
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022 3957

Characterizing the Effect of Deadline Misses
on Time-Triggered Task Chains

Paolo Pazzaglia , Member, IEEE, and Martina Maggio, Senior Member, IEEE

Abstract—Modern embedded software includes complex func-
tionalities and routines, often implemented by splitting the code
across different tasks. Such tasks communicate their partial com-
putations to their successors, forming a task chain. Traditionally,
this architecture relies on the assumption of hard deadlines and
timely communication. However, in actual implementations, tasks
may miss their deadlines, thus affecting the propagation of their
data. This article analyzes a task chain in which tasks can fail
to complete their jobs according to the weakly-hard task model.
We explore how missing deadlines affect chains in terms of clas-
sic latency metrics and valid data paths. Our analysis, based
on mixed integer linear programming, extracts the worst-case
deadline miss pattern for any given performance metric.

Index Terms—Deadline misses, functional task chains, latency
analysis, real-time systems, weakly-hard model.

I. INTRODUCTION

COMMERCIAL real-time embedded applications have
experienced a rapid increase of the number of com-

ponents and functionality packed onto the same systems.
The automotive sector is a clear example of this trend: new
advanced driving assistance systems and better safety func-
tions require the integration of a higher number of sensors and
actuators, as well as increasingly complex software to be run.
The implementation of these complex functions is commonly
split among multiple tasks, creating functional chains [29].
A typical example of task chain comes from control systems.
Modern controllers may require to collect inputs from sensors,
filter such data, extract features, and finally produce control
commands used by actuators and diagnostic monitors. All such
steps are possibly managed by different tasks, often involving
the connection of both new components and legacy software,
the two having possibly mismatched rates [40]. As a conse-
quence, most automotive systems are intrinsically multirate
systems.

Tasks belonging to the same functional chain can be mapped
to different computational units of a multicore processor for

Manuscript received 20 July 2022; accepted 26 July 2022. Date of publica-
tion 16 August 2022; date of current version 24 October 2022. This work was
supported by the European Union’s Horizon 2020 Research and Innovation
Programme under Grant 871259 (ADMORPH – http://admorph.eu). This arti-
cle was presented at the International Conference on Embedded Software
(EMSOFT) 2022 and appeared as part of the ESWEEK-TCAD special
issue. This article was recommended by Associate Editor A. K. Coskun.
(Corresponding author: Paolo Pazzaglia.)

The authors are with the Department of Computer Science,
Saarland University, 66123 Saarbrücken, Germany (e-mail: pazzaglia@
cs.uni-saarland.de).

Digital Object Identifier 10.1109/TCAD.2022.3199146

parallelism exploitation. Such platforms are powerful and effi-
cient, but require a more complex design and analysis to
provide correctness guarantees. In this context, analyzable
communication mechanisms, such as the popular logical exe-
cution time (LET) paradigm [33], are introduced in order to
preserve determinism and ensure a proper functioning.

Furthermore, such systems are often characterized by an
environment where the demand for computational resources
on the part of the application is not constant in time. When
transient overload conditions occur, some task instances may
not be able to complete their executions within the given dead-
line. These working conditions are quite common in real-world
applications [3], and considering these systems as hard real-
time ones would result in unnecessary pessimism. Indeed,
automotive applications have been proven to be tolerant to
overload conditions and missed deadlines, as long as the
deadline misses are sporadic and limited in time [51], [60].

Despite this, little attention has been paid in the scientific
literature to the analysis of the effect that a task’s deadline
misses may cause to other (functionally interconnected) tasks.
A job missing its deadline is usually unable to produce its
output on time, impacting the functional behavior of all the
tasks that directly depend on it. This may inflate the reaction
time of the task chain (e.g., from the sensing of an event to
the reaction on the part of the actuators) possibly affecting the
system performance [41]. In the worst case, a missed dead-
line for a task may even result in the entire chain skipping
an output. The magnitude of such effects is, however, largely
dependent on the taskset characteristics and its schedule. For
example, a skipped output of a highly oversampled task may
not have any significant effect on the data flow.

This article aims at assessing the impact of deadline misses
in a functional chain, when at the deadline instant the instance
of a task that has not completed is terminated (killed). Initially,
we abstract from a model of how deadline misses occur in the
system and analyze their effect in general on the data propa-
gation. Then, we study effect chains that involve weakly-hard
tasks mapped in a multicore platform, communicating with
protocols based on the LET paradigm. We formulate the anal-
ysis as a mixed integer linear programming (MILP) problem
and explore the effects of deadline misses in terms of common
metrics for effect chains, such as input-output latency, and data
age. Even when all tasks are designed to adhere with the hard
real-time systems paradigm, this approach can be used as a
sensitivity analysis to identify the tasks that may disrupt the
system performance and to help designing better systems.

The approach is finally evaluated over the Perception RTSS
2021 Industry Challenge [44] that models an autonomous

1937-4151 c© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on October 27,2022 at 09:18:19 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0377-3327

3958 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

driving application that includes a sensing pipeline and the
calculation of a new control signal, which represents a good
target example of emerging automotive applications.

II. RELATED WORK

Task chains are historically classified in two distinct groups:
1) time-triggered (or periodic) and 2) event-driven [57]. In
event-driven chains each task is activated by the termina-
tion of its predecessor. Event-driven chains are common in
avionics [27] and robotics [12]. In time-triggered chains,
tasks execute according to their own periodic behavior, and
the communication occurs by shared memory value updates.
Automotive systems usually employ time-triggered chains [4],
following the AUTOSAR standard. We focus on time-triggered
chains.

One of the first discussions on time-triggered task chains
is found in [26], where the authors propose an algorithm to
select the task periods while guaranteeing end-to-end latency
requirements for a chain. A more rigorous timing analysis of
time-triggered chains was proposed by Feiertag et al. [23].
This analysis introduced a detailed chain framework and its
semantics and paved the way for multiple works on chain-
related challenges in different configurations and with different
levels of available information (e.g., [6], [21], [37], and
[42]). Other works dealt with the problem of optimizing task
parameters to satisfy end-to-end timing constraints for a task
chain [17], [58], [65]. Recent papers targeted more complex
scenarios: chains that may share one or more tasks with other
chains [36], and globally asynchronous locally synchronous
distributed chains [28]. Successful industrial tools, such as
SymTA/S [31] now include the implementation of end-to-end
delay analysis for time-triggered effect chains.

The LET paradigm was originally proposed in the Giotto
framework [32], but gained traction recently in the indus-
trial world [22], particularly in the automotive sector [29],
[47]. With LET, tasks read and write data at prescribed time
instants, regardless of the actual (and possibly varying) time
required to complete a job’s execution. LET provides time
determinism and a predictable execution model, at the cost
of a higher (yet fixed) input-output delay. Using LET pro-
vides system designers with a time contract, abstracting from
the chosen platform and scheduler [19], and can be exploited
to arbitrate memory accesses [9], [10]. LET is becoming a
widely accepted candidate to enforce a causal execution order
between tasks executing in different cores, applying only min-
imal changes to legacy code [22], [45], [49]. LET has been
recently extended with the introduction of system-level LET
(SL-LET) [25], where a fixed time interval is enforced also
for intercore communications.

The LET semantics has also been naturally applied to task
chains. A comparison of three communication protocols com-
monly used in automotive task chains, namely the implicit,
explicit, and LET communication paradigm, was presented
in [48]. Becker et al. [5] proposed a method to calculate the
maximum data age with both implicit and LET communication
models. Martinez et al. [47] presented an analytical charac-
terization of the end-to-end latency of time-triggered chains,
communicating through the LET model. Finally, a latency

analysis that tackles the whole dependency graph for tasks
under LET is presented in [39].

However, all the mentioned results consider hard-deadline
task models, neglecting the case in which one or more tasks
may experience deadline misses, which commonly occurs in
practical applications [3]. When the number of deadline misses
experienced by a task can be bounded, weakly-hard task mod-
els [8], [56] are often used. Extracting the weakly-hard bounds
for a task requires an ad-hoc analysis. The analysis presented
in [8] consists in checking the number of deadline misses of a
task over time intervals that are long enough to be representa-
tive of all the possible execution conditions. The work of [59]
provides an MILP-based weakly-hard analysis for real-time
systems of periodic tasks with unknown offsets, and has been
extended in [53] to include the case in which a job is termi-
nated (or killed) when the deadline miss occurs. The related
problem of verifying the safety of weakly-hard systems has
been addressed in [24], and recently generalized in [34], [35].
A vast collection of works leverages the weakly-hard model to
describe systems with overload activations, by using the typ-
ical worst-case analysis (TWCA) [55], [64] and its extension
TypicalCPA [2], [38]. The combination of weakly-hard model
and LET-based communication has been studied for control
systems [13], [24], [43], [52], [61]. In particular, the knowl-
edge of the maximum number of consecutive misses and hits
proved to be critical to bound stability and performance of
controllers [46], [63].

