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Abstract— Faults and errors are common in the execution of
digital controllers on top of embedded hardware. Researchers
from the embedded system domain devised models to un-
derstand and bound the occurrence of these faults. Using
these models, control researchers have demonstrated robustness
properties of control systems, and of their corresponding digital
implementations. In this paper, we build a framework to
experiment with the injection of faults in a networked control
system that regulates the behaviour of a Furuta pendulum. We
use the software framework to experiment on computational
problems that cause the control signals not to be available on
time, and network faults that cause dropped packets during
the transmission of sensor data and actuator commands.

I. INTRODUCTION

Embedded systems are often resource-constrained, with
the hardware being able to support only a limited amount
of functionality. They also usually host a given number of
tasks, that should be periodically completed in order for the
system to work correctly. An instance of task execution is
commonly called job. The real-time design of these systems
ensures that all jobs meet their deadlines, i.e., they complete
their computation within the time specified by the system
designer. However, this often leads to the system design
being conservative, in terms of the execution frequency of the
tasks. The conservatism can lead to low processor utilisation
(i.e., the hardware is often idle) and low tasks’ sampling
rates (i.e., tasks – among which the controller – execute
infrequently).

Moreover, when these systems need to interact with any
external environment, it is often beneficial to shorten the
computation periods. This is usually due to the fact that
something may change in the external environment, that
needs an immediate reaction. In the most likely case, the
performance of these systems is directly linked to the tasks’
periods, and executing more frequently means delivering
a better performance. In the case of control systems, this
performance can usually be directly linked to the quality
of control. This means that executing control tasks more
frequently delivers a higher control precision.

Given this setting, there is obviously a trade off in the
design of embedded control systems. On one hand, executing
more frequently increases the quality of control. On the other
hand, however, lowering the execution period also impacts
the amount of computation needed to be provided by the
hardware platform.
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Once the control code is written and compiled, it is
possible to analyse it and determine its worst-case execution
time [25]. Following similar practice for all the tasks in
the system (and knowing their real-time characteristics, like
priorities) allows us to determine a worst-case response
time [8]. In principle, the system designer should ensure
that the task period for the controller is greater than the
worst-case response time for the control task. However, this
often limits the achievable performance, and hence it is
sometimes beneficial to select control task periods that do not
guarantee that the control task will always complete before
its deadline. When the control task does not complete, the
system experiences a deadline miss.

Noticing that deadline misses actually do happen in prac-
tice [1], researchers started investigating if deadline misses
are harmful or not for control systems [12], [15], [23], finding
out that in many cases control systems can tolerate packet
losses [14] and deadline misses [18] by design. Alternatively,
controllers can be designed to handle packet losses [2], [10],
varying sampling rates [4], [21], and deadline misses [17]. To
ensure the resilience of a control system to missing deadlines,
however, it is necessary to understand (and to constrain) how
these deadline misses occur [19].

Examples of deadline miss models are either probabilis-
tic [22] or constraint-based [5]. In the first case, the designer
tries to find the probability that a deadline is missed in the
system, using a given scheduling algorithm and for a given
set of tasks. A probabilistic approach is very useful to derive
the stochastic behaviour and characteristics for the control
system, but it does not offer strict guarantees, as it is always
possible to miss every deadline in a very long sequence, even
though the probability of this occurrence is extremely low.
In the second case, the designer analyses the hardware and
guarantees that given constraints are satisfied. For example,
it may be possible to guarantee that a control task will not
miss more than 2 consecutive deadlines, if its worst-case
response time does not exceed 3 times its period (and the task
is allowed to continue when the corresponding deadlines are
missed) [7]. One of such constrained models is the weakly-
hard model [5], [13], [24], that stipulates contracts about
the outcomes of task jobs. An example of a weakly-hard
constraint is the (m,K) constraint model, which imposes
that a task cannot miss more than m deadlines in a window
of K consecutive jobs [20]. Another example of weakly-hard
constraint limits the amount of consecutive deadline misses
that any task in the embedded system can experience.

Control systems subject to weakly-hard real-time con-
straints have been analysed, casting them into the framework
of switching systems and trying to either find common



Lyapunov functions to guarantee stability or using upper
and lower bounds for their joint spectral radius [15], [18].
Some of this work included experiments with real systems,
like [23], that were testing the resilience to a burst of deadline
misses followed by a recovery period.

In this paper we created a software framework that allows
us to test the theoretical insights obtained in these analysis on
the practical case study of a Furuta pendulum [3]. In addition
to injecting deadline misses, our framework allows us to
include the possibility of injecting communication failures,
and faulty data transmissions [16]. Using our software stack,
we test the resilience of the Furuta pendulum controller under
a variety of conditions, from probabilistic constraints on the
number of deadline misses to weakly-hard constraints, and
transmission errors.

II. SYSTEM

In this section, we outline the details of the implemented
control system. We first describe the general setup for our
experimental evaluation, and then enter into detail on the
fault injection. Figure 1 summarises our setup. In the figure,
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Fig. 1. Experimental setup for the control loop, including network
interconnections. The plant block (white) is not subject to faults. In the
controller and the signal transmission blocks (grey), we can experimentally
inject faults (transmission errors and deadline misses).

we mark in gray blocks that are subject to faults that we
inject, and in white the only block – the plant