

2.2 Experimental setup

2.2.1 Selected parameters

As described in subsection 2.1, our simulator framework provides a certain degree of freedom in
terms of parameters and models that can be utilized. In all our experiments, the component faults
are introduced via the electromigration (EM) fault model (Section 2.1 in the D3.1 report) which
are distributed according to the Weibull distribution using the shape parameter of k = 5. We use
an environmental temperature of 20 oC without any thermal fluctuation (Eq. (18) in D3.1). The
neighbour convolution kernel (Eq. (15) in D3.1) has been set to 0.1 for all adjacent neighbours.
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Table 1: Hardware specifications of the computing platforms used to obtain the results for the
experiments.

Rhino Uvalight DAS5 cluster1 Personal desktop

CPU
Intel Xeon
E5-2650 v4

Intel Xeon
Silver 4216

Intel Xeon
E5-2630 v3 (dual)

AMD Ryzen 5
3600

Cores 12 16 16 6

Threads 24 32 32 12

Frequency2 2.2 - 2.9 GHz 2.1 - 3.2 GHz 2.5 - 3.2 GHz 3.6 - 4.2 GHz

Memory 64GB 4GB 64GB 32GB

Operating
system

Ubuntu 18.04 Debian 10 (buster) CentOS 7.4 Ubuntu 18.04

The parameters for the modeled platforms and applications (i.e., design points) are as follows:

(i) three types of processor (CPU) components,

(ii) four distinct applications that have to be executed,

(iii) selection of between 1 up to 20 CPUs,

(iv) placement of the CPUs on at most a 6× 6 grid,

(v) selection out of three adaptivity policies: most-slack first, least-slack first and the random
policy (which will all be discussed later on), and

(vi) selection of a heuristic algorithm for an initial application mapping among best-fit, worst-fit,
first-fit or next-fit algorithms (also explained later on).

2.2.2 Hardware

Running the simulator to evaluate multiple design points are independent tasks. Thus, to speed
up the simulation time, multiple simulations can be performed in parallel on different computing
resources. Table 1 lists the four computing resources that we use with their most important
hardware specifications.

1https://www.cs.vu.nl/das5
2Listed as base frequency - max turbo frequency
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Table 2: Information of the two datasets utilised for the experiments in subsection 2.3.

Number of
design points

Samples per
design point

Total number
of samples

95% confidence interval

MTTF Power

Dataset 1 70,000 1,000 70,000,000 ± 0.19414 years ± 0.47634
Dataset 2 2,800 10,000 28,000,000 ± 0.06082 years ± 0.15073
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Figure 2: The distribution of the computed TTF and power consumption for all samples of dataset
1 and 2.

2.2.3 Datasets

As described earlier, utilizing the simulator frequently for many design points is a time-consuming
process. To prevent evaluating each design point repeatedly3, we have created two distinct datasets.
These datasets include many random design points, which will all be sampled frequently and stored
in a list. We will use the design points from these datasets in our experiments and utilize the
dataset as a lookup table. In this way, if k samples are required, we can take k random elements
from the list containing the samples of the design point.

The first dataset contains 70,000 random design points, where each design point has been
sampled 1,000 times, resulting in a total of 70,000,000 samples. This dataset is mainly focused
on receiving a high number of design points with a reasonable number of samples to calculate
the means relatively accurately. The second dataset contains 2,800 random design points with
10,000 samples per individual, resulting in a total of 28,000,000 samples. The main function of the
second dataset is to have more samples per design point, allowing us to more accurately calculate
the means by taking more samples. Figure 2 provides an overview of how the TTF and power
consumption of all samples are distributed in both datasets. The computing platforms listed in
Table 1 are utilized for the collecting of the data for these datasets.

3Each evaluation is referred to as a sample.
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Figure 3: Performance of design points on the three objectives as the number of computational
resources increases. The graphs show the mean objective values of the design points from dataset
1, grouped by the number of components.

2.3 Simulator validation

In this section, we present the results of experiments conducted for validating the functionality
of our simulator. The simulator validation is based on comparing the outputs of the simulator,
using both dataset 1 and 2 (Table 2), with logical expectations. The main purpose of the simulator
validation is to check if our simulator provides a feasible exploration space, wherein choices in
the solution space have logical influences on the objective space, i.e., system performance, power
consumption, mean time to failure (MTTF), etc. We also provide a simple validation experiment
by comparing our simulator to a state-of-the-art simulator.

2.3.1 Selection and placement of computational resources

The selection and placement of computational resources have a significant influence on the MTTF
and power consumption objectives. Since all of the design points from our datasets are running
the same number of applications, selecting more than four components will result in one or more
processing cores functioning as spare components. These components can be reserved until when
one or more working components are worn out and permanently failed. Then, the applications
are remapped from the failed components to spare ones in order to adapt the system and resume
its functionality. The power consumption is also expected to increase. Our presented power
consumption model (Eq. (12) in the D3.1 report) is dependant on the number of idle components
using the specified idle power consumption.

Figure 3 presents how the objectives are affected as the number of components is increasing.
For the MTTF, we can see in Figure 3(a) that it increases as the number of components increases.
However, it does seem to curve off, which also makes sense from our ageing model (Section 2.2.2.4
in D3.1). Idle components are still slowly wearing-out, due to environmental and idle temperatures.
For this reason, components that remain idle for many years are already significantly worn out.
In our model, the effectiveness of having spare components will decrease after a long enough
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Figure 4: Average MTTF and power consumption as the total sum of computational capacity of
design points increases. Taken from 2,800 random design points with 10,000 samples each.

period. The power consumption in Figure 3(b) seems to increase linearly based on the number of
components. The main fact to notice is that the standard deviation (indicated as a line on top
of the bars) seems to increase as the number of components increases. This can be explained by
the fact that having more components increases the number of component failure scenarios, which
greatly influences the power consumption and its standard deviation. The grid size (Figure 3(c)) is
mainly dependant on the random design point creation algorithm rather than the simulator itself.
Since design points are randomly placed on a 6× 6 grid (according to the aforementioned design
space for the modelled platforms), the chance for inefficient random placements is increased by
increasing the average grid size.

The number of components is only one influential factor on the objectives. The kind of
computational components that have been selected is also influential since certain types of processing
cores are more powerful (i.e., have a higher computational capability). Figure 4 combines these
two factors and shows the MTTF and power consumption objectives based on the total number of
computational capacity. Both the graphs show a similar shape and curvature as shown in Figure 3.
The variance as the computational capacity increases is also more easily visible in Figure 4(b),
which has a direct correlation with the number of components selected.

Figure 5(a) shows how the average distance between components affects the average MTTF
of design points. Since our model captures the effect of neighbouring thermal influences, having
components closely placed together should decrease the MTTF. From this figure, the MTTF seems
to first start increasing, which after a certain average distance between processing cores decreases
again. The average Manhattan distance between points is constructed by taking the sum of the
Manhattan distance between all unique pair of locations on the board, i.e.

m−1∑
i=0

m∑
j=i+1

d(i, j),
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Figure 5: This figure shows how the MTTF is affected by both the average distance between
processing cores and the workload in percentage, using dataset 1 (Table 2). The distance is plotted
between the interval 1 to 6. The workload is calculated by dividing the sum of applications by the
total computational capacity.

where m is the number of components within the design point and d(i, j) is the Manhattan distance
between component i and j, of which the sum is divided by the total number of pairs. The very
first and last points of this graph show that a low and high average distance results in a low MTTF.
This is mainly because this only occurs with a low number of selected components thus having only
a few spare components.

Figure 5(b) shows how the workload affects the MTTF in years. Note that all of our faults are
temperature-dependent and the temperature is mainly determined by the workload. Therefore,
there is a very direct correlation between the workload and the probability of faults occurrence. In
this graph, the workload seems to get more spread out on the right side, which is inherent to our
provided applications and components in the search space.

2.3.2 Adaptivity policy and initial application mapping selection

As mentioned in the D3.1 report, an adaptivity policy is a function that will migrate applications
running on a failed component to other working ones at run-time. In our experiments, we use
three specific policies namely most-slack-first, least-slack first, and random that will just remap
the applications randomly. The most-slack first policy (Algorithm 1) will sort the still functional
components based on their amount of slack (Eq. (10a) in D3.1 report) and will map the applications
to the component with the highest slack. Once an application is mapped, the sorting has to be
updated. The core concept of most-slack-first is to uniformly distribute the applications as much
as possible among functional components. The least-slack first policy (Algorithm 2) does the exact
opposite as the most-slack-first policy, where the applications will be remapped to the components
that have the least slack. This will result in keeping the components with the highest slack as spare
components while trying to map most of the applications to as few components as possible.
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Figure 6: Average MTTF and power consumption objectives of the design points of dataset 1
according to their adaptivity policy and initial application mapping function.

Similarly, as mentioned in the D3.1 report, initial application mapping indicates which applica-
tions should be executed initially on which processor. However, the task mapping is analogous to a
bin-packing problem which is known to be an NP-hard problem. To this end, in this section, we
use a set of well-known heuristic algorithms for solving the bin packing problem, namely next-fit,
first-fit, best-fit, and worst-fit algorithms.

Algorithm 1 Most-slack first policy

1: procedure most slack first(C, ai)
2: Csorted ← sort C based on most slack

3: for ~ci ∈ Csorted do

4: if slack of ~ci > areq
i then

5: add (a,~ci) to fac
6: break
7: else
8: system failure
9: end if

10: end for
11: end procedure

Algorithm 2 Least-slack first policy

1: procedure least slack first(C, ai)
2: Csorted ← sort C based on least slack
3: for ~ci ∈ Csorted do
4: if slack of ~ci > areq

i then
5: add (a,~ci) to fac
6: break
7: end if
8: end for
9: if a could not be mapped then

10: system failure
11: end if
12: end procedure

Now, after defining the policy and initial task mapping algorithms, our goal in this section is to
look at the influences of all possible combinations of these algorithms on the MTTF and power
consumption objectives. This matter is shown in Figure 6. When looking solely at the performance
of the policies, we can observe that the least-slack first policy is the best choice when the low power
consumption is prioritized by sacrificing some lifetime of the system. The concept of least-slack
first is that the policy tries to utilize the least number of processing cores as possible and prefers to
let fewer processing cores work with a higher workload. In our current model, this concept will
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Table 3: Comparison of the lifetime evaluation results, in years, for our simulator and CALIPER
[6] for a 2× 2 homogeneous grid based on 10,000 samples.