The papers cited above deal with either hard-real-time
systems task chains, or weakly-hard independent tasks.
The only notable exceptions that discuss nonhard real-time
systems in combination with task chains are [30] and [16].
Hammadeh et al. [30] presented a TWCA approach to bound
the number of deadline misses occurring to multiple event-
triggered task chains that execute in parallel on a single
processor. Conversely, we here target time-triggered chains
in which each task is associated with weakly-hard constraints
(for some tasks the constraints may possibly allow no misses).
Choi et al. [16] proposed a scheduling algorithm that is based
on a response-time analysis that takes into account (among
other things) the possibility of missing a deadline. While [16]
is the first work on time-triggered chains that analyzes the
response time in the presence of deadline misses, the focus is
on the scheduling side and tasks are characterized using worst-
case execution times rather than weakly-hard models. To the
best of our knowledge, our work is the first that specifically
targets time-triggered chains composed of weakly-hard tasks,
and provides a thorough characterization of task chain metrics.

III. SYSTEM MODEL

We consider a task chain as an ordered sequence of n peri-
odic tasks τ i, and write it as (τ i)i∈N . N = {1, . . . , n} is the
set of indices of the tasks that form the chain, where the task
order specifies data dependencies between the tasks, i.e., τ i
generates data used by τ i+1.

We model an arbitrary task τ i with the tuple τ i =
{Pi, Di, Oi, Rb

i , Rw
i , �in

i , �out
i , Mi}. In this tuple, Pi is the task

period, Di is the task deadline, and we assume that the task
deadlines are constrained, i.e., Di ≤ Pi. The variable Oi

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on October 27,2022 at 09:18:19 UTC from IEEE Xplore. Restrictions apply.

PAZZAGLIA AND MAGGIO: CHARACTERIZING THE EFFECT OF DEADLINE MISSES ON TIME-TRIGGERED TASK CHAINS 3959

Fig. 1. Execution of a task τi, highlighting notation and basic definitions.

represents a bounded release offset such that 0 ≤ Oi < Pi.
The values of Rb

i and Rw
i are, respectively, the best- and the

worst-case response times of τ i, and Rb
i ≤ Di.

Tasks communicate with one another using memory loca-
tions, also called labels. At the beginning of its execution,
the task τ i reads data from all its input labels �in

i . The task
writes its output data into local output labels �out

i at its dead-
line. A system-level mechanism synchronizes the output data
of a producer task and the input data of a consumer tasks
that reads the data when it is activated, with negligible over-
head. Hence, we assume that at each activation instant of τ i+1
the data currently available in �out

i (written by τ i) is copied
into �in

i+1. This synchronization mechanism can be obtained,
e.g., with the LET paradigm [32], which has been proposed
in different implementations [7], [9], [25], [48], [50].

Finally, Mi is a deadline miss model, that specifies how
deadline misses can occur during the execution of task τ i.
The formalization presented in the following sections is inde-
pendent from the deadline miss model, that we will introduce
only after the general formulation is in place.

An instance of execution of a task is called job. We denote
with γ i,j the jth job of the ith task, with j ∈ N. Furthermore,
for every job γ i,j, we define the following functions.

1) a(i, j) = jPi + Oi is the activation time of job γ i,j.
2) d(i, j) = a(i, j) + Di is the absolute deadline of γ i,j.
3) w(i, j) is the absolute time in which the output of job

γ i,j is available in �out
i . If the job completes its execution

before its deadline, w(i, j) = d(i, j). If not, then the job
is killed and w(i, j) = +∞.

4) o(i, j) is the output data available in �out
i at d(i, j).

We are interested in cases in which at least one of the tasks
in the chain may miss a deadline, i.e., ∃i ∈ N | Rw

i > Di. If
a deadline miss occurs, the corresponding job is killed (i.e.,
immediately terminated) at the deadline instant and does not
produce any new output data.

Fig. 1 illustrates the execution of an arbitrary task τ i under
the proposed model. After an initial release offset Oi, job γ i,0
starts its execution, which is correctly completed before the
deadline d(i, 0) = w(i, 0), when the output data o(i, 0) is writ-
ten in the label �out

i . The second job γ i,1 does not complete
its execution within the deadline d(i, 1) and is thus killed. The
output data written in �out

i remains unchanged, and the writing
time of the output is set to infinity w(i, 1) = +∞.

Tasks τ 1 and τ n are, respectively, called head and tail of the
chain. The head task works with new data at each activation,
the chain input (e.g., by sensing data from the environment).
The tail task completes the function implemented in the chain
by writing its final output, called the chain output (e.g., to the
actuators that affect the environment). The successor of task
τ i is τ i+1 (respectively, the predecessor of τ i+1 is τ i) when
1 ≤ i < n. By construction, the task chain is time-triggered,
i.e., the release of each job is independent from other jobs,
and only follows the pattern driven by task periods and initial
offsets. This model is consistent with real-world applications,
including automotive ones, that are intrinsically multirate.

IV. DATA PROPAGATION

In the following, we are interested in understanding the data
propagation along the chain, i.e., the data paths. Intuitively,
a data path is a sequence of jobs of the tasks in the chain
that process the chain input into a corresponding chain output.
We first explore the data paths in absence of deadline misses,
but—contrary to previous research contribution—we provide
a formulation that is suitable also to handle jobs that do not
terminate. An example highlights the difficulty emerging from
the introduction of deadline misses in the analysis of the chain.
The section is concluded by the definition of relevant metrics,
to understand the chain properties.

A. Preliminaries

We define here the sets J , F , and M, respectively, the set
of all the jobs, the set of jobs that terminate their execution
within the respective deadlines, and the set of jobs that miss
their deadlines.

Definition 1 (Jobs): J = {γ i,j}i∈N ,j∈N.
Definition 2 (Completed and Not Completed Jobs): F =

{γ i,j ∈ J |w(i, j) < +∞}, M = J \F .
Clearly, deadline misses (that intrinsically depend on how

tasks are scheduled) affect the composition of the sets F and
M. The formalization of the theoretical concepts around data
paths exploits the definition of F , and is, therefore, valid
regardless of the presence of deadline misses.

B. Data Paths

Data propagation must follow the causality principle, mean-
ing that information is carried in a path from predecessors
to successors with a strict temporal succession. We can then
define the set of data paths as the set of all the job sequences
(γ i,fi)i∈N , such that the activation of the successor jobs in the
sequence occurs after (or at) the deadline of their predecessors.

Definition 3 (Set of Data Paths): P = {(γ i,fi)i∈N |d(i, fi) ≤
a(i + 1, fi+1)}.

The hypothesis of the negligible overhead of the commu-
nication mechanism allows the usage of ≤ in the formulation
of data paths. This definition only enforces the causality of
the execution and may include both unfinished jobs and jobs
whose output has been overwritten with new data before being
consumed. We can then restrict the definition to valid paths.

Definition 4 (Set of Valid Data Paths): V = {(γ i,fi)i∈N ∈
P|∀i ∈ N , γ i,fi ∈ F ∧ ∀i ∈ {1, . . . , n − 1}, � γ i,ci ∈

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on October 27,2022 at 09:18:19 UTC from IEEE Xplore. Restrictions apply.

3960 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

Fig. 2. Relations between the different sets of paths.

F such that a(i, fi) < a(i, ci) ∧ w(i, ci) ≤ a(i + 1, fi+1) ∧
o(i, fi) 	= o(i, ci)}.

In short, the set of valid paths includes only paths whose
jobs terminated, and whose output data is not overwritten with
the result of a different computation before the start of the
successor job in the path. A path that does not belong to the
set of valid data paths is denoted as void.

Definition 5 (Set of Void Data Paths): X = P\V .
A chain path is void if at least one of this conditions hold.
1) One or more of the jobs of the path miss a deadline.
2) The output of some of the jobs in the path is overwritten

and never used, therefore, the propagation of the chain
input is not completed across all tasks of the chain.

Valid paths represent meaningful data propagation and can
be partitioned into two different subsets: 1) effective and
2) redundant paths. Redundant paths are paths in which the
computation of some of the jobs is repeated (producing the
same output that is pushed down the chain more than once).

Definition 6 (Set of Redundant Data Paths): R =
{(γ i,fi)i∈N ∈ V | ∃(γ i,ci)i∈N ∈ V such that c1 = f1 ∧
∃i|a(i, ci) < a(i, fi)}.

Valid nonredundant paths are effective: jobs in effective
paths compute on fresh data and produce new and fresh output
values, that are saved in the corresponding output labels.

Definition 7 (Set of Effective Data Paths): E = V\R.
Fig. 2 illustrates the relation between the different sets of

paths. Deadline misses affect the membership of paths in P
to the different sets V,X ,R, and E .

Example 1: Consider a chain (τ 1, τ 2, τ 3), where P1 =
P3 = 3, P2 = 4 ∀i Pi = Di and Oi = 0, where J ≡ F , mean-
ing that no task experiences deadline misses. Fig. 3 shows
the first 24 time units of the execution of the tasks. In the
displayed time window we highlight 6 data paths, identified
with different markers. The paths marked with black square,
black diamond, black circle, and black triangle are effective.
The path marked with gray diamond markers is redundant, as
γ 3,5 executes the same computation of γ 3,4. The path marked
with red circles is void as the output data produced by γ 1,2
is overwritten by γ 1,3 before the start of γ 2,3. The bottom
part of Fig. 3 shows the end-to-end latency of the valid paths,
marking in gray the redundant path and in black the effective
ones.

Imagine now that jobs can experience deadline misses, i.e.,
M 	= ∅ and thus F ⊂ J .

1) If M = {γ 1,2}, no changes would happen in the sets
of paths, as γ 1,2 already belonged only to the red circle
path (a void path).