CALIPER [6] Our simulator

Workload MTTF SD MTTF SD

0.1 80.88 20.69 82.30 7.93
0.2 51.88 13.32 53.98 5.93
0.3 32.31 9.55 35.53 4.69
0.4 23.22 6.94 25.27 3.39
0.5 16.95 5.14 17.99 2.58
0.6 10.87 3.99 11.45 2.62
0.7 8.27 3.05 8.49 1.98
0.8 6.34 2.35 6.37 1.41
0.9 4.91 1.83 4.81 1.08

result in lower power consumption due to the low workload of most of the components but will
wear through the available processing cores faster decreasing the longevity.

The most-slack first policy seems to be better at the MTTF objective, at the cost of having
a higher power consumption. The concept of the most-slack first policy is the opposite to the
least-slack first, where it tries to spread out the workload as much as possible to keep the workload
per processing core at its minimum. Since processing cores are operating at much lower temperatures
it increases the longevity, but having multiple non-idle processing cores active will result in higher
power consumption in our current model.

The random policy seems to perform even better than the most-slack algorithm on the MTTF
objective while also operating more efficiently regarding the power consumption. Out of this
experiment, it seems that the random policy would provide the best trade-off between these two
objectives. This might be because the other two policies are the ’extremes’ and that somewhere in
between most-slack first and least-slack first will provide the best trade-off.

Another observation in Figure 6 is that the initial application mapping using the worst fit
heuristic algorithm results in the lowest power consumption and MTTF compared to other bin-
packing heuristic algorithms. This observation can be interpreted with respect to the processing
heterogeneity available on the platform. The processors with higher capacity are more performance
efficient and thus consuming more power compared to power-efficient ones. Thus, more processors
with different types are possibly exploited under the worst fit heuristic, which tends to distribute
the workload uniformely over all processors on the platform, compared to other heuristics. As a
result, the worst fit heuristic results in the lowest power consumption. On the other hand, more
processors are simultaneously getting aged under the worst fit heuristic while leaving fewer spare
processors, to be used later when one or more processors are permanently failed, compared to other
heuristics. As a result, the worst fit heuristic results in the lowest MTTF.

While the results of these policies might not accurately correspond to reality, they can be
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explained from our presented ageing and power consumption models. It also shows that the choice
of policy has a distinct and significant effect on these two objectives, making the policy an important
factor for optimizing design points during the DSE. The initial application mappings show quite
similar results towards the MTTF objective, but do show a significant influence on the power
consumption objective.

2.3.3 CALIPER simulator comparison

CALIPER [6] is a state-of-the-art simulator that is available as open-source4 and allows us to use
it for the purpose of comparison. CALIPER solely allows for homogeneous grid systems to be
simulated, which our simulator is also capable of using the same capacity for all components and
placing them adjacent to each other. We compare the lifetime output of our presented simulator to
theirs for a 2× 2 homogeneous system with a range of different running application workloads and
failures that are introduced via EM distributed according to the Weibull distribution. The results
are shown in Table 3, where SD stands for standard deviation.

The goal of this validation experiment is not to provide a thorough comparison but to illustrate
that similar output for an arbitrary homogeneous design point can be obtained by using our
simulator. The biggest deviation in lifetime output is at a lower workload because the adaptive
behaviors of these two simulators are different. Overall, from a simple verification standpoint, our
simulator shows similar MTTF output compared to CALIPER.

3 Design-space exploration of dynamically-evolving systems

Using our system-level simulator, introduced and evaluated in section 2, we aim as the next
step to develop efficient design-space exploration (DSE) techniques that allow for determining
appropriate system configurations, comprising both the hardware configuration and the adaptivity
strategy. An efficient design-space exploration incorporates both efficient searching and evaluating
of the design points in the design space. The design space exploration of an adaptively morphing
embedded system is a multi-objective optimization process with a vast number of possible design
candidates that can not be explored by exhaustive search. For this reason, meta-heuristics are
used, where Genetic Algorithms (GA) have demonstrated to show promising results for this type of
DSE [24, 27, 28]. This section is therefore devoted to introducing the concepts, ideas, and operators
that are considered within the GA-based exploratory algorithm of this research. Next, as the future
work in Task 3.2, we plan to evaluate system configurations using Monte-Carlo simulations and
reinforcement learning techniques (like multi-armed bandit algorithms) for efficient sampling of the
simulation model.

4https://github.com/D4De/caliper
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3.1 Genetic Algorithms

GAs are heuristic search algorithms that apply to a wide range of problems due to their flexibility.
The basis of this type of algorithm is the population, which represents a list of possible solutions to
the problem that it tries to solve (in our case, a multi-objective DSE). The population is iteratively
refined in so-called generations. Proceeding from one generation to the next involves four specific
types of operators that are based on natural evolution. Each generation should converge the
algorithm more towards optimal solutions. The following three important elements are required for
a GA to be used for a specific type of problem:

(i) Each individual of the population is encoded as a string-like representation, often referred
to as the chromosome. The representation itself plays an important role in the DSE process,
as the representation determines the choice of the genetic operators [20].

(ii) A fitness function is required to evaluate chromosomes. This evaluation function will
determine how each individual of the population performs regarding the objectives. It allows
the determination of which design points are good and which are bad. In this project, we use
our Simuflag simulator (see section 2) to evaluate the individuals.

(iii) The GA operators allow the algorithm to both utilize knowledge of good design points
(known as exploitation) and to take exploratory steps. The crossover operator will combine
the genetic material of two parental individuals (in the form of chromosome parts) to create
offspring. The mutation operator will change the offspring slightly to include exploration. A
selection operator will determine, based on the fitness, which pair of individuals are selected
for the next generation.

Algorithm 3 Basic genetic algorithm

1: initialise population

2: repeat . Each iteration corresponds to a new generation
3: crossover
4: mutation
5: evaluation
6: selection
7: until termination condition

Algorithm 3 shows the main loop of the algorithm. A GA will start with an initial population,
which can be any arbitrary group of design points (chromosomes), but preferably a diverse set of
individuals selected from the whole design space. Out of the current population, a new generation
will be formed through a crossover function and a mutation operator. The crossover implements a
method that mixes chromosomes of the parents into children, which are part of the offspring of
this generation. Some of the offspring will then be mutated, which is commonly done by a certain
random probability. To allow convergence towards a more optimal solution, the best chromosomes
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Figure 7: Chromosome cluster representation of a single design point containing the components,
their locations, the application mapping and an adaptive policy function.

of the parental population and the offspring are selected and will be used to determine the next
generation. This process of crossover, mutation, and selection is repeated a finite number of times
until the GA meets certain conditions.

The success of a GA is highly dependant on the choice of parameters and operators. There are
the exogenous parameters, which are the global parameters of the GA defining global elements such
as the population size and the selection procedure. Endogenous parameters define properties on the
level of chromosomes, such as mutation probability. It is beforehand not known how the different
parameters will affect the final result of a GA. Thus they have to be evaluated and compared to
observe what works best that itself is an optimization problem.

In this work, we implement a GA using the Distributed Evolutionary Algorithms in Python
(DEAP) framework [11]. The source code of the GA implemented in this section is available within
the earlier mentioned GitHub project.5

3.2 Chromosome representation

A single design point has to be able to be represented via a chromosome (or genotype). This
chromosome represents a proposed solution to the multi-objective DSE problem. It must be possible
for a chromosome to be directly translated to a design point (as described in Section 2.2.1 in the
D3.1 report). As a recap, a design point consists of (i) an m× n grid of computing components,
(ii) an application mapping and (iii) an adaptive policy. The information of a single computing
component can be separated into the computational capability and its position on the grid. The
chromosome representation is separating these two elements, allowing for a distinction between a
component’s computational capability and its location.

A lot of distinct heterogeneous information has to be captured by a single chromosome. For this
reason, the chromosome is split up into four different clusters as shown in Figure 7. Each cluster has
a direct relation to the elements that make up a single design point. Dividing the chromosome into
these four clusters allows an easy translation (often called a genotype-phenotype mapping [20]) to
the actual design point and for more logical crossover and mutation operators. A k-point crossover
operator itself does not make much sense in the aspect of heterogeneous genes since a variety in

5https://github.com/sea-art/Simuflage/tree/master/src/DSE
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Figure 8: Initial chromosome cluster specifications, illustrating more concretely what a chromosome
consist of. The application mapping cluster will in a later subsection be adjusted.

length and information of each gene of the chromosome would not provide correct offspring. The
chromosome also has to cope with various constraints, as will be discussed later on in this section.

Several challenges arise by using this cluster chromosome notation. Most of the clusters are in
at least one way dependant on each other (with exception of the policy). The floorplan, which is
the encoding of the locality of computation resources (gene cluster 2), is directly linked with the
components themselves (gene cluster 1). This implies that these clusters are required to be of the
same length, but each gene in the floorplan cluster must also be unique. Similar requirements hold
for the application mapping since the mapping is dependant on the chosen number of components
and their computational capacity. The mapping must be done concerning the capabilities of the
components (gene cluster 1). The mutation and crossovers operators have to be able to cope with
these dependencies and constraints.

Figure 8 makes the chromosome representation more concrete. The component cluster (previously
referred to as gene cluster 1) consists of a set of n numbers where the i-th number will represent
the computational capability of the i-th component. Each gene in the floorplan cluster is a unique
xy-location represented as a tuple of two values. The i-th gene of the application mapping represents
where application i will be mapped to. The genes in the application mapping actual cluster will
therefore contain a tuple (a, c) where a is the index of the application that is mapped to the c-th
component. While the representation might be shortened to just a single string of values (since the
i-th value of the string will correspond with the i-th application), it is less directly corresponding
with the actual application mapping of a design point (i.e. this tuple gene cluster notation allows
for a more direct genotype-phenotype mapping). However, this application cluster shows to be
inherent to several design problems for the crossover and mutate operators. For this reason and as
we will explain in subsubsection 3.4.3, we will adjust the application mapping chromosome to a
heuristic algorithm. The policy cluster is a selected function out of a predefined set provided by
the designer.

3.3 Search space

During the DSE, a designer is often interested in the best selection out of a predefined scope/context.
The search space within the GA allows the designer to specify the points of interest that ought to
be explored. Often, only a selected set of hardware components should be explored, which have to
be specified to the GA. The exploratory bounds of the algorithm also have to be specified, otherwise
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Algorithm 4 Crossover cluster division

function crossover(parent1, parent2)
c1, c2 ← crossovercomponent(parent1cluster1 , parent2cluster1) . subsubsection 3.4.1
f1, f2 ← crossoverfloorplan(parent1cluster2 , parent2cluster2) . subsubsection 3.4.2
a1, a2 ← crossoverapp mapping(parent1cluster3 , parent2cluster3) . subsubsection 3.4.3
p1, p2 ← crossoverpolicy(parent1cluster4 , parent2cluster4) . subsubsection 3.4.4

child1 ← new child(c1, f1, a1, p1)
child2 ← new child(c2, f2, a2, p2)

return child1, child2

end function

deriving design points with an infinite number of components would be possible. Not specifying
the bounds also results in a design space that is too large to be explored. When components are
placed on a grid with unbounded size, neither the exploration of all possible component locations is
feasible nor the expectation that the algorithm will converge to an optimal solution. Defining the
bounds within the search space will limit the number of design point candidates. Thus, the search
space consists of:

(i) a list of predefined computational components,

(ii) the maximum grid size where components can be positioned,

(iii) a limit on the total number of components to select

(iv) a fixed set of applications that each design point has to run,

(v) a set of predefined policy functions. Since there is no genetic programming involved in this
project, the policy functions are not constructed during the exploration phase. The GA will
only explore the given policies out of a predefined set of options.

In general, the search space will provide a boundary for the GA to indicate what has to be explored
and to keep the explored design instances feasible. The specified search space has significant
influence on the genetic operators to only allow chromosome alterations within the specified bounds.

3.4 Crossover

When two individuals have been selected by the GA to create offspring, it will do so using the
crossover operator. To determine which candidates will generate offspring, the algorithm allows
two individuals to mate through a defined crossover probability. The population will be split into
two halves, each individual of one half will be paired with an individual of the other half. For each
pair, the probability will determine if offspring is created by this pair. Each pair of parents that
will create offspring will always create two children.

ADMORPH D3.2 Second report on analysis techniques for adaptive systems Page 18 of 48



ADMORPH – 871259

While normal crossover operators might utilize a more straightforward k-point operator on the
entire chromosome, the chromosomes of this GA consist of clusters, requiring the crossover operator
to tackle this slightly differently. For each of the clusters (i.e. components, floorplan, application
mapping, and policy), a crossover function has to be defined. Each of these crossover functions will
provide two children gene clusters, which are all combined to create the two children as illustrated
in Algorithm 4. In the following subsections, the crossovers for each individual gene cluster will be
defined.

3.4.1 Component cluster

The crossover operator for the component cluster is realized via a more traditional and popular
crossover method called the k-point crossover. This type of crossover is most useful when dealing
with array or string chromosomes, making it very applicable for this component gene cluster. For
the two parents, k random unique indices will be selected from their gene representation. From
each of these points up to the next point, the genes from one parent will be selected for child1

and the genes from the other parent will be used for child2. Figure 9 illustrates this method of
crossover for both the single-point crossover and the two-point crossover, which can be generalized
to a k-point crossover for any k that is smaller than the size of the gene cluster.

80 70 40 80 ... 40 30

40 30 40 80 ... 70 30

80 70 40

80 ... 40 3040 30 40

80 ... 70 30

Parents

Child	1

80 70 40 80 ... 40 30

40 30 40 80 ... 70 30

80 70 40

80 ...

40 30

40 30 40

80 ...

70 30

Single-point	crossover Two-point	crossover

Parents

Child	1

Crossover

Child	2 Child	2

Figure 9: Component gene cluster crossover is done either via single-point, two-point or k-point
crossover, where the swap-over points are selected at random.

This crossover method will utilize the gene clusters of both parents equally in order to create
offspring without any loss of information from the parents. It often occurs that two individuals that
are selected for mating (i.e. crossover) do not have an equal number of components thus differ in
array length. For the component cluster, this does not introduce any errors, since child1 will have
the same length as parent1 while child2 will have the same length as parent2. No repair method is
required for the component cluster itself.
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3.4.2 Floorplan cluster

Defining a crossover method for the floorplan cluster is more difficult due to the number of
constraints that it has. There are two main constraints that have to be tackled

(i) all the individual genes within this cluster have to be unique,

(ii) the length of the children from this crossover should be of equal length as the component
crossover operator.

The first constraint prevents the utilization of a k-point crossover operator since it is not preventable
that two genes after the crossover will remain unique. When two components from different parents
are positioned on the same location, it most likely will be represented within the cluster on a
different index.

For this reason, a different crossover operator is utilized, which will be referred to as a k-element
unique swap-over. Remaining true to the uniqueness constraint plays a central role in this crossover
method. For parent1, all the unique locations in parent2 that are not in parent1 will be gathered in
a set of locations. These are the only locations that can freely be used for the crossover since they
will not introduce any duplicate within the cluster. Given this constructed set of unique locations
from the other parent, k genes from the cluster will randomly be swapped over to a location from
this set. The same method is used while swapping the parents for the crossover for the other child.
This crossover algorithm is illustrated in Figure 10.

There are several edge cases that might occur within this method. It might, for example, be
the case that one (or both) parents can not select any unique locations from the other parents,
since they are not present. This introduces a more general error in that k elements can not be
defined beforehand, since there might be 0 elements to swap over. For this reason, k will not be
used as a parameter for this operator (as is the case for the k-point crossover), but k will actually
be divided in k1 and k2 where these values will uniformly be determined based on the length of the
set of unique locations from the other parent. In the case that there are 0 unique elements, there
will simply be no components swapped over. Algorithm 5 shows in more detail how the k-element
unique swap-over is implemented.

This method does always create two children, where child1 will have the same length as parent1

and child2 the same length as parent2. Since the children of the component cluster operator are
of equal length as the parents and no duplicates are introduced, no repair method is needed to
maintain the validity of a floorplan cluster after this operator.

3.4.3 Application mapping cluster

The application mapping gene cluster has a significantly more difficult challenge when designing a
crossover between two parents. The children of this crossover have the following constraints:

(i) the applications can only be mapped to n components, where n has to correspond to the
offspring from the component and floorplan gene cluster crossovers,
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Figure 10: k-element unique swap-over operator used to mate (crossover) two parents on the
aspect of their component locality. Parent 1 looks at all uniquely different locations in parent 2
(i.e. locations not present in its own floorplan gene) and will swap k (2 in this example) random
components to these unique locations and will do the vice-versa for parent 2. The colours of the
components highlight the uniqueness of each component location.

(ii) all applications have to be mapped (i.e. the length of the application mapping cluster should
remain fixed),

(iii) an application should only be mapped on a component that can handle the computational
needs of the application,

(iv) the sum of all computational needs of applications mapped on a single component should be
less than the computational capacity of the component.

The criteria that the mapped applications fit the computational capabilities of a component makes
this problem similar to another well-known problem called the bin packing problem, which is
a combinatorial NP-hard problem. Since the constraints are of such significance, using more
traditional crossover operators that work with arrays will result in too many false individuals.
When taking a step back, the question might also arise if it would make sense at all to crossover the
actual application mapping itself from two design points. Looking at a more extreme example, let’s
say that parent1 has one component, where all applications are mapped to that single component
and parent2 has the same number of components as there are applications and maps a single
application to each component. Since the number of components will not change for the component
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Algorithm 5 k-element unique swap-over

function swapover(P1, P2) . Pi is the (copied) list of locations from parenti
L1 = P2 \ P1 . unique locations from parent2

L2 = P1 \ P2 . unique locations from parent1

k1 ←

{
0 if |L1| = 0

random integer between 1 and |L1| if |L1| > 0
. #elements to swap

k2 ←

{
0 if |L2| = 0

random integer between 1 and |L2| if |L2| > 0
. #elements to swap

for k1 times do . swap k1 elements from P1 to L1

i← random not-earlier selected index of P1

P1[i]← random element from L1

Remove selected element from L1

end for

for k2 times do . swap k2 elements from P2 to L2

i← random not-earlier selected index of P2

P2[i]← random element from L2

Remove selected element from L2

end for

return P1, P2 . altered copies of parent1 and parent2 (i.e. the children).
end function

cluster crossover, using a crossover for these application mappings would not make sense either.
Moreover, the information of parent2 cannot be embedded into parent1, since it only has a single
possible application mapping (that is all applications are mapped to a single component).

Table 4: Four different heuristic algorithms to provide solutions for the bin packing problem [19]
with their worst-case complexity, where n is the number of applications.

Algorithm Complexity

Next-fit O(n)
First-fit O(n log n)
Best-fit O(n log n)
Worst-fit O(n log n)

For this reason, the application mapping will be handled slightly differently than presented in
Figure 8. Rather than the actual mapping of applications to components, the gene cluster will
consist of a function that will create such an application mapping. We can utilize the well-known
algorithms that provide heuristic solutions for the bin packing problem as shown in Table 4. This
will provide a design point with an initial application mapping via the specified algorithm within
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this gene. The crossover operator itself is then very similar to the policy cluster. Given two parents,
it will assign the application mapping function of parent1 to child1 and assigns the function of
parent2 to child2.

3.4.4 Policy cluster

The policy cluster is similar to the application mapping cluster in that it represents a selection of a
predefined set of algorithms to choose from. The set of policy functions has to be defined within
the search space (subsection 3.3). Many more of these types of functions can be specified in the
search space. The crossover operator only looks at which function is selected out of the predefined
set and will do a crossover operator similar to the application mapping gene cluster. Child1 will
receive the same policy as parent1 and child2 will have the same policy as parent2.

3.5 Mutation

The mutation operator is used to maintain diversity when moving towards the next generation.
Mutation represents the exploratory part of the algorithm and allows for the introduction of new
design points by randomly altering one or more gene clusters of an individual of the offspring.
Getting stuck in local optima should also be avoided by the mutation operators. Whether or not
an individual of the offspring is mutated is based on the predefined mutation probability.