2) If M = {γ 3,4}, the black diamond path in Fig. 3 (that
was effective) becomes void, while the gray diamond
path (that was redundant) becomes effective.

Fig. 3. Illustration of paths for Example 1.

3) If M = {γ 3,5}, the gray diamond path (that was redun-
dant) becomes void, but no changes occur in the chain
output (which was already calculated by γ 3,4).

4) If M = {γ 1,3}, the red circle path (that was void)
becomes effective, while the black circle path is void.

5) If M = {γ 3,6}, the red and black circle paths (respec-
tively, void and effective) become void.

These are just some of the alternatives that can occur when
a single job misses its deadline. Clearly, when multiple jobs
(possibly of more than one task) can experience deadline
misses, determining their effect is much more complex.

In order to understand the input-output relations for the
chain, we can safely restrict our analysis to effective paths
only, as they are responsible of carrying new information from
the head to the tail task. Two paths are distinct when they have
at least one noncommon job, i.e., (γ i,fi)i∈N 	≡ (γ i,ci)i∈N ⇐⇒
∃i ∈ N | fi 	= ci. It is simple to show that a job γ i,j cannot
belong to two distinct effective paths.

Lemma 1: Given (γ i,fi)i∈N ∈ E and (γ i,ci)i∈N ∈ E , then
(γ i,fi)i∈N 	≡ (γ i,ci)i∈N =⇒ ∀i ∈ N , fi 	= ci.

Proof: We provide a proof of the lemma by contradiction.
Suppose that (γ i,fi)i∈N ∈ E , (γ i,ci)i∈N ∈ E , (γ i,fi)i∈N 	≡
(γ i,ci)i∈N , but also that ∃ia, fia = cia . Since (γ i,fi)i∈N 	≡
(γ i,ci)i∈N , it must hold that ∃ib 	= ia such that fib 	= cib .

If ia = 1, then a
(
ib, fib

)
≶ a

(
ib, cib

)
and, therefore, it follows

from Definition 6 that one of the two paths is redundant. On
the contrary, if ia 	= 1, then f1 	= c1, and hence o(1, f1) 	=
o(1, c1). This means that the two effective paths propagate data
from different chain inputs, thus the labels read by the shared
job γ ia,fia must contain at the same time two different values in
the corresponding effective paths. However, this cannot happen
due to the communication mechanism, so one of the two paths
must be void. The lemma follows.

From Lemma 1, we can immediately conclude that the acti-
vations of jobs of the same task belonging to two distinct
effective paths follow the same temporal order.

Corollary 1: Given (γ i,fi)i∈N ∈ E and (γ i,ci)i∈N ∈ E , then
a(1, f1) > a(1, c1) =⇒ a(i, fi) > a(i, ci) ∀i > 1.

This allows us to define a total order of the elements in E .
We then specify the zth effective path as π z, and E = {π z}z∈N.
For the zth effective path, we can define the function pz(i) that
maps the ith task to the index of the job of the ith task that
belongs to the zth effective path. We then write the generic
zth effective path as πz = (γ i,pz(i))i∈N .

Corollary 2: Given two consecutive effective paths, π z and
π z+1 ∀i ∈ N , pz(i) < pz+1(i).

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on October 27,2022 at 09:18:19 UTC from IEEE Xplore. Restrictions apply.

PAZZAGLIA AND MAGGIO: CHARACTERIZING THE EFFECT OF DEADLINE MISSES ON TIME-TRIGGERED TASK CHAINS 3961

Fig. 4. Illustration of metrics for Example 3.

C. Time Window

We are interested in analyzing the chain in a generic time
interval [t0, t1]. The zth effective path πz = (γ i,pz(i))i∈N
is included in the window [t0, t1] if t0 ≤ a(1, pz(1)) and
w(n, pz(n)) ≤ t1. Furthermore, the inclusion is tight if t0 =
a(1, pz(1)) and w(n, pz(n)) = t1. We can extend the definition
to a window that contains w effective paths.

Definition 8 (Time Window With w Effective Paths): A time
window [t0, t1] contains w effective paths {πz, . . . , πz+w−1} if
t0 ≤ a(1, pz(1)) and w(n, pz+w−1(n)) ≤ t1. The inclusion is
tight if t0 = a(1, pz(1)) and w(n, pz+w−1(n)) = t1.

Example 2: For the chain introduced in Example 1, whose
schedule is represented in Fig. 3, the time window [t0, t1] =
[0, 24] tightly contains the 4 effective paths {π0, π1, π2, π3} =
{(γ 1,0, γ 2,1, γ 3,3), (γ 1,1, γ 2,2, γ 3,4), (γ 1,3, γ 2,3, γ 3,6), (γ 1,4,

γ 2,4, γ 3,7)}. The window [t0, t1] = [0, 17] contains {π0, π1}.

D. Metrics

We introduce the following metrics to analyze the behavior
of a single task chain.

1) Input-output latency.
2) Data age.
3) Update interval.

This selection is limited for the sake of brevity, but our
approach can be easily extended also to other metrics of
interest, if needed.

The input-output latency of an effective path π z is the
interval between the activation of the head job and the write
instant of the tail job in the path. We also define the maximum
input-output latency of the chain.

Definition 9 (Input-Output Latency of an Effective Path):
ρ(π z) = w(n, pz(n)) − a(1, pz(1)).

Definition 10 (Maximum Input-Output Latency): ρ =
max z∈N ρ(π z).

The data age of an effective path π z is the time interval
between the activation of the head job in the path and the
activation of the tail job of the next effective path of the chain.
We also define the maximum data age of the chain.

Definition 11 (Data Age of an Effective Path): α(π z) =
a(n, pz+1(n)) − a(1, pz(1)).

Definition 12 (Maximum Data Age): α = max z∈N α(π z).
The update interval of an effective path π z is the time

interval between the output of the tail job of the path and the
output of the tail job of the next effective path. We also define
the maximum and minimum update intervals of the chain.

Definition 13 (Update Interval of an Effective Path):
σ(π z) = w(n, pz+1(n)) − w(n, pz(n)).

Fig. 5. Relations between the different job labels.

Definition 14 (Maximum and Minimum Update Interval):
σ = max z∈N σ(π z) and σ = min z∈N σ(π z).

Example 3: Suppose we have the chain (τ 1, τ 2), where
P1 = 8, P2 = 3, and ∀i, Pi = Di and Oi = 0. Fig. 4 shows
the first 24 time units of the chain execution. We illustrate the
first two effective paths π0 (black square) and π1 (black cir-
cle). The bottom part of the figure highlights the input-output
latency of path π1 and the data age and update interval of
path π0.

V. IMPACT OF DEADLINE MISSES

Under the hypothesis of hard deadlines and LET-based
communication, one can automatically identify effective and
redundant paths simply from the task characterization, i.e.,
periods, deadlines, and initial release offsets [47]. Example 1
listed a brief collection of potential consequences of killed jobs
and shows that deadline misses influence the set of effective
paths. In fact, when J 	≡ F , the actual pattern of deadline hits
and misses drives the pattern of task outputs, thus impacting
the behavior of data paths.

Section V-A introduces the first part of our analysis for-
mulation, which is independent of the deadline miss model
used. This means that the concepts introduced are valid for
the space of all possible deadline miss patterns (and also for
unconstrained misses). In Section V-B, on the contrary, we
constrain the deadline-miss model to being the weakly-hard
model [8], and the concepts introduced here are valid for all
the patterns that constrain the maximum number of misses
experienced by a sequence of consecutive job activations.

A. Basic Characterization

For simplicity, we flag jobs based on their set memberships,
i.e., on them being members of paths included in the sets X ,
E , and R, or on them being members of M. We use a simple
algorithm described as follows. We start by flagging every
job as void (V), as in principle we could create void paths
including any job in the schedule. If a job belongs to the set
M, we change its flag to indicate it missed its deadline (M).
If a job with flag (V) belongs to at least one path in R, we
upgrade its flag to redundant (R). Then, if the job belongs
to an effective path, i.e., a path in E , we upgrade its flag as
effective (E). Fig. 5 summarizes the relations between the flag
sets, using the flag to represent all jobs that receive it.

We now characterize the jobs in a given time window, from
the perspective of an arbitrary task that can experience dead-
line misses. Between two effective jobs of τ i – γ i,pz(i) and
γ i,pz+1(i) – a number (greater or equal zero) of jobs of the
same task are activated. Any of these jobs may miss its dead-
line (M), or is necessarily flagged either as redundant (R) or

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on October 27,2022 at 09:18:19 UTC from IEEE Xplore. Restrictions apply.

3962 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

Fig. 6. Illustration of first input overwrite ef (2, 0) for τ2 and ef (3, 0) for τ3
between the effective paths π0 (black squares) and π1 (black triangle).

void (V). Considering the jobs in F , whether a job is flagged
redundant or void depends on the presence or absence of new
input data at its activation instant. In particular, it is possible
to define a time instant, which is here denoted with first input
overwrite ef (i, z), where new data is available for the task τ i
to read, after completing its job γ i,pz(i).

Definition 15 (First Input Overwrite):

ef (i, z) =
{

a(i, pz(i) + 1), i = 1
w

(
i − 1, pz(i − 1) + xi,z

)
, i 	= 1

where xi,z ≥ 1 is the minimum integer value that satisfies the
condition o(i − 1, pz(i − 1)) 	= o

(
i − 1, pz(i − 1) + xi,z

)
.