Since the chromosome is separated into four different clusters, the mutation operators will be
divided into four different mutation operators, one for each cluster. When an individual is mutated,
it is randomly selected which clusters will be mutated. This is realized by first sampling a random
integer k between 1 and 4 randomly, and then randomly select k clusters that will be mutated.

3.5.1 Component cluster

Mutating the component cluster has a lot of influence on the performance and energy consumption
of a design point. The component gene cluster can be mutated in two different ways

(i) altering the computational capabilities of a random component or

(ii) adding or removing a random component.

The latter allows for the exploration of different numbers of components, while the former the type
of components. The combination of these two is crucial for finding optimal design points. One
challenge that the component cluster mutation operator has to cope with is to remain within the
specified search space. When a budget has been set to avoid an infinite addition of components,
the operator has to remain within the specified bounds. It might also be the case that the mutate
operator will try to remove a component from a design point with only a single component available,
which creates an invalid design point. All these problems can be handled by introducing the
so-called death penalty (i.e. removing invalid individuals). This has a more strict way of making
sure to stay within the bounds of the defined search space.
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It is uniformly determined which of the two different mutation ways is chosen when an individual’s
component cluster is selected to be mutated. Since mutations should not incorporate a too large
exploratory step, it is not possible that an individual is mutated to receive an extra component
besides altering one of its capacities.

3.5.2 Floorplan cluster

The floorplan cluster has to cope with the fact that the mutated individual should remain true
to the uniqueness requirement and that the individual remains within the defined floorplan
boundaries specified in the search space. However, the implementation of a mutate operator is
quite straightforward. The location of a single random component is selected and this location is
altered to a different, not already occupied location within the possible grid.

3.5.3 Application mapping and policy clusters

Since the application mapping cluster embeds only a selection of a predefined set of functions, it
actually follows the same mutation operator as the policy cluster. The mutation operator simply
changes the function to a random not already chosen function specified in the design space. It
might be the case for the application mapping cluster that the mutation will result in that the new
function might not be able to map the applications to the components, thus creating an invalid
design point. When this occurs, the individual is removed (sometimes called the death penalty).

3.6 Selection

Selection is a stage of the GA where n individuals from the complete population (i.e. both parents
and offspring) are chosen for the next population. The selection process is determined by the
fitness values, that are determined via the evaluation operator. Throughout each generation, the
number of individuals remains constant. Several challenges arise during the selection operator. The
selection should be performed in a way that diversity is retained within the population, such that
the GA will not get stuck in a local optimum. For a multi-objective optimization problem (as is the
case for the DSE), individuals can not be ordered in a single list in ascending or descending order
based on their fitness. Due to the multiple objectives, individuals can only be compared according
to their domination of one and other.

3.6.1 NSGA-II and NSGA-III

Non-dominated sorting is the core concept of the Non-dominated Sorting Genetic Algorithm
(NSGA) and its successor NSGA-II. Since NSGA-II is more successful than the original NSGA, this
subsection will mainly focus on the successor algorithm. The selection of the algorithm is based on
the combination of non-dominated sorting and the crowding distance of individuals as both shown
in Figure 11.

Non-dominated sorting will classify each individual to a certain rank based on its Pareto-
domination characteristics. Individuals of rank 1 are not dominated by any other individual and
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Figure 11: Illustrations of the ranking and determination of the crowding distance as presented in
[20] with two objectives. Within non-dominated sorting, all solutions are sorted regarding their
non-domination rank. The crowding distance is the Manhattan distance between the left and right
neighbours.

are the actual Pareto set of the current generation. Rank 2 individuals are those that are not
dominated when individuals from Rank 1 are removed from the population. This step can be
continued to Rank n, at which all individuals have a rank assigned to them. With this method, it
is possible to select the whole population into certain ranks, where a lower rank corresponds with a
better performance in the design objectives. This idea is best illustrated in Figure 11a with two
objectives.

The crowding distance is a way to determine how diverse an individual is compared to others of
the same front (more specifically its direct neighbors). When there is a short distance between an
individual and its neighbors, it means that these three individuals are closely positioned together,
making them not diverse. Individuals that have a high distance indicate that they are more different
from the other points within the same rank. The crowding distance will help with maintaining a
diverse population.

The NSGA-II combines these two methods, as can be seen in Algorithm 6. The algorithm gives
preference to the individuals of lower ranks and will select the individuals of rank 1 first (which is
the Pareto-optimal set) and will keep adding the individuals of each consecutive rank until a rank p
will not fit in the next population. Once this is the case, the crowding distance is computed for each
individual within rank p. All individuals of rank p are then sorted based on their corresponding
crowding distance. The algorithm will add individuals in decreasing order of this front until the
population is full (i.e. the same size as the previous population). Note that the outer individuals of
a single rank (which are the ones with fewer neighbors than the other individuals) can be seen as
diverse points and will therefore have a crowding distance of ∞ assigned, making those the first
individuals to be selected out of this rank.
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Algorithm 6 NSGA-II [20] selection

function NSGA2(Pt, Ot) . parent population and offspring
Pt+1 ← {} . next population
fronts ← non dominated sorting(Pt ∪Ot) . sorted fronts (Figure 11a)

for each Fi in fronts do
if |Fi ∪ Pt+1| < |Pt| then . if front fits in new population

Pt+1 ← Pt+1 ∪ Fi . add whole front to new generation
else . crowding distance selection

for each objective do
sort Fi with regard to objective
set distance of first and last individual to ∞
for each solution do

add crowding distance times weight of objective
end for

end for

Sort F according to descending crowding distance
Add first (|Pt| − |Pt+1|) individuals to Pt+1 . add individuals with highest distance

end if
end for
return Pt+1

end function

Earlier research [10, 18] extended the NSGA-II algorithm to function better as a many-objective
optimization algorithm (which are the problems with three up to 15 objectives). The result is
an improved algorithm of NSGA-II called NSGA-III. While the core remains similar to NSGA-II,
it will improve and alter the part that calculates the crowding distance via the use of reference
points. The NSGA-III algorithm within this project creates these reference points uniformly by
using random reference points on a hyperplane that will intersect each axis of the objective space at
1. When looking at comparisons within earlier research [9], it is generally observed that NSGA-III
will perform better for problems with more than two objectives. However, this is not always
the case [17], which shows that NSGA-II can in some cases perform better than NSGA-III in
many-objective optimization problems. Both algorithms are provided by the DEAP framework [11],
which are the versions that are being utilized in this project.

4 Adaptivity-aware real-time scheduling policies

This work package builds on the results of other work packages, in particular the design space
exploration (DSE, Task 3.2, see Section 3), and the domain-specific language (DSL, Task 1.1).
The DSL provides directed acyclic graphs (DAGs) representing the tasks and data dependencies
of the application, while the DSE specifies characteristics of the utilized hardware architecture.
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Scheduling involves (i) assigning graph nodes to processing elements (PEs) and (ii) determining the
order in which the nodes are executed on the respective PE. Our approach aims at bridging the gap
between fault tolerance and analyzability. On one hand, the system should be able to dynamically
react to faults, but on the other hand it should be possible to estimate the worst case execution
time (WCET) of graph executions with high precision. Therefore, we currently do not compute
strict timings, only a task assignment and execution order so that the actual point in time a task is
executed at runtime depends on the availability of data. The task assignment and execution order
can be used in the static analysis of a graph execution while the data-driven execution approach
allows to temporarily insert additional tasks into the schedule at runtime whenever a re-execution
is required.

4.1 Scheduling prerequisites

In the following, we provide an overview of properties required for the scheduling of task graphs
and describe how these properties are acquired:

(i) Available processing elements: An important aspect for scheduling is the set of available
PEs which are considered in the scheduling process. This set may contain homogeneous or
heterogeneous PEs. Furthermore, it might be useful to limit the set of considered PEs, for
example if another program is supposed to run on the hardware architecture or if some PEs
should serve as spare components. Since the number and characteristics of available PEs is
related to the hardware architecture, we obtain this information from the DSE.

(ii) Runtime estimation of tasks: Another necessary property for the scheduling are runtime
estimations for all tasks in the graph. We determine estimations for combinations of tasks
and PE types by performing various measurements.

(iii) Data transfer rates: Depending on the hardware architecture, it might be important for
scheduling algorithms to consider data transfer times between different PEs in order to
compute reasonable schedules. With regards to how PEs are connected and which memories
they share, there could be a single, constant bandwidth that applies to all data transfers, or
different bandwidths for pairs of PEs. Other hardware-dependent properties, which might
be required for the scheduling, are transfer initialization and termination times, for example.
We can determine this information (whenever it is relevant) from the hardware architecture
provided by the DSE.

(iv) Data passed between tasks: Data transfer rates alone are not sufficient to estimate transfer
times. It is also important to have knowledge about the size of the data transferred from one
PE to another. This information is available in the graphs provided by the DSL.

(v) Memory constraints: Lastly, depending on the hardware architecture given by the DSE,
there might be memory constraints that must be considered in the scheduling process. An
example is a distributed architecture where some PEs only have access to small local memories.
In such cases, scheduling has to ensure that tasks are assigned to PEs with enough memory
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to store the input, output and temporarily created data. Purely shared-memory architectures
do not require such a constraint.

4.2 Support for different redundancy configurations

In this section, we describe scheduling under different redundancy configurations which allow to
detect errors in task executions. Since the ADMORPH project targets dynamically evolving systems
that might need to change redundancy at runtime, we consider five different configurations in the
scheduling process:

(i) Non-redundant task execution

(ii) Double task execution on different PEs with comparison tasks

(iii) Triple task execution on different PEs with voting tasks

(iv) Double task execution on the same PE with comparison tasks

(v) Triple task execution on the same PE with voting tasks

All redundant configurations allow to detect transient errors in task executions. Depending on
whether tasks are executed two or three times, such errors can be corrected by immediately re-
executing tasks or they are automatically resolved via voting. If configurations with redundancy
over different PEs are used, the system is also able to determine whether a PE produces consistently
wrong results. Treating such a permanent fault is future work, see Section 4.4.