From Definition 15, it immediately follows that ∀i > 1,

ef (i, z) ≤ w(i − 1, pz+1(i − 1)). The different definition given
for the head task reflects the property (of the task chain model)
that the head task can continuously read new data from the
environment.

Any completing job of τ i activated after job γ i,pz(i) and
before ef (i, z) is redundant. Any completing job of τ i acti-
vated after ef (i, z) and before job γ i,pz+1(i) is void. We can
then immediately conclude that any job of the head task τ 1,
between the ones in two consecutive effective paths, γ 1,pz(1)

and γ 1,pz+1(1), is either void (V) or misses its deadline (M).
The dual argument for the tail task τ n is that if any job
exists between the two consecutive effective jobs γ n,pz(n) and
γ n,pz+1(n), then they are either redundant (R) or missed their
deadline (M). Indeed, by construction, the tail task cannot have
jobs that correctly complete their execution but are not part of
either an effective or a redundant path.

Example 4: We illustrate the concept of first input over-
write introducing some deadline misses in the chain from
Example 1. Fig. 6 shows the effective paths π0 (black squares)
and π1 (black triangle). Since γ 1,1 misses its deadline (M), the
first input overwrite for τ 2 occurs at the end of γ 1,2. Job γ 2,2
is redundant, γ 2,3 is void, and γ 2,4 is effective. Note also that,
if γ 3,6 would have not missed its deadline, i.e., if γ 3,6 ∈ F ,
then (γ 1,3, γ 2,3, γ 3,6) would have been the effective path π1.
However, ef (3, 0) would not have changed.

At this point, to proceed with the analysis, we need to intro-
duce a model Mi for how deadline misses may occur during
the execution of task τ i. Commonly used models are either
probabilistic or deterministic. Given a stochastic model for
execution times [18] and a scheduling algorithm, it is possible
to extract a probabilistic model of deadline misses [11], [14],
[15], [20], [62]. Such a model would allow us to characterize
a task chain in the probabilistic domain.

Deterministic models constrain the sequence of job out-
comes (deadline hits and deadline misses). One such model
is the weakly-hard (m, k) model [8], [56] that states that in
every sliding window containing k task activations, the task
may miss at most m deadlines. Deterministic models provide
worst-case guarantees, even though these guarantees may be
conservative with respect to their probabilistic counterparts.

B. Introducing Weakly-Hard Deadline Misses

In this article, we aim at deriving worst-case metrics for
the task chain, and hence we build upon the weakly-hard
(m, k) deadline miss model. Specifically, we use Mi = (mi, ki),
introducing a weakly-hard constraint per task. Setting mi = 0
implies that the task τ i is a hard real-time task.

The miss model Mi introduces constraints in the job out-
come pattern, and, therefore, limits the deadline misses that
can be experienced by τ i. The configuration of the worst-
case pattern of deadline hits and misses for τ i with respect
to a given metric (see Section IV-D) clearly depends on such
task constraints. However, the worst-case pattern from the data
propagation point of view is not necessarily the one where
each task misses as many deadlines as its constraint allows for.
With respect to the data propagation, the position of deadline
misses is in fact at least equally important (if not more) than
the number of experienced misses. For example, missing the
deadline of a redundant job does not disrupt the natural data
flow in the chain as the computation would not change the
output data written by the job. On the other hand, the data
flow is affected by multiple consecutive deadline misses if the
burst of misses starts with a job that would have carried new
data. When the successive jobs (of the same task) miss their
deadlines, they also prevent the propagation of this new data
to the successor task. Additionally, even a small number of
deadline misses experienced by tasks with large periods may
have a greater impact compared to a larger number of deadline
misses experienced by oversampled tasks.

In general, the worst case for data propagation occurs when
τ i experiences deadline misses (if any) for jobs activated
after a new input is available for the task. This property is
formalized in the following Lemma.

Lemma 2: Given an arbitrary chain task τ i that satisfies a
weakly-hard constraint (mi, ki), the distance between two con-
secutive effective jobs γ i,pz(i) and γ i,pz+1(i) is maximized when
all possible deadline misses experienced by τ i occur in a com-
bination of jobs of τ i activated right after ef (i, z) and right after
w(i − 1, pz+1(i − 1)).

The lemma above rests on the fact that if the jobs activated
right after ef (i, z) miss their deadline (and are thus killed),
the output of the task τ i remains unchanged despite the pres-
ence of new data that τ i should process. Similarly, missing
deadlines right after w(i − 1, pz+1(i − 1)) delays the success-
ful completion of the effective job of the (z + 1)th effective
path, thus delaying the path output. Intuitively, this excludes
jobs that would either be redundant (repeating the computation
done with previously processed data) or void (whose output
data is overwritten before being used in a future effective
path). We can then restrict to finding patterns with the spe-
cific shape shown in Fig. 7, where a number of consecutive

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on October 27,2022 at 09:18:19 UTC from IEEE Xplore. Restrictions apply.

PAZZAGLIA AND MAGGIO: CHARACTERIZING THE EFFECT OF DEADLINE MISSES ON TIME-TRIGGERED TASK CHAINS 3963

Fig. 7. Illustration of the shape of the worst-case pattern of deadline hits
and misses with respect to data propagation.

deadline misses occurs in either or both these two disrupt-
ing positions (note that the two positions may coincide since
ef (i, z) ≤ w(i − 1, pz+1(i − 1))).

To find how many misses (introduced in the positions
above) maximize or minimize a chosen metric, we specify an
optimization problem, which must also take into account the
(m, k) constraints. The solution of the optimization problem
is the actual worst-case pattern of job outcomes for each task
(with respect to the chosen metric). Depending on the met-
ric, the pattern of missed deadlines may vary. The solver finds
the worst-case by determining the value of some optimization
variables, introduced in Section VI-A, and illustrated in Fig. 7.
Any of these variables could in principle be zero.

Remark 1: If a finite sequence of job outcomes (hits and
misses) satisfies a weakly-hard constraint (m, k), adding to
the sequence a prefix and/or a suffix containing only deadline
hits does not alter the satisfaction of the (m, k) constraint.

This means that, to check that the entire pattern satisfies
the weakly-hard constraint Mi of task τ i, we can restrict to
verifying only those sequences of job outcomes that start with
a deadline miss and end with a deadline miss. For the piece of
schedule shown in Fig. 7, this means checking the following
three sequences.

1) From the first miss after w(i − 1, p0(i − 1)) to the last
miss after ef (i, 0).

2) From the first miss after ef (i, 0) to the last miss after
w(i − 1, p1(i − 1)).

3) From the first miss after w(i − 1, p0(i − 1)) to the last
miss after w(i − 1, p1(i − 1)).

These sequences can be identified programmatically given a
time interval. We denote the set of such sequences for task τ i
with S(i). The cardinality of S(i) increase with the number
of paths w in the time window, and is equal to 2 w2 − w.

VI. OPTIMIZATION PROBLEM

This section presents an MILP formulation that extracts
the worst-case metrics for a given task chain. We set up an
optimization problem that takes as input the properties of the
tasks in a chain and a value w > 1 representing the number
of consecutive effective paths to be considered in the analysis.
The problem targets a generic time window, [t0, t1], which is
set to (tightly) include w effective paths. From Definition 8,
t0 = a(1, p0(1)) and t1 = w(n, pw−1(n)). Without loss of
generality from the perspective of the solver, we assume that
t0 = 0, while t1 is by construction an optimization variable, as
it must coincide with the write instant of the tail task of the
effective path with index w − 1. The optimization problem
returns the schedule that produces w consecutive effective

paths, such that it optimizes (maximizing or minimizing) a
given target metric, and where each task satisfies its deadline
miss constraint Mi = (mi, ki).

A. Optimization Variables

The variables of the MILP problem are defined either
natural (in N) or real (in R).

1) Relative Offset: For each task τ i, OFi ∈ R ∧ OFi ≥ 0
is the time interval between t0 and the release of the
earliest job of τ i after t0.1

2) Index of Effective Job: For each effective path π z and
task τ i, iEi,z ∈ N denotes the index pz(i). Without loss of
generality, the job of τ i that starts at t0 +OFi is assigned
the index 0.

We introduce also variables to count jobs between effective
paths, i.e., for each task τ i and for each effective path π z:

1) Number of R Jobs: nHRi,z ∈ N is the number of redun-
dant jobs of task τ i between the output produced by
γ i,pz(i) and the instant of its first input overwrite, i.e., in
the time interval [w(i, pz(i)), ef (i, z)). These jobs read
the same input of γ i,pz(i) and repeat the computation
performed by the previous effective job.

2) Number of M Jobs After the First Input Overwrite:
nM1i,z ∈ N is the number of jobs of τ i released in the
interval [ef (i, z), w(i − 1, pz+1(i − 1))). These jobs have
a new input to read, but miss their deadlines.

3) Number of V Jobs: nHVi,z ∈ N is the number of jobs
of τ i released in the interval [ef (i, z) + nM1i,z · Pi,

w(i − 1, pz+1(i − 1))). These jobs read an input value
that has not yet been propagated to the successor task,
and complete their execution within their deadlines.
However, they do not belong to any valid path.

4) Number of M Jobs After the Next Effective Path Input
Propagation: nM2i,z ∈ N is the number of jobs of τ i
released in the interval [w(i − 1, pz(i − 1)), a(i, pz(i))).
These jobs could process the next input that belongs to
an effective path, but miss their deadlines.