Because of the varying number of task executions in the redundancy configurations, one single
schedule is not sufficient. First, we want to focus on the redundancy configurations that involve task
executions on different PEs. To compute schedules with redundancy over multiple PEs, existing
scheduling algorithms must be modified. Otherwise, redundant tasks are potentially assigned to the
same PE. We chose to extend the heterogeneous earliest finish time (HEFT) scheduling heuristic
[31] since it is suitable for a large variety of hardware architectures. Algorithm 7 shows the modified
heuristic for the case of two redundant task executions. The general principle behind this extension
also works for three redundant executions per task. By default, HEFT iterates over all graph nodes
and considers all PEs as possible candidates for task assignments. In order to generate suitable
redundant schedules, it is sufficient to check for each task whether one of its associated redundant
tasks is already assigned to the currently considered PE so that this PE can be temporarily excluded
from the scheduling process. Line 12 in Algorithm 7 contains the corresponding check.

Furthermore, we applied two additional modifications to the heuristic. First, the modified
HEFT algorithm assigns each comparison task directly after one of the associated redundant task
so that errors are detected as early as possible. To realize this, our version of HEFT always
schedules two redundant tasks and their associated comparison tasks successively (Line 10). Thus,
redundant tasks and comparison tasks can be skipped when the scheduling list is created. Despite
this modification, tasks are still scheduled in a topological order so that correct schedules are
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Algorithm 7 HEFT Scheduling with Redundant Executions

1: procedure heft redundant(s : graph section)
2: compute mean values for all node and edge weights in s
3: compute the upward rank for all nodes in s
4: create scheduling list as in standard HEFT ignoring redundant and comparison nodes
5: while the scheduling list is not empty do
6: let n be the first node in the list
7: remove n from the list
8: let n′ be the redundant node belonging to n
9: let nc be the comparison node belonging to n and n′

10: for x in [n, n′, nc] do
11: for each PE p do
12: if x is n′ and n was assigned to p then
13: proceed with next PE
14: else if x is nc andc both n and n′ were not assigned to p then
15: proceed with next PE
16: end if
17: compute the earliest finish time (EFT) of x on PE p
18: end for
19: assign x to the PE with the lowest earliest finish time
20: end for
21: end while
22: end procedure

produced. The desired assignment is then ensured by another conditional block inside the inner
loop (Line 14).

The second additional modification consists of a slightly different EFT computation. By default,
the EFT is computed with the following formula (see [31]):

EFT (ni, pj) = wi,j + max

{
avail[j], max

nm∈pred(ni)
(AFT (nm) + cm,i)

}
.

This formula only considers direct predecessors for communication costs (cm,i). However, in
redundant graphs the direct predecessors of non-comparison tasks are comparison tasks. In
this case, it makes sense to also consider the preceding tasks of the comparison tasks since the
corresponding PEs performed the actual computation and have the data in their local memory or
cache.

For redundant executions on the same PE, it is possible to use standard DAG scheduling
heuristics without modification. Redundant tasks and the following comparison or voting task can
be executed without interruption by other task executions or transfers and can thus be considered
as one longer execution in the scheduling process. In contrast to redundant execution over different
PEs, these redundancy configurations have the advantage that on distributed hardware architectures
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fewer data transfers are required. Since schedules with redundancy on the same PE are generated
with standard heuristics, it is possible to use non-redundant schedules for the respective redundancy
configurations. The downside of this approach is that the non-redundant schedule is possibly less
suited for a redundant execution than a separately computed schedule because of the difference in
the ratio of transfer to computation.

4.3 Changing the redundancy of parts of an application

In order to enable the software to change the redundancy configuration of parts of an application at
runtime, we divide graphs into different sections which are scheduled independently. These sections
are executed one after another with barriers in between. The barriers serve as checkpoints to switch
to a different redundancy configuration, i.e. to a different schedule. It is important to choose the
section boundaries and the order in which sections are executed in a way that the graph remains
executable. If a graph consists of multiple sections, it is possible to check whether the sectioning
is correct by looking at the dependencies between sections. There is a dependency between two
sections a and b (with a 6= b) if and only if there is a data dependency between a task from a
and a task from b. A correctly sectioned graph must not contain any cyclic dependencies between
sections, i.e. the dependencies between sections must also form a DAG. Otherwise, it would not be
possible to specify an order in which sections are executed. We call the DAG consisting of sections
as its nodes and section dependencies as its edges Meta-DAG. After a correct Meta-DAG has been
identified, the execution order of sections (given by their indices) can be checked. To be correct, the
order of sections must follow the dependencies between sections, i.e. it must represent a topological
sort of the Meta-DAG.

Graph sections are always DAGs on their own. Therefore, the scheduling techniques described
in the previous section can be applied to individual graph sections without any modifications.
Scheduling sections independently clearly has an impact on the performance of graph executions.
This has two reasons. First, the more sections a graph is divided into, the less information about
the overall graph structure scheduling heuristics can use. Second, sections prevent scheduling
algorithms to optimize the execution order of tasks over section boundaries. These two factors lead
to a high probability that the execution of a graph with many small sections runs slower than the
execution of the same graph with fewer but larger sections.

4.4 Ongoing and future work

As described above, the choice of graph sections has an influence on the makespan of schedules.
Hence, there is a trade-off between the granularity of dynamic fault tolerance and the overall
performance of graph executions. At the moment, graph sections must be specified manually, but
we also want to explore methods to determine suitable section boundaries automatically. However,
an entirely automatic sectioning would greatly reduce flexibility. Thus, the method should allow to
specify the redundancy requirements of an application so that the sectioning routine can determine
the number of sections and section bounds accordingly. A bachelor student is currently working on
automatic sectioning as the main part of the thesis.
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Another ongoing task is the consideration of a graph execution deadline in the scheduling and
analysis process. The extended HEFT scheduling heuristic described above computes multiple
schedules for each graph section to support different redundancy configurations. Our goal is to
determine combinations of graph sections that can be executed redundantly, and how many faults
may occur so that the deadline is still met. This is the topic of another bachelor’s thesis, which is
currently being worked on.

The third aspect we want to highlight is the consideration of task migrations due to permanent
faults. In many cases, it is clear when a PE is permanently damaged, for example when the PE
does not respond anymore. However, permanent faults might be more subtle, for example when
they only cause consistently wrong results and thus there might be consecutive re-executions. As
mentioned above, considering the consequences of permanent faults in the scheduling and analysis
is future work.

5 Models of computation and derived architectures to al-

low seamless reconfiguration

This section relates to the activities and results of Task 3.4, i.e. introducing models to formally
describe adaptivity at the application, architecture and system levels. Adaptability is a key attribute
that enables embedded computer systems to be highly performant and at the same time react to
internal or external events, such as crossing the boundary of operational envelope due to a change
of the environment, or a software/hardware failure, e.g. due to dormant bugs/material fatigue
respectively. In the literature of the real-time systems, there is a plethora of models that address a
category of such events, while expressing the real-time aspects of the systems. For example, mixed-
critical systems model the difference of worst-case execution time for various levels of assurance,
whereas mission-based systems reflect the change of priorities with respect to a given mission.
Nevertheless, real-life systems typically face more events from multiple planes, e.g. functional,
timing, operational environment, security, etc. For example consider an embedded computer
of a search-and-rescue civil aircraft that contains the functionality for the radar and the radio
communication along with two other tasks, one of high-criticality and of low-criticality functionality.
An example of a schedule, when the aircraft is cruising, that meets the timing requirements (called
deadlines) on a dual-core architecture is illustrated in Figure 12(a). While cruising, the radar
is looking for large objects in its immediate flight path, whereas while searching for survivors
the radar is looking for smaller objects in all directions. As a result there are different timing
requirements for the two different phases of the mission and possibly different frequencies/periods
for the radar functionality. In our working example, this would correspond to a deadline change for
the radar from time instance t = 7 to time instance t = 4.5, as illustrated in Figure 12(b), along
with one out of many valid schedules. In addition, when a core overheats, the operating frequency
of that core can be reduced, to avoid permanent damage, resulting in potentially longer executions.
As a result, there are different execution demands for the two different hardware states, leading
to the low-criticality task to be dropped, in both cruise mode (Figure 12(c)) and search mode
(Figure-12(d)) as in all possible schedules at least one task would violate its deadlines, if all the
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tasks where tries to execute, thus the lo-criticality is removed.

(a) Normal execution while cruising (b) Normal execution while searching

(c) Abnormal execution while cruising (d) Abnormal execution while searching

Figure 12: (Motivational example) Execution of the cruise/search modes in normal/abnormal
timing conditions

The aim of Task T3.4 is to propose a set of features for models of computation and their derived
constraints for hardware/software architectures (targeting Multi-core, FPGA and distributed) to
allow seamless reconfiguration to achieve dynamic adaptation. This task is linked to the architecture
definition and physical constraints introduced in Work Package 5 to implement those constraints
specified by the coordination language. The model should include the possibility of task graphs
to be updated (including reconfiguration tasks, on- demand redundancies and communications
re-mapping) and for certain levels of optimization to be performed at run time. Hence, The purpose
is not provide algorithms that solve the various optimisation problems, but models that can formally
describe adaptation requirements, upon which models optimisation algorithms can be devised.

To provide real-time guarantees for an application, deployed on an architecture, a formal model
for the application is necessary. An application consists of a set of computation tasks. There is
one significant distinction, encountered especially in the Scheduling Theory community, for the
set of computation tasks. Independent tasks are those tasks which, if ready, can be scheduled in
any order, while for dependent tasks there is an inherent scheduling order imposed. For example,
compressing an image according to the JPEG standard requires that the image is split in blocks
before it is transformed using the Discrete Cosine Transformation (DCT) method. So, from a
task perspective, there is a data-dependency between the tasks that form the blocks and the
DCT transformation tasks. When all of these computation tasks are executed, the application is
considered to have completed an execution, that is, the input data have been consumed and the
desired output has been produced. The output is considered to be correct if during the execution
there are no data-races, deadlocks etc.
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This report considers applications that are composed of tasks that are executed iteratively,
potentially with different periods. An application composed of independent tasks are typically
modeled with task models.

5.1 Task model

In task-models, a system is modeled by a set of tasks T that are executed periodically. Each task τ
releases a job jτ every pτ time units, called the period. That job j must complete within dτ ≤ pτ
times units, called relative deadline. The Worst-case execution time (WCET) for any job of task τ
is denoted as Cτ .

Definition 1 (Task-model). A task-model is the tuple TM = (T,C, P,D):

(i) T is the set of tasks.

(ii) C is the set of WCET of each task

(iii) P is the set of periods of each task

(iv) D the set of deadlines of each task

5.2 Computing architecture model

At the time this report was written, several research and commercial computing platforms with
multiple Processing Elements (PE) were available. These broadly can be categorised according to
i) the type of PEs, ii) the on-chip memory organisation and iii) the network, in case of multiple
embedded devices as illustrated in Figure 13(a).

Homogeneous (as opposed to heterogeneous) are the platforms where the PEs are of the same
type, e.g. CPU, GPU, DSP, Routers, etc., and have the same overall speed when executing a
task, i.e. all PEs have the same clock speed, cache size, I/O interfaces and any other mechanism
that can affect the PEs’ timing behavior. From the perspective of how the shared memory is
organised, there are three main categories, i.e. centralised, distributed and mixed. In centralised
memory organisation, the time for any PE to access any memory location (typically via a bus) is
uniform, when there is no interference, that is the time does not depend on the targeted memory
location/address. On the other hand, in the distributed memory organisation, PEs use a different
mechanism, such as Direct Memory Access (DMA) engines or NoC, to access various memory
locations, thus having a Non-Uniform Memory Access (NUMA) in terms of timing. The mixed
memory organisation is a combination of the centralised and distributed memory organisations,
where a subset of PEs access their shared memory uniformly, but accessing the memory shared by
another set of PEs is non-uniform.

In order to capture the different architectures with a single model that will be used to model
adaptive systems, the generic architecture model is introduced. A single model is important as it
enhances applicability of the proposed methods, which in the context of hard real-time systems is
desirable, as safety properties have to be proven only once.
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(a) Multi-core architecture

(b) Distributed architecture (c) Mixed architecture

Figure 13: Possible architectures

Definition 2 (Generic architecture model). A generic architecture model is a tuple GA = (C, L,
M, N ) where:

(i) C is a set of sets of PEs; each set c ∈ C is called a computing cluster, with each computing
cluster c containing one or more cores k, i.e. k ∈ c

(ii) L ⊆ C × C is a set of links among computing clusters that form the network

(iii) M is a set of memory banks/locations

(iv) N is the set of network channels of a network interface

When the generic architecture model is instantiated to a concrete architecture model match-
ing with one of the architecture types described earlier, i.e. (i) the centralised architectures
MA = ({{k1, . . . , kN}}, ∅,M, ∅) which do not have any network (Figure 13(a)), (ii) the distributed
architectures DA = ({{k1}, . . . , {kN}},L,M,N ) with one core k per cluster (Figure 13(b)), and
(iii) the mixed architectures MX = (C,L,M,N ) (Figure 13(c)). For the architectures that have a
network it is assumed that each cluster has one network interface, with multiple channels.
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5.3 Model Reconfiguration

A task model effectively describes the system requirements, from a functional and timing perspective,
whereas the architecture model describes the physical capabilities of the underlying hardware, at any
point in time. Any change of any of the parameters of the task or architecture mode constitutes an
adaptation; revisiting our previous example of the search-and-rescue aircraft, the change in timing
requirements in the various phases of the missions, is reflected by a change in the corresponding
task model, that is transitioning from a task model TM , for the cruise mission, to a task model
TM ′, for the search mission. Such a transition can be performed safely, if it has been pre-computed
at design time, or applying a schedulability test at runtime. In a similar manner, a change in the
hardware capabilities, e.g. a failed core, can be reflected by a transition from an architecture model
GA to the new architecture model GA’.

Utilizing the pair of task model and architecture model to describe the state, to which the
system has to arrive, can effectively describe all the required adaptations, including task graphs
to be updated with reconfiguration tasks, on-demand redundancies, communications re-mapping,
failing cores, etc. As such, these models can be used to build algorithms that solve the associated
optimisation problems, either at design-time and/or runtime. For the sake of coherence, we shall
report more detailed examples in Deliverable D5.2, alongside with the use-cases, where it is more
relevant.

6 Timing analysis for certification in heterogeneous pro-

cessing platforms

Safety-critical applications need to cope with real-time requirements. In this case, runtime execution,
timeliness and predictability become a safety issue. The inclusion of complex processing architectures,
their increased level of shared resources, and the complexity of their interconnect infrastructures,
makes it very difficult to calculate accurate bounds for the Worst-Case Execution Time. Adding
run-time adaptation includes an additional challenge very difficult for certification guarantees.

Task 3.5, that at the time of writing has just started, focuses on analysing the timing behavior of
adaptive systems. At the current stage, existing timing analysis tools are being evaluated to assess
their applicability with respect to the models produced in Task 3.4. So far, the most promising
candidate tool for certification are AADL-based tools, e.g. CHEDDAR, due to its maturity and
applicability in the avionics domain.

7 Providing formal guarantees on the adaptation layer

A recent survey on the state of industrial practice in real-time systems showed that a significant
fraction of real-time tasks are allowed to miss a finite number of deadlines [2]. The research
community spent years defining and analysing models of tasks that can miss deadlines, from soft
real-time systems, to tasks with a skip-factor and approximating the deadline miss probability for
a given system. One of such models in which tasks may miss deadlines is the weakly-hard task

ADMORPH D3.2 Second report on analysis techniques for adaptive systems Page 35 of 48



ADMORPH – 871259

model [5]. This is the model we adopt for our investigation, as it allows us to determine precisely
the characteristics the hardware should guarantee (thanks to morphing and adaptation) to still
preserve an acceptable behaviour.

In WP1, we defined the requirements of a real-time system on the basis of deadline misses and
what can a control system tolerate. To do so, we used a model called weakly-hard task model,
which constraints the number of deadline hits and misses that a task can experience.

In particular, weakly-hard tasks behave according to patterns of hit and missed deadlines that
are (mainly) window-based. The originally proposed constraint model specifies alternatively (for a
window of subsequent jobs): (i) the minimum number of deadlines that are hit, (ii) the minimum
number of consecutive deadlines that are hit, (iii) the maximum number of deadlines that may
be missed, or (iv) the maximum number of consecutive deadlines that may be missed. The third
of these models – often called the (m,K) model – gained attention in the research community,
generating results on scheduling algorithms [12], real-time and schedulability analysis [30, 26, 13],
verification [15, 3] and runtime monitoring [34] of constraint satisfaction, derivation of task model
parameters [35], together with applications to domains like telecommunication [1, 16] and control
systems [29, 25]. The fourth model has also proved relevant to perform a conservative analysis of
the stability of control systems [23]. Furthermore, the relation between weakly-hard constraints
has been partially investigated [32, 34].

This model fits the ADMORPH ecosystem, as reconfiguration should occur when the system
enters a critical state, in which deadlines cannot be missed any more, for example because this may
interfere with the correct operation of a control system. Given the requirements found in WP1
for the specific case studies, we can then analyse the real-time component of the system and the
guarantees that the adaptation layer must provide.

Despite the research effort, many questions remain unanswered, both in terms of the relation
between different types of weakly-hard constraints, and regarding the type of analysis that can be
performed using weakly-hard tasks. We now present some of these questions.

(i) The first question we would like to answer is what happens if a real-time analysis technique,
like the one presented in [13], tells us that a task satisfies two constraints simultaneously.
In some cases, one of the two constraints dominates the other, meaning that satisfying the
dominant constraint also guarantees the satisfaction of the dominated one. But this is not
always the case. For example, suppose that a task satisfies simultaneously two constraints:
λ1 = (2, 5) and λ2 = (3, 7). λ1 specifies that the task may miss a maximum of 2 deadlines
in every window of 5 consecutive jobs. λ2 says that the same task may miss a maximum
of 3 deadlines in every window of 7 consecutive jobs. Neither of the constraints dominates
the other and a (generic) sequence of job activations may satisfy λ1, λ2, both, or neither.
Denoting a deadline miss with a 0 and a deadline hit with a 1, the sequence 0011100 satisfies
λ1 but not λ2 and the sequence 0001111 satisfies λ2 but not λ1. The choice of which constraint
is to be used, for example to analyse the performance of a control system following the method
presented in [25], is then left to the practitioner, while it would be best to consider both
constraints simultaneously.

(ii) The second question we raise comes from the consideration that in practice it may be easier
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to guarantee that some prescribed job will hit their deadline rather than ensuring that the
number of misses follows a given pattern. This is the case of running jobs in a protected
execution environment when there is a need to hit the corresponding deadline as opposed to
running alongside other tasks. As an example, mixed-criticality allows the scheduler to raise
the criticality level and thus guarantee that the highly-critical tasks meet the corresponding
deadlines [7]. We can treat the weakly-hard task as highly critical and raise the criticality
level when a deadline hit must be enforced. Alternatively, we can increase the budget of a
reservation-based scheduler [8]. The consideration here is that often it is easier to guarantee
a certain hit pattern rather than a miss pattern. Despite that, the first two types of weakly
hard tasks, that constrain the number of hits, have not been receiving much attention from
the research community.

(iii) The third consideration we bring forward is one of scalability. Many of the research results,
for example in the control domain [25, 21, 22], use short windows. However, for practical
applications it may be relevant to use a large window size, as done for example in the
experimental analysis in [3]. In fact, the original motivation behind the weakly-hard task
model [5] uses a practical example from the avionics domain in which a deadline may be
missed 11 times in every consecutive 295 jobs. It seems reasonable that systems that are built
and certified (for example in the automotive domain) would not experience many deadline
misses, and that using a short window size would lead to very conservative results.

To address these questions and empower researchers with a tool to investigate related ones, we
are building a software library for the analysis of weakly hard tasks where scalability is treated as
a first-class citizen. More precisely, the contribution of the library will be the following:

(i) Leveraging an automata-based representation to describe a task subject to a set Λ =
{λ1, . . . , λL} of L weakly-hard constraints. Representing weakly-hard constraints with the
corresponding directed labeled graph is not a novel contribution. Differently with respect
to many research contributions, e.g., [33, 22], rather than addressing a single constraint, we
want to construct an automaton that represents the entire set Λ and support all the four
weakly-hard constraint types. Furthermore, we construct the minimal automaton, paving the
way towards addressing the scalability requirement.

(ii) Handling known [4, 32, 35, 34] and new dominance relations to speed up the automaton
generation. In particular, we want to provide a theoretical contribution on the relation
between the first two types of weakly hard constraints, respectively the number of hits and the
number of consecutive hits in a window. This relation constitutes the final piece, that allows
us to relate all the types of constraints with one another, and provide some ordering among
them. Handling constraint domination allows us to further improve the library’s scalability.