Finally, the optimization problem relies also on the follow-
ing auxiliary boolean variables (in B).

1) Existence of V Jobs: For each effective path π z and each
task τ i, bHVi,z ∈ B is equal to 1 if nHVi,z > 0, and 0
otherwise.

2) Length of sequence exceeds ki: For each task τ i and
each sequence s ∈ S(i), bSKi,s ∈ B is equal to 1 if the
number of jobs in s is greater than ki; and 0, otherwise.

B. Constraints

This section explores the definition of constraints in the
MILP formulation, which are used to either exclude unfea-
sible situations (e.g., tasks not respecting their weakly-hard
constraints) or speed up the solution finding (e.g., excluding

1The time interval [t0, t1] is arbitrary, i.e., t0 does not necessarily coincide
with the initial release instant of the whole task schedule. The choice of OFi
being a real variable is done for the sake of runtime efficiency, and under the
hypothesis that the starting release offset Oi is bounded, but possibly variable.
If, on the contrary, the initial offset Oi of all tasks τ i is fixed, then OFi can
be restricted to assume a limited set of values; e.g., [54, Lemma 3].

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on October 27,2022 at 09:18:19 UTC from IEEE Xplore. Restrictions apply.

3964 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

patterns that are not worst-case patterns). Formal proofs are
presented only for the less obvious constraints.

Basic Constraints: By definition, the window of interest
[t0, t1] starts with the release of γ 1,p0(1), i.e., the job of τ 1 that
belongs to π0. Thus, the relative offset of τ 1, with respect to
t0, is necessarily equal to zero. This is enforced as follows.

Constraint 1: For task τ 1, iE1,0 = 0 and OF1 = 0.

For i > 1, τ i may start with an offset (with respect to t0)
in [0, Pi).

Constraint 2: For each task τ i, with i > 1, 0 ≤ OFi < Pi.

As discussed in Section V-A, the head task has no redundant
jobs and, dually, all hit jobs of the tail task are either effective
or redundant.

Constraint 3: For each effective path π z, nHR1,z = 0,
nM21,z = 0 and nHVn,z = 0.

Then, we enforce the definition of bHVi,z, which checks if
there exist void (completed) jobs of τ i between γ i,pz(i) and
γ i,pz+1(i), with a big-M formulation as follows.

Constraint 4: For each π z, for each τ i, nHVi,z ≤ bHVi,z·
and nHVi,z ≥ bHVi,z, where M is a sufficiently-large positive
constant value to represent infinity.

Proof: If nHVi,z = 0, the first inequality is inactive (it holds
for both bHVi,z = 0 and bHVi,z = 1), while the second one
is satisfied only with bHVi,z = 0. Conversely, if nHVi,z > 0,
then the first inequality is satisfied only when bHVi,z = 1,
while the second one is inactive. The constraint follows.

Scheduling Paths Rules: Following the definition of effec-
tive paths, a(i, pz(i)) occurs after (or at) w(i − 1, pz(i − 1)),
but before w(i − 1, pz+1(i − 1)).

Constraint 5: For each π z, for each τ i, with i > 1,

OFi + iEi,z · Pi ≥ OFi−1 + iEi−1,z · Pi−1 + Di−1

OFi + iEi,z · Pi < OFi−1 + iEi−1,z+1 · Pi−1 + Di−1.

Additionally, a(i, pz(i)) must occur before ef (i, z). Notice
here that in the absence of void jobs of the predecessor task,
i.e., if bHVi−1,z = 0, then ef (i, z) = w(i − 1, pz+1(i − 1)) (a
case already covered in Constraint 5), therefore, we can write
a new constraint only to handle the case of bHVi−1,z = 1.

Constraint 6: For each π z, for each τ i, with i > 1

OFi + iEi,z · Pi <
(
1 − bHVi−1,z

) · M + OFi−1

+ (
iEi−1,z + nHRi−1,z + nM1i−1,z + 1

) · Pi−1 + Di−1.

Then, the activation of the last redundant job of τ i after
γ i,pz(i) must occur before the completion of the first job of τ i−1
that successfully completes and produces a different output.
This property is encoded as follows.

Constraint 7: For each π z, for each τ i, with i > 1

OFi + (
iEi,z + nHRi,z

) · Pi < OFi−1 + (
iEi−1,z + nHRi−1,z

+ nM1i−1,z + 1
) · Pi−1 + Di−1 + (

1 − bHVi−1,z
) · M

OFi + (
iEi,z + nHRi,z

) · Pi

< OFi−1 + iEi−1,z+1 · Pi−1 + Di−1 + bHVi−1,z · M.

Proof: If there exists any void job of τ i−1 between
w(i − 1, pz(i − 1)) and a(i − 1, pz+1(i − 1)), then bHVi−1,z =
1 and only the first inequality is active, where the right hand
side represents the output instant of the first void job after

the (possible) redundant jobs and the deadline misses follow-
ing ef (i, z). Conversely, if no void jobs exist in that interval,
then the first job of τ i−1 that completes its execution after
the redundant ones is exactly the effective job of π z+1. Thus,
bHVi−1,z = 0 and only the second inequality is active. The
constraint follows.

Then, we enforce that any job of τ i that occurs between
w(i − 1, pz(i − 1)) and a(i, pz(i)) must miss their deadlines.

Constraint 8: For each π z, for each τ i, with i > 1

nM2i,z >
(
OFi + iEi,z · Pi − OEz,i−1

)
/Pi − 1

nM2i,z ≤ (
OFi + iEi,z · Pi − OEz,i−1

)
/Pi

where OEz,i−1 = (OFi−1 + iEi−1,z · Pi−1 + Di−1).
Finally, we calculate the index pz+1(i) of the job of task

τ i that belongs to the effective path π z+1 by means of the
index of pz(i), plus the variables counting the number of jobs
in between, plus 1.

Constraint 9: For each π z, with z < w, for each τ i

iEi,z+1 = iEi,z + nHRi,z + nM1i,z + nHVi,z + nM2i,z+1 + 1.

Weakly Hard Constraints: After enforcing scheduling prop-
erties, we deal with the weakly-hard constraints. First, from
the definition of the weakly-hard constraint Mi = (mi, ki), a
task τ i cannot miss more than mi deadlines every ki activations,
which also means that it cannot miss more than mi consecutive
deadlines. This is enforced with the following constraint.

Constraint 10: For each π z, for each τ i, nM1i,z ≤ mi, and
nM2i,z ≤ mi.

If there are no void jobs between γ i,pz(i) and γ i,pz+1(i), the
variables nM1i,z and nM2i,z correspond to two subsequences
of missed jobs occurring alongside. Thus, the constraint that
the task cannot miss more than mi consecutive deadlines must
be enforced for the whole sequence, as follows.

Constraint 11: For each π z, for each τ i, nM1i,z +
nM2i,z+1 ≤ mi + bHVi,z·

Then, we must also enforce the (mi, ki) constraint for all
the sequences in S(i). First, for any sequence s ∈ S(i), we
enforce the definition of the boolean variable bSKi,s, which
determines if the sequence is longer than ki elements.

Constraint 12: For each task τ i, for each sequence s ∈ S(i)

nJSi,s > ki − (
1 − bSKi,s

) · M

nJSi,s ≤ ki + bSKi,s · M

where nJSi,s ∈ N is an auxiliary variable properly defined to
count the number of jobs included in s.

The auxiliary variable nJSi,s is computed as the sum of all
variables of the MILP formulation associated to the jobs in s.
In the example of Fig. 7, the sequence between time instants
6 and 20 will have nJSi,s = nM1i,z + nHVi,z + nM2i,z+1. The
general formulation of nJSi,s is omitted here for brevity.

Then, we can verify the (mi, ki) constraint for all the
sequences in S(i) as follows.

Constraint 13: For each task τ i, for each sequence s ∈ S(i)

nMSi,s ≤ mi + bSKi,s · M

nJSi,s − nMSi,s ≥ ki − mi − (
1 − bSKi,s

) · M

where nMSi,s ∈ N is an auxiliary variable properly defined to
count the number of deadline misses of τ i in s.

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on October 27,2022 at 09:18:19 UTC from IEEE Xplore. Restrictions apply.

PAZZAGLIA AND MAGGIO: CHARACTERIZING THE EFFECT OF DEADLINE MISSES ON TIME-TRIGGERED TASK CHAINS 3965

As an example, for the sequence of Fig. 7 between time
instants 6 and 20, nMSi,s = nM1i,z + nM2i,z+1. As for nJSi,s,
the general formulation of nMSi,s is omitted for brevity.

The first inequality of Constraint 13 is active if the sequence
is not longer than ki. In such a case, we simply need to check
that the number of misses in the sequence does not exceed
the value mi allowed by the weakly-hard constraint of τ i. This
check is both necessary and sufficient. The second inequality
is active for sequences that are longer than ki jobs. In this case,
checking that the sequence has no more than mi misses may
be too conservative. Thus, we turn the problem into verifying
that the number of hits in the sequence is at least ki−mi. On its
own, this check is necessary but not sufficient. However, the
combination of all checks for all the subsequences in S(i)
is both necessary and sufficient to ensure the weakly-hard
constraint satisfaction.