(iii) Scaling to larger constraints and constraint sets. First, we plan to analyse the scalability of
our library compared to the state of the art whenever possible, i.e., for single constraints.
Second, we want to look at sets of constraints and perform a sensitivity analysis, to determine
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which parameters affect the execution time for the translation of a set of constraints into the
corresponding automaton.

7.1 Background and related work

Here we analyse a single real-time task. A real-time task τ is an entity composed of a (possibly
infinite) sequence of jobs (ji)i∈N≥ , representing code that is executed repeatedly on a given hardware
platform (not necessarily according to any temporal pattern or periodicity). A task is characterised
by its relative deadline d, representing the time after which each job should be completed. The
index i counts the job number. For a given job ji, we denote with ai its release time (the time in
which the job becomes active in the hardware platform), and with fi its completion time (the time
in which the job terminates its execution). We also use di to represent the absolute deadline of the
i-th job, meaning that di = ai + d.

In general, a job can either complete its execution before its deadline or overrun it, resulting
respectively in a deadline hit or miss (collectively denoted by the job’s outcome).

Definition 3 (Deadline Hit). The i-th job of a task τ is said to hit its deadline if fi ≤ di.

Definition 4 (Deadline Miss). The i-th job of a task τ is said to miss its deadline if fi > di.

The weakly-hard task model [5, 4] provides guarantees on the sequence of outcomes of a real-time
task via four constraints, each specifying how deadline misses and hits are interleaved for a window
of k ≥ 1 consecutive jobs.

Definition 5 (Weakly-Hard Task). A weakly-hard task τ is a task that satisfies (at least) one of
the following constraints:

(i) τ `
(
x
k

)
(AnyHit): in any window of k consecutive jobs, the minimum number of hits is x;

(ii) τ `
〈
x
k

〉
(RowHit): in any window of k consecutive jobs, the minimum number of consecutive

hits is x;

(iii) τ `
(
x
k

)
(AnyMiss): in any window of k consecutive jobs, the maximum number of misses is

x; and

(iv) τ `
〈
x
k

〉
(RowMiss): in any window of k consecutive jobs, the maximum number of consecutive

misses is x;

for some values of x, k ∈ N≥, where x ≤ k and k ≥ 1. We use the ` symbol to indicate that all the
possible sequences of outcomes of τ satisfy the right hand side.

All the types of constraints in Definition 5 have received attention in the real-time systems
literature. In particular, the AnyMiss constraint has been extensively studied, and is commonly
addressed as the (m,K) weakly-hard task model. However, each of these constraints has been
studied separately and a task can simultaneously satisfy many of them, possibly of different types.
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Exploiting different types of constraints – and possibly different parameters for the same type
of constraint – leads to a better outcome for the analysis of the system. This follows from the
space of possible sequences being pruned, thus allowing us to focus on proving that the real-time
system behaves correctly in the relevant cases. In the following, we denote a set of L weakly-hard
constraints with Λ = {λ1, λ2, . . . , λL}. To characterise the possible sequences of outcomes that
satisfy a constraint, we borrow some elementary concepts from language theory, in particular the
binary alphabet [14].

Definition 6 (Alphabet Σ of Job Outcomes). We define the alphabet of job outcomes Σ = {0, 1},
where 0 indicates a deadline miss and 1 represents a deadline hit.

Using well-established notation, we denote the character ci ∈ Σ as the outcome of job ji. A
word w of length |w| = N is a sequence of characters w = {c1, c2, . . . , cN} that specifies a sequence
of consecutive job outcomes for a task. Without loss of generality, we assume that all words are
preceded and followed only by hits. We denote the subword of a word w from index a to b with
w (a, b) = {ca, ca+1, . . . , cb}. Finally, ΣN denotes the set of all possible words of length N .

With a slight abuse of notation, we use w ` λ to indicate that the word w satisfies the constraint
λ. Obtaining the set of words satisfying λ follows directly from the definitions of the alphabet and
the constraint itself [5, 4].

Definition 7 (Satisfaction Set SN (λ)). The set of all length N words w, satisfying the weakly-hard
constraint λ, is denoted by SN (λ). Formally, SN (λ) =

{
w ∈ ΣN |w ` λ

}
, N ≥ 1.

Trivially, all words in SM (λ) are subwords of words existing in SN (λ), if M ≤ N . To simplify
notation we define the set containing all words of infinite length as S (λ) ≡ S∞ (λ).

Using satisfaction sets, it is possible to formally define a partial ordering between two constraints
λi and λj. We denote the logical conjunction with ∧ and the logical disjunction with ∨. The
following notions of constraint domination and equivalence [5, 4] are used extensively throughout
the remainder of the paper (jointly denoted constraint dominance).

Definition 8 (Constraint Domination). Given two arbitrary weakly-hard constraints λi and λj,
λi dominates λj (denoted λi ≺ λj) if all words satisfying λi also satisfy λj, i.e., S (λi) ⊂ S (λj).
Correspondingly, λi � λj ⇔ S (λi) ⊆ S (λj).

Definition 9 (Constraint Equivalence). Given two arbitrary weakly-hard constraints λi and λj, λi
is equivalent to λj if they respectively dominate each other. Formally, λi ≡ λj ⇔ λi � λj ∧ λj � λj.
Two constraints are equivalent if they share the same satisfaction set, i.e., λi ≡ λj ⇔ S (λi) = S (λj).

The notion of constraint dominance has attracted attention from different areas, and is still
occasionally researched [34, 32]. To provide dominance results, we first define the weakest and
hardest constraints [5, 4].

Definition 10 (Weakest Constraint λ). The weakest constraint λ is defined as the constraint
satisfied by any word. Formally, SN (λ) = ΣN , ∀N ∈ N>.
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Definition 11 (Hardest Constraint λ). The hardest constraint λ is defined as the constraint
satisfied solely by the word containing all deadline hits. Formally, SN

(
λ
)

=
{

1N
}
, ∀N ∈ N>.

Using these definitions, we now review known constraint dominance relations. We refer the
reader to [4] or any referenced paper for the corresponding proofs.

Lemma 1 (Known Equivalence Relations). The following equivalence relations hold:

(i)
(
x
k

)
≡
(
k−x
k

)
, an AnyHit constraint with x deadline hits in a window of k jobs is equivalent to

an AnyMiss constraint with k − x hits in a window of k jobs,

(ii)
〈
x
k

〉
≡ 〈x〉, ∀k ≥ 1, a RowMiss constraint is independent of the window size, i.e., it is

equivalent to the same constraint with any k value,

(iii)
(
x
x+1

)
≡ 〈x〉, a RowMiss constraint with x deadline misses is equivalent to an AnyMiss with x

possible misses in a window of x+ 1 jobs [23],

(iv)
〈

1
k

〉
≡
(

1
k

)
, (trivially) a RowHit constraint is equivalent to an AnyHit when looking at the

same window length and a single deadline,

(v)
〈
x
k

〉
≡ λ⇔ x > k/2, a RowHit constraint is equivalent to the hardest constraint when x > k/2.

Using these equivalence relations, we can always translate AnyMiss and RowMiss constraints
into a corresponding AnyHit constraint. However, there is no clear equivalence between AnyHit

and RowHit constraints (beside the trivial case of a single deadline and the same window length).
Finding such a relation is important because it would allow us to treat sets of different types of
constraints reducing the analysis to a single type and therefore improving efficiency.

Denoting with b·c and d·e respectively the floor and ceiling operators, we can then define some
domination relations.

Lemma 2 (Known Domination Relations). The following domination relations hold:

(i)
(
x1
k1

)
�
(
x2
k2

)
⇔ x2 ≤ max {a, b}, where a = bk2

k1
cx1 and b = k2 − dk2k1 e(k1 − x1); the AnyHit

constraint with parameters x1 and k1 dominates all AnyHit constraints with parameters x2

and k2 if and only if x2 ≤ max {a, b} with a and b defined as above.

(ii) For any two constraints
〈
x1
k1

〉
,
〈
x2
k2

〉
6≡ λ,

〈
x1
k1

〉
�
〈
x2
k2

〉
⇔
(
k2 < k1 ∧ k2 ≤ x1 − dk1−k22

e
)
∨

(k2 ≥ k1 ∧ x2 ≤ x1); this specifies the domination between two RowHit constraints depending
on their constraint parameters.

(iii)
〈
x1
k

〉
�
(
x2
k

)
⇒ {x2 ≤ 4x1 − k − 2, x2 ≤ x1, x2 ≥ 0}; for a fixed and equal window k, if a

RowHit constraint with consecutive deadlines hits x1 dominates an AnyHit constraint with x2

deadlines hits, then the indicated relation between the constraint parameters hold.

(iv) 〈x1〉 � 〈x2〉 ⇔ x1 ≤ x2; a RowMiss constraint with a lower number of deadline misses
dominates a RowMiss with a higher number of deadline misses.
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(v)
(
x+p
k+p

)
�
(
x
k

)
if p > 0; AnyMiss constraints can be dominated by other AnyMiss constraints

when particular relations hold for values of their parameters [32].

The ability to translate constraints into AnyHit equivalents makes Lemma 2(i) very powerful
to compare different weakly hard constraints. Finally, Lemma 2(iii) is the only known result that
relates the RowHit constraints with the other types. However, its applicability is limited to the case
in which the two constraints share the same window size. From the presentation of the existing
constraint dominance relations, we gather that there is an important piece missing to achieve a
comprehensive weakly-hard analysis.

7.2 Theoretical analysis

We provide here the statements of two theorems that we proved during our theoretical analsyis,
omitting the proofs, that will be presented in a scientific paper that is currently under review.

Our first theoretical contribution is the proof of a condition regarding the domination of a RowHit

constraint over a AnyHit constraint. The proof is based on restricting the AnyHit constraint’s
minimum number of hits in order to ensure that its satisfaction set includes the one of the RowHit

constraint.

Theorem 1 (RowHit–AnyHit Domination). Let λ1 be a RowHit constraint λ1 =
〈
x1
k1

〉
6≡ λ and λ2

be an AnyHit constraint λ2 =
(
x2
k2

)
. Then

λ1 � λ2 ⇔ x2 ≤ max {x1 q, k2 − (1 + q) z1} ,

where z1 = k1 − 2x1 + 1 and q = bk2/(z1 + x1)c.