C. Objective Functions

To calculate the worst-case metrics of Section IV-D
(Definitions 10, 12, and 14), it is sufficient to consider 2 effec-
tive paths in the MILP formulation, i.e., a window containing
π0 and π1. The solver will then find the pattern of the jobs
that maximize (or minimize) the chosen metric.

Maximise Input-Output Latency: The input-output latency
ρ(π0) of the effective path π0 is computed as the interval
between a(1, p0(1)) and w(n, p0(n)) By recalling that t0 =
a(1, p0(1)) = 0, the latency is maximized in the MILP
formulation with the following function:

ρ = max
{
OFn + iEn,0 · Pn + Dn

}
.

Maximize Data-Age: The data-age α(π0) of the effective
path π0 is computed as the interval between a(1, p0(1)) and
a(n, p1(n)), and is maximized in the MILP formulation as

α = max
{
OFn + iEn,1 · Pn

}
.

Maximize or Minimize Update Interval: The update interval
σ(π0) of the effective path π0 is computed as the interval
between w(n, p0(n)) and w(n, p1(n)). Since both the jobs have
the same deadline, it can then be simplified as the interval
between their activation instants, i.e., in MILP notation

σ = max
{(

iEn,1 − iEn,0
) · Pn

}

σ = min
{(

iEn,1 − iEn,0
) · Pn

} .

VII. EXPERIMENTAL EVALUATION

This section describes our experimental evaluation, where
we coded the optimization problem of Section VI in C++
using the CPLEX community edition [1].2 The evalua-
tion is based on the RTSS 2021 Industry Challenge, by
Perceptin [44]. The challenge aim was to analyze an
autonomous driving application, composed of 12 tasks,
{τ 1, . . . , τ 12}, communicating with one another. The archi-
tectural setup is precisely the one of this article, where
tasks exchange information using labels in memory areas. We
consider each task to be periodic.

2The code to reproduce the results presented in this article is available at
https://github.com/PaoloPazzaglia/ChainMiss.

Fig. 8. Autonomous driving application taskset and chains from [44].

Fig. 8 is a schematic representation of the chain model
of the Challenge. Nodes represent the application tasks
while arrows indicate data exchange. The task periods are
indicated near the task node, and ∀i Pi = Di. Tasks τ 1,
τ 2, τ 3, and τ 4 model sensors measurements (respectively,
a radar, a camera, a lidar, and a navigation system). Task
τ 5 and τ 6 handle 2-D and 3-D perception, while task
τ 7 implements a sensor fusion algorithm and task τ 8 is
dedicated to localization. Finally, tasks τ 9, τ 10, τ 11, and
τ 12 are, respectively, in charge of tracking, prediction,
planning, and control. The application can be partitioned in
5 distinct task chains: chain1 = (τ 1, τ 7, τ 9, τ 10, τ 11, τ 12),
chain2 = (τ 2, τ 5, τ 7, τ 9, τ 10, τ 11, τ 12), chain3 = (τ 3, τ 6,
τ 7, τ 9, τ 10, τ 11, τ 12), chain4 = (τ 3, τ 8, τ 11, τ 12), and
chain5 = (τ 4, τ 8, τ 11, τ 12).

We now perform experiments with different tasks missing
deadlines and show the impact of deadline misses on the met-
rics defined in Section IV-D. Initially, we perform experiments
with only a single task missing deadlines. We selected τ 11
(the planning task) and τ 12 (the control task) to be subject to
deadline misses. This is because:

1) they are common to all the chains, allowing us to evalu-
ate the effect of introducing deadline misses on different
data paths,

2) planning and control tasks may run complex algorithms,
and hence may require a significant computational
capacity and may be more susceptible to delays.

Finally, we perform tests where each task possibly miss dead-
lines. Computing one data point in each of the following tests
took less than a second to run.

A. Planning Task (τ11) Missing Deadlines

In the first experiment we set mi = 0 for all tasks except
τ 11. We select k11 = 50 and m11 ∈ {0, 1, . . . , 30}. Similar
results are obtained with different values of k11, omitted for
brevity. We first calculate the maximum input-output latency
ρx for the five chains without any deadline miss, i.e., m11 = 0,
obtaining (in ms) ρ1 ≈ 920, ρ2 ≈ 852, ρ3 ≈ 1120, ρ4 ≈ 520,
ρ5 ≈ 340.3 These results, obtained with the MILP formula-
tion of Section VI, are coherent with the ones obtainable with
standard algorithms for hard-deadline task chains [17].

By varying m11 no change occurs in the maximum input-
output latency ρx of the five chains. While counterintuitive,

3The numbers are approximately equal to the values indicated in the text.
The approximation is due to the release offsets in the solution being real
numbers. The obtained values are typically of the form x − ε where x is the
worst-case solution and ε is the resolution of the solver tolerance.

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on October 27,2022 at 09:18:19 UTC from IEEE Xplore. Restrictions apply.

3966 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

Fig. 9. Maximum update interval σ x for the 5 chains of the application
shown in Fig. 8, when M11 = (m11, 50). Detail with m11 ∈ [10, 20].

Fig. 10. Maximum input-output latency ρx for the 5 chains of the application
shown in Fig. 8, when M12 = (m12, 50).

this simply says that ρx is dominated in this case by other fac-
tors, such as the schedule interleaving. When task τ 11 is finally
ready to complete its execution after a (potentially long) string
of misses, there is always fresher data coming from the prede-
cessors, and hence the maximum input-output latency does not
grow with m11, i.e., with the misses of τ 11. However, this does
not mean that the chains are unaffected by deadline misses of
task τ 11. The maximum data age α increases linearly with
m11 for all five chains, while the maximum update interval σ

(Fig. 9) shows a more irregular behavior, but still monotonic
with m11. The minimum update interval σ is 100 ms for all
the chains with all possible configurations. This reflects the
best possible alignment of tasks, which is dominated by the
period of the slowest task in the chain.

From a chain perspective, it is interesting to compare these
metrics. The maximum input-output latency, despite being
unaffected, gives us an important information about the prop-
agation of data in the chains, occurring with different rates in
the application. The maximum data age tells us how long an
output produced by the chain is going to affect the environ-
ment. The update interval tells us that a control signal may be
applied to the controlled plant for a time that varies, e.g., for
chain1, between 100 ms and 3300 ms. Fig. 9 also shows that
sometimes missing one more deadline does not necessarily
mean an increase in maximum update interval.

B. Control Task (τ12) Missing Deadlines

In the second experiment we set mi = 0 for all the tasks
except τ 12. We select k12 = 50 and vary m12 ∈ {0, 1, . . . , 30}.
Differently from the previous case, we found that also the
maximum input-output latency ρ (Fig. 10) increases with the
number of deadline misses, but only while m12 < 10. This
can be explained by noting that, when m12 ≥ 10, a new job of
task τ 11 completes before the activation of the next successful

Fig. 11. Minimum update interval σ x for the 5 chains of the application
shown in Fig. 8, when M11 = (m12, 50).

Fig. 12. Maximum input-output latency ρx for the 5 chains of the application
shown in Fig. 8, when Mi = (i + x, 50).

job of τ 12, providing a fresher output from the chain. Fig. 11
shows the minimum update interval σ for the five chains.
Similarly to ρ, σ varies only when m12 < 10 because those
misses cause a job that would have been redundant for the
tail task to become effective, and hence shorten the minimum
update interval in some specific conditions.

C. All Tasks Missing Deadlines

In this last experiment with the Perception model we con-
sider each task in the chain to be subject to a different
weakly-hard constraint. In detail, for each test and for each
task τ i we set mi = i + x , where i is equal to the task index
and x is a variable in the interval x ∈ {0, 1, . . . , 30}. Again, for
simplicity we select the window size of all tasks as ki = 50.

Fig. 12 shows the maximum input-output latency ρx for
each chainx. When comparing Figs. 10 and 12, it is evident
that the combined effects of deadline misses in the tasks causes
a higher level of disruption. The increase rate is, however,
not linear with the number of worst-case misses, but irregular,
albeit monotonic. In particular, the first three chains (which are
the longer ones) show a sharp increase when x assumes values
around 15. This is due to the possibility of more disruptive
combinations of job outcomes when multiple deadline misses
are allowed across multiple different tasks.

D. Scalability Evaluation

To respond to the question of whether the analysis scale
when the number of tasks in the chain grows, we generated
random task chains and calculated the time it takes for the
solver to extract a chain worst-case metric. We vary the num-
ber of tasks in the chain in the set n ∈ {5, 10, 15, 20, 25, 30};
all the tasks have randomized deadline miss constraints with
ki ∈ {3, . . . , 10}, and randomized periods and deadlines in a
bucket from a realistic case study [40]. With 30 tasks, we hit

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on October 27,2022 at 09:18:19 UTC from IEEE Xplore. Restrictions apply.

PAZZAGLIA AND MAGGIO: CHARACTERIZING THE EFFECT OF DEADLINE MISSES ON TIME-TRIGGERED TASK CHAINS 3967

Fig. 13. Execution time box-plot for the analysis of a task chain with n
tasks.

a 2-h-long timeout in 12 out of the 100 randomly generated
chains. Furthermore, the CPLEX community edition limits the
number of problem variables that can be specified, and it was
impossible to analyze chains beyond 30 tasks without exceed-
ing that limit. Fig. 13 shows a boxplot-representation of the
execution time for the different chains, each box being the
result of 100 experiments. The experiments have been per-
formed on an 11th Generation Intel Core i7-1165G7 with
16 GB of RAM. As expected, the execution time increases
exponentially with the size of the chain. However, it is pos-
sible to analyze the worst-case metrics for reasonably-sized
chains in an acceptable amount of time (with 25 tasks, on
average an answer is obtained in less than 10 s).