The second theoretical contribution is the proof of a condition regarding the domination of
an AnyHit constraint over a RowHit constraint. The proof is based on restricting the RowHit

constraint’s minimum number of consecutive hits in order to ensure that its satisfaction set includes
the one of the AnyHit constraint.

Theorem 2 (AnyHit–RowHit Domination). Let λ1 be an AnyHit constraint λ1 =
(
x1
k1

)
and λ2 be a

RowHit constraint λ2 =
〈
x2
k2

〉
6≡ λ. Then

λ1 � λ2 ⇔ x2 ≤ min {bk2/(z1 + 1)c, dx1/z1e} ,

where z1 = k1 − x1.

The two theorems above complete the relation graph between the different types of weakly-hard
constraints. Now that we have a complete picture, we can start investigating sets Λ of L constraints,
Λ = {λ1, . . . , λL}.

Finally, we can extend the theory to the case in which τ is subject to an arbitrary set of
constraints of the form presented in Definition 5. First, we extend the satisfaction from Definition 7
and obtain

SN (Λ) =
⋂
λ∈Λ

SN (λ) (1)
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where
⋂

is the generalised intersection. We use τ ` Λ to denote that τ satisfies all the constraints
in the set Λ. This implies that each word w ∈ SN (Λ) must belong to the satisfaction set of all the
constraints in Λ. Trivially, Equation (1) allows to use our extended satisfaction sets in Definitions 7
and 8 to define constraint equivalence and domination for sets of constraints.

Constraint dominance significantly reduces the problem complexity when working with sets of
weakly-hard constraints, Λ. If the constraint set supports different types of weakly-hard constraints,
it can be beneficial to find an equivalent set of constraints with minimal cardinality.

To minimise the number of constraints in the problem formulation, the constraint dominance is
utilised in order to find the minimal cardinality, equivalent subset. Utilising the comprehensive
picture the theorems provide, we propose the notion of a dominant set, thus simplifying the analysis
of weakly-hard systems subject to multiple constraints.

Definition 12 (Minimal Dominant Set). The minimal dominant set Λ∗ of a set of weakly-hard
constraints Λ is defined as the smallest cardinality subset of Λ representing an equivalent set of
constraints. Formally, Λ∗ ⊆ Λ where

(i) λi, λj ∈ Λ∗ ⇒ λi 6≡ λj, ∀i 6= j,

(ii) λi, λj ∈ Λ∗ ⇒ λi � λj, ∀i 6= j,

(iii) λi ∈ Λ \ Λ∗ ⇒ ∃λj ∈ Λ∗ s.t. λj � λi.

From Definition 8, a weakly-hard constraint λi dominates λj if and only if S (λi) ⊆ S (λj).
Thus, excluding all the dominated constraints from Λ does not change the resulting satisfaction set.
The equivalence between the constraint set and its minimal dominant set is trivial considering the
respective satisfaction sets:

S (Λ∗) =
⋂
λ∈Λ∗

S (λ) =
⋂
λ∈Λ

S (λ) = S (Λ) .

7.3 Ongoing and future work

As future activity in the task, we are implementing a software library6 for the analysis of weakly-hard
tasks to:

(i) compare two arbitrary weakly-hard constraints or two sets of weakly-hard constraints, obtain-
ing answers about their dominance (are the two constraints equivalent, does one dominate
the other, or is there no dominance relation between the two),

(ii) translate a weakly-hard constraint or a set of weakly-hard constraints into a corresponding
directed labeled graph, that represents (and is able to generate) all the sequences that belong
to the satisfaction set of the set of constraints,

(iii) produce sequences of arbitrary length that satisfy a set of weakly-hard constraints.

We are building the library having scalability as a first-class citizen, to allow the analysis of relevant
large case studies like the ones defined in work package 5.

6The library will be distributed as open source software.
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8 Automatic validation of safety and security cases for

adaptive systems

The PikeOS real-time operating system is intended to be used in safety and security-critical
applications with certification needs. The key feature of PikeOS is the capability to safely and
securely execute applications with different safety and security assurance levels concurrently on the
same platform. Applications can range from simple control loops up to complete para-virtualized
and hardware virtualized guest operating systems like Linux. An application with a low assurance
level may contain unintended bugs (i.e. safety issues) or malicious code (security issues). In both
cases PikeOS ensures that other applications as well as PikeOS itself cannot be compromised,
providing a correct domain separation using the PikeOS partitioning concept. Separation of
applications is realized by means of spatial and temporal partitioning. A partition is a logical
container created and maintained by PikeOS. PikeOS allocates resources to a partition according
to configuration data (e.g. memory, CPU time, I/O access rights). A partition can host one or
more applications sharing the partition’s resources. The part of the PikeOS operating system that
enforces partitioning at run-time is called the PikeOS hypervisor. Additional components like
device drivers, communication protocol stacks or file systems may be attached to the hypervisor but
they are not part of the hypervisor, however, they may be able to compromise the hypervisor and
therefore need an adequate design assurance level. Partitioning ensures that faults of applications
will only have partition local impact, if the partition does not have specific privileges which break
partitioning. Software components which have access to hypervisor or hardware features which
may break partitioning must be developed with a design assurance level which is appropriate for
the use case. These components are called trusted components; a fault in a trusted component
may have module global impact.

Along with the PikeOS operating system components and and Integrated Development Envi-
ronment (IDE), SYSGO provides a “Safety and Security Manual” that specifies the safety and
security requirements (also called exported constraints or usage domain definition) and guidance
for building a safe and secure system using PikeOS operating system.

Currently, the safety and security requirements of PikeOS exported resources are specified in
natural language in the PikeOS safety and security manual. The system integrator and developer
when using the exported resources, make manual validation of system requirements against the
safety/security manual. This process is labour intensive, prone to human errors and is not repeatable.

In this task, we investigate methods to automate the validation of system configurations such
that they satisfy the safety and security requirements. This automated process allows to find valid
configurations during the dynamic reconfiguration process.

The idea is to identify candidate tools that could be used for automation of safety / security cases.
In the following we report the first assessment we did on Eclipse Modeling Framework (EMF) for
describing PikeOS system configuration and using it for validating an important security property -
information flow policy between partitions based on the resource allocated.

Generally to construct a safety and/or security case that can be automatically verified one
can go into two directions. One direction is ex-post verification of the safety / security case
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Figure 14: Use of EMF

itself. The second direction is correctness by construction, that is only to allow configurations that
maintain certain safety / security properties. For instance, one check for correctness-by-construction
properties (e.g. check for overlapping memory requirements).

A ground baseline that is already in place, is that every user configuration generated by a GUI
tool of the separation kernel must be expressible as XML that complies to a certain XSD (XML
schema definition).

To understand the existing tool landscape, in addition we have looked as EMF, which is
a modeling framework that comes with a rich ecosystem of editing tools. In the context of
ADMORPH we have specifically looked at the user interface and model editor of EMF with the
aims of investigating whether it can help users of the separation kernel for generation of safety
/ security cases. The idea is that each concrete configuration of the separation kernel by a user
/ customer is a model, and that a space of possible configurations is the metamodel (space of
correct-by-construction models). For the metamodel, we can specify containment relations such as
e.g. relation of memory requirements to partitions (Figure 14).

After having specified these relations in the metamodel, eclipse can automatically generate a
model editor where the user can by point-and-click generate models safisfying the constraints of
the metamodel. Moreover, it is possible to add additional user-defined constraints in the Acceleo
Query Language, e.g. such as that each memory region only shall be assigned to one partition (this
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requirement only makes sense when no memory sharing is intended, so it depends on the user).
This functionality is interesting because it would allow to combine user-provided or vendor-provided
additional constraints to the ground model by the use of certain “views”, that is technically
additional constraints imposed by a safety case could be encoded here. One could also use such
a metamodel/view pairing to indicate a safety envelope (metamodel) for dynamic configuration
(taking the role of views).

A possible downside of an EMF+Acceleo combination is that it uses relatively “heavy” machinery,
that is the Eclipse and Sirius frameworks, which might be difficult to tool-qualify in certifications.

Also, for any practical tool for safety cases, user acceptance and the status of the tool landscape
ecosystem is key. Before “jumping” to this framework, we possibly intend to get further feedback
and/or to look at alternative formalization approaches.

9 Conclusion

In conclusion, our work on analysis techniques for adaptive and morphing systems has greatly
progressed.

On one hand, the ability to simulate the behaviour of these system is a signficant step towards
understanding and providing guarantees on the reconfiguration and adaptation procedure and
towards the implementation of adaptation policies. Our simulator is also the key element that
allows us to fast-prototype our analysis techniques and test them on realistic data and scenarios
before the application to the real hardware and software.

The research on adaptive scheduling policies has progressed steadily allowing us to distinguish
between redundant and non-redundant execution and to introduce different degrees of redundancy
and thus safety.

We defined a task model geared towards reconfiguration and certification and we have taken
the first step into the formal analysis of problems that may occur and can cause tasks to miss their
deadlines. We believe this will give us the foundations that we need to implement adaptive and
morphing systems in practice.

10 References

[1] L. Ahrendts, S. Quinton, T. Boroske, and R. Ernst. Verifying weakly-hard real-time properties
of traffic streams in switches networks. In Sebastian Altmeyer, editor, 30th Euromicro
Conference on Real-Time Systems (ECRTS 2018), volume 106, pages 15:1–15:22, 2018.

[2] Benny Akesson, Mitra Nasri, Geoffrey Nelissen, Sebastian Altmeyer, and Robert Davis. An
empirical survey-based study into industry practice in real-time systems. In 2020 IEEE
Real-Time Systems Symposium (RTSS), pages 3–11, 2020.

[3] Amir Behrouzian, H.A. Ara, Marc Geilen, Dip Goswami, and Twan Basten. Firmness analysis
of real-time tasks. ACM Trans. Embed. Comput. Syst., 19(4), July 2020.

ADMORPH D3.2 Second report on analysis techniques for adaptive systems Page 45 of 48



ADMORPH – 871259

[4] Guillem Bernat. Specification and analysis of weakly hard real-time systems. PhD thesis,
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