VIII. CONCLUSION

This article presents the first analysis of time-triggered task
chains, in which tasks communicate according to the LET
paradigm and where some of them can be subject to dead-
line misses according to the weakly-hard (m, k) model. We
formulate the problem of analyzing chain metrics as an MILP
problem and implement it. We then analyze a realistic appli-
cation of task chains, demonstrating that our approach is able
to determine the impact of deadline misses and aid design
decisions. Future work will target more complex task chains,
including graph structures and redundant tasks, as well as
different deadline miss handling strategies.

ACKNOWLEDGMENT

The authors would like to thank Enrico Bini for his precious
help with the problem formalization. This publication reflects
only the authors’ view and the European Commission is not
responsible for any use that may be made of the information
it contains.

REFERENCES

[1] IBM ILOG CPLEX optimizer.” Accessed: Apr. 7, 2022. [Online].
Available: https://www.ibm.com/analytics/cplex-optimizer

[2] L. Ahrendts, S. Quinton, T. Boroske, and R. Ernst, “Verifying weakly-
hard real-time properties of traffic streams in switched networks,” in
Proc. Euromicro Conf. Real-Time Syst. (ECRTS), 2018, pp. 1–22.

[3] B. Akesson, M. Nasri, G. Nelissen, S. Altmeyer, and R. I. Davis, “An
empirical survey-based study into industry practice in real-time systems,”
in Proc. Real-Time Syst. Symp. (RTSS), 2020, pp. 3–11.

[4] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte,
“Synthesizing job-level dependencies for automotive multi-rate effect
chains,” in Proc. Conf. Embedded Real-Time Comput. Syst. Appl.
(RTCSA), 2016, pp. 159–169.

[5] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte, “End-
to-end timing analysis of cause-effect chains in automotive embedded
systems,” J. Syst. Archit., vol. 80, pp. 104–113, Oct. 2017.

[6] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte, “Analyzing
end-to-end delays in automotive systems at various levels of timing
information,” ACM SIGBED Rev., vol. 14, no. 4, pp. 8–13, 2018.

[7] M. Beckert, M. Möstl, and R. Ernst, “Zero-time communication for
automotive multi-core systems under SPP scheduling,” in Proc. Conf.
Emerg. Technol. Factory Autom. (ETFA), 2016, pp. 1–9.

[8] G. Bernat, A. Burns, and A. Liamosi, “Weakly hard real-time systems,”
IEEE Trans. Comput., vol. 50, no. 4, pp. 308–321, Apr. 2001.

[9] A. Biondi and M. Di Natale, “Achieving predictable multicore execution
of automotive applications using the LET paradigm,” in Proc. Real-Time
Embedded Technol. Appl. Symp. (RTAS), 2018, pp. 240–250.

[10] A. Biondi, P. Pazzaglia, A. Balsini, and M. Di Natale, “Logical exe-
cution time implementation and memory optimization issues in autosar
applications for multicores,” in Proc. Workshop Anal. Tools Methodol.
Embedded Real-Time Syst. (WATERS), 2017, pp. 1–7.

[11] S. Bozhko, G. von der Brüggen, and B. Brandenburg, “Monte Carlo
response-time analysis,” in Proc. Real-Time Syst. Symp. (RTSS), 2021,
pp. 342–355.

[12] D. Casini, T. Blaß, I. Lütkebohle, and B. B. Brandenburg, “Response-
time analysis of ROS 2 processing chains under reservation-based
scheduling,” in Proc. Euromicro Conf. Real-Time Syst. (ECRTS), 2019,
pp. 1–23.

[13] A. Cervin, P. Pazzaglia, M. Barzegaran, and R. Mahfouzi, “Using jit-
tertime to analyze transient performance in adaptive and reconfigurable
control systems,” in Proc. 24th IEEE Int. Conf. Emerg. Technol. Factory
Autom. (ETFA), Zaragoza, Spain, Sep. 2019, pp. 1025–1032.

[14] K.-H. Chen and J.-J. Chen, “Probabilistic schedulability tests for unipro-
cessor fixed-priority scheduling under soft errors,” in Proc. Symp. Ind.
Embedded Syst. (SIES), 2017, pp. 1–8.

[15] K.-H. Chen, N. Ueter, G. von der Brüggen, and J.-J. Chen, “Efficient
computation of deadline-miss probability and potential pitfalls,” in Proc.
Des. Autom. Test Europe (DATE), 2019, pp. 896–901.

[16] H. Choi, M. Karimi, and H. Kim, “Chain-based fixed-priority schedul-
ing of loosely-dependent tasks,” in Proc. Conf. Comput. Des., 2020,
pp. 631–639.

[17] A. Davare, Q. Zhu, M. Di Natale, C. Pinello, S. Kanajan, and
A. L. Sangiovanni-Vincentelli, “Period optimization for hard real-time
distributed automotive systems,” in Proc. Des. Autom. Conf., 2007,
pp. 278–283.

[18] R. I. Davis and L. Cucu-Grosjean, “A survey of probabilistic timing
analysis techniques for real-time systems,” Leibniz Trans. Embedded
Syst., vol. 6, no. 1, pp. 1–60, 2019.

[19] P. Derler, E. A. Lee, S. Tripakis, and M. Törngren, “Cyber-physical
system design contracts,” in Proc. Conf. Cyber-Phys. Syst. (ICCPS),
2013, pp. 109–118.

[20] J. L. Díaz et al., “Stochastic analysis of periodic real-time systems,” in
Proc. Real-Time Syst. Symp. (RTSS), 2002, pp. 289–300.

[21] M. Dürr, G. V. D. Brüggen, K.-H. Chen, and J.-J. Chen, “End-
to-end timing analysis of sporadic cause-effect chains in distributed
systems,” ACM Trans. Embedded Comput. Syst., vol. 18, no. 5, pp. 1–24,
2019.

[22] R. Ernst, S. Kuntz, S. Quinton, and M. Simons, “The logical execution
time paradigm: New perspectives for multicore systems,” Dagstuhl Rep.,
vol. 8, no. 2, pp. 122–149, 2018.

[23] N. Feiertag, K. Richter, J. Nordlander, and J. Jonsson, “A compositional
framework for end-to-end path delay calculation of automotive systems
under different path semantics,” in Proc. Real-Time Syst. Symp. (RTSS),
2009, pp. 1–8.

[24] G. Frehse, A. Hamann, S. Quinton, and M. Woehrle, “Formal analysis
of timing effects on closed-loop properties of control software,” in Proc.
Real-Time Syst. Symp. (RTSS), 2014, pp. 53–62.

[25] K.-B. Gemlau, L. Köhler, R. Ernst, and S. Quinton, “System-level log-
ical execution time: Augmenting the logical execution time paradigm
for distributed real-time automotive software,” Trans. Cyber-Phys. Syst.,
vol. 5, no. 2, pp. 1–27, 2021.

[26] R. Gerber, S. Hong, and M. Saksena, “Guaranteeing real-
time requirements with resource-based calibration of periodic
processes,” IEEE Trans. Softw. Eng., vol. 21, no. 7, pp. 579–592,
Jul. 1995.

[27] A. Girault, C. Prévot, S. Quinton, R. Henia, and N. Sordon, “Improving
and estimating the precision of bounds on the worst-case latency of
task chains,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 37, no. 11, pp. 2578–2589, Nov. 2018.

[28] M. Günzel, K.-H. Chen, N. Ueter, G. von der Brüggen, M. Dürr, and
J.-J. Chen, “Timing analysis of asynchronized distributed cause-effect
chains,” in Proc. Real Time Embedded Technol. Appl. Symp. (RTAS),
2021, pp. 40–52.

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on October 27,2022 at 09:18:19 UTC from IEEE Xplore. Restrictions apply.

3968 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

[29] A. Hamann, D. Dasari, S. Kramer, M. Pressler, and F. Wurst,
“Communication centric design in complex automotive embedded
systems,” in Proc. Euromicro Conf. Real-Time Syst. (ECRTS), 2017,
pp. 1–20.

[30] Z. A. Hammadeh, R. Ernst, S. Quinton, R. Henia, and L. Rioux,
“Bounding deadline misses in weakly-hard real-time systems with
task dependencies,” in Proc. Des. Autom. Test Europe (DATE), 2017,
pp. 584–589.

[31] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,
“System level performance analysis—The symTA/S approach,” IEE
Proc. Comput. Digit. Techn., vol. 152, no. 2, pp. 148–166, 2005.

[32] T. A. Henzinger, C. M. Kirsch, M. A. A. Sanvido, and W. Pree, “From
control models to real-time code using Giotto,” IEEE Control Syst. Mag.,
vol. 23, no. 1, pp. 50–64, Feb. 2003.

[33] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: A time-
triggered language for embedded programming,” Proc. IEEE, vol. 91,
no. 1, pp. 84–99, Jan. 2003.

[34] C. Huang, K.-C. Chang, C.-W. Lin, and Q. Zhu, “SAW: A tool for safety
analysis of weakly-hard systems,” in Proc. Conf. Comput.-Aided Verif.
(CAV), 2020, pp. 543–555.

[35] C. Huang, W. Li, and Q. Zhu, “Formal verification of weakly-hard
systems,” in Proc. Conf. Hybrid Syst. Comput. Control (HSCC), 2019,
pp. 197–207.

[36] T. Klaus, M. Becker, W. Schröder-Preikschat, and P. Ulbrich,
“Constrained data-age with job-level dependencies: How to reconcile
tight bounds and overheads,” in Proc. Real-Time Embedded Technol.
Appl. Symp. (RTAS), 2021, pp. 66–79.

[37] T. Kloda, A. Bertout, and Y. Sorel, “Latency analysis for data chains of
real-time periodic tasks,” in Proc. Conf. Emerg. Technol. Factory Autom.
(ETFA), 2018, pp. 360–367.

[38] L. Köhler and R. Ernst, “Improving a compositional timing analy-
sis framework for weakly-hard real-time systems,” in Proc. Real-Time
Embedded Technol. Appl. Symp. (RTAS), 2019, pp. 228–240.

[39] A. Kordon and N. Tang, “Evaluation of the age latency of a real-time
communicating system using the LET paradigm,” in Proc. Euromicro
Conf. Real-Time Syst. (ECRTS), 2020, pp. 1–20.

[40] S. Kramer, D. Ziegenbein, and A. Hamann, “Real world automo-
tive benchmarks for free,” in Proc. Workshop Anal. Tools Methodol.
Embedded Real-Time Syst. (WATERS), 2015, pp. 1–12.

[41] S. Lampke, S. Schliecker, D. Ziegenbein, and A. Hamann, “Resource-
aware control—Model-based co-engineering of control algorithms and
real-time systems,” J. Passenger Cars-Electron. Electr. Syst., vol. 8,
no. 1, pp. 106–114, 2015.

[42] M. Lauer, F. Boniol, C. Pagetti, and J. Ermont, “End-to-end latency and
temporal consistency analysis in networked real-time systems,” J. Crit.
Comput. Based Syst., vol. 5, nos. 3-4, pp. 172–196, 2014.

[43] S. Linsenmayer and F. Allgower, “Stabilization of networked control
systems with weakly hard real-time dropout description,” in Proc. Conf.
Decis. Control (CDC), 2017, pp. 4765–4770.

[44] S. Liu, B. Yu, N. Guan, Z. Dong, and B. Åkesson, “Real-time
scheduling and analysis of an autonomous driving system,” in Proc.
RTSS Ind. Challenge Problem, 2021, pp. 1–47. [Online]. Available:
http://2021.rtss.org/industry-session/

[45] M. Lowinski, D. Ziegenbein, and S. Glesner, “Splitting tasks for migrat-
ing real-time automotive applications to multi-core ECUs,” in Proc.
Symp. Ind. Embedded Syst. (SIES), 2016, pp. 1–8.

[46] M. Maggio, A. Hamann, E. Mayer-John, and D. Ziegenbein, “Control-
system stability under consecutive deadline misses constraints,” in Proc.
Euromicro Conf. Real-Time Syst. (ECRTS), 2020, pp. 1–4.

[47] J. Martinez, I. Sañudo, and M. Bertogna, “Analytical characterization of
end-to-end communication delays with logical execution time,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 37, no. 11,
pp. 2244–2254, Nov. 2018.

[48] J. Martinez, I. Sañudo, and M. Bertogna, “End-to-end latency char-
acterization of task communication models for automotive systems,”
Real-Time Syst., vol. 56, no. 3, pp. 315–347, 2020.

[49] P. Pazzaglia, A. Biondi, and M. Di Natale, “Optimizing the functional
deployment on multicore platforms with logical execution time,” in Proc.
Real-Time Syst. Symp. (RTSS), 2019, pp. 207–219.

[50] P. Pazzaglia, D. Casini, A. Biondi, and M. Di Natale, “Optimal memory
allocation and scheduling for DMA data transfers under the LET
paradigm,” in Proc. Des. Autom. Conf. (DAC), 2021, pp. 1171–1176.

[51] P. Pazzaglia, C. Mandrioli, M. Maggio, and A. Cervin, “DMAC:
Deadline-miss-aware control,” in Proc. 31st Euromicro Conf. Real-Time
Syst. (ECRTS), vol. 133, 2019, pp. 1–24.

[52] P. Pazzaglia, L. Pannocchi, A. Biondi, and M. Di Natale, “Beyond the
weakly hard model: Measuring the performance cost of deadline misses,”
in Proc. Euromicro Conf. Real-Time Syst. (ECRTS), 2018, pp. 1–22.

[53] P. Pazzaglia, Y. Sun, and M. Di Natale, “Generalized weakly hard
schedulability analysis for real-time periodic tasks,” ACM Trans.
Embedded Comput. Syst., vol. 20, no. 1, pp. 1–26, 2020.

[54] R. Pellizzoni and G. Lipari, “Feasibility analysis of real-time periodic
tasks with offsets,” Real-Time Syst., vol. 30, nos. 1–2, pp. 105–128,
2005.

[55] S. Quinton, M. Hanke, and R. Ernst, “Formal analysis of sporadic over-
load in real-time systems,” in Proc. Des. Autom. Test Europe (DATE),
2012, pp. 515–520.

[56] P. Ramanathan, “Overload management in real-time control applications
using (m, k)-firm guarantee,” IEEE Trans. Parallel Distrib. Syst., vol. 10,
no. 6, pp. 549–559, Jun. 1999.

[57] A. Sangiovanni-Vincentelli, P. Giusto, C. Pinello, W. Zheng, and
M. Di Natale, “Optimizing end-to-end latencies by adaptation of the
activation events in distributed automotive systems,” in Proc. Real-Time
Embedded Technol. Appl. Symp. (RTAS), 2007, pp. 293–302.

[58] J. Schlatow, M. Mostl, S. Tobuschat, T. Ishigooka, and R. Ernst, “Data-
age analysis and optimisation for cause-effect chains in automotive
control systems,” in Proc. Symp. Ind. Embedded Syst., 2018, pp. 1–9.

[59] Y. Sun and M. D. Natale, “Weakly hard schedulability analysis for fixed
priority scheduling of periodic real-time tasks,” ACM Trans. Embedded
Comput. Syst., vol. 16, no. 5, pp. 1–19, 2017.

[60] S. Tobuschat, R. Ernst, A. Hamann, and D. Ziegenbein, “System-level
timing feasibility test for cyber-physical automotive systems,” in Proc.
Symp. Ind. Embedded Syst. (SIES), 2016, pp. 1–10.

[61] E. P. van Horssen, A. B. Behrouzian, D. Goswami, D. Antunes,
T. Basten, and W. Heemels, “Performance analysis and controller
improvement for linear systems with (m, k)-firm data losses,” in Proc.
Eur. Control Conf. (ECC), 2016.

[62] G. von der Brüggen, N. Piatkowski, K.-H. Chen, J.-J. Chen, K. Morik,
and B. B. Brandenburg, “Efficiently approximating the worst-case dead-
line failure probability under EDF,” in Proc. Real-Time Syst. Symp.
(RTSS), 2021, pp. 214–226.

[63] N. Vreman, A. Cervin, and M. Maggio, “Stability and performance anal-
ysis of control systems subject to bursts of deadline misses,” in Proc.
Euromicro Conf. Real-Time Syst. (ECRTS), 2021, pp. 1–23.

[64] W. Xu, Z. Hammadeh, A. Kröller, R. Ernst, and S. Quinton, “Improved
deadline miss models for real-time systems using typical worst-case
analysis,” in Proc. Conf. Real-Time Syst. (ECRTS), 2015, pp. 247–256.

[65] Y. Zhao, V. Gala, and H. Zeng, “A unified framework for period
and priority optimization in distributed hard real-time systems,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 37, no. 11,
pp. 2188–2199, Nov. 2018.

Paolo Pazzaglia (Member, IEEE) received the
Ph.D. degree in emerging digital technologies,
curriculum embedded systems from ReTiS Lab,
Scuola Superiore Sant’Anna, Pisa, Italy, in 2020.

He was a visiting Ph.D. student with the
Department of Automatic Control, Lund University,
Lund, Sweden, in 2018 and 2019. He is a
Postdoctoral Researcher with the Computer Science
Department, Saarland University, Saarbrücken,
Germany. His research focuses on the interaction
between control systems and real-time systems,

with the goal of improving robustness and enforcing determinism in modern
embedded control applications.

Martina Maggio (Senior Member, IEEE) received
the Ph.D. degree from the Dipartimento di
Elettronica, Informazione e Bioingegneria at
Politecnico di Milano, Milan, Italy, in 2012.

She has been a Professor with the Computer
Science Department, Saarland University,
Saarbrücken, Germany, since 2020, and an
Associate Professor with the Department of
Automatic Control, Lund University, Lund,
Sweden, since 2017. She was a visiting graduate
student with the Computer Science and Artificial

Intelligence Laboratory, Massachussetts Institute of Technology, Cambridge,
MA, USA, in 2010 and 2011. In 2019, she spent a sabbatical year with Bosch
Corporate Research, Renningen, Germany. Her research interest revolve
around the interaction between control theory and computing systems.

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on October 27,2022 at 09:18:19 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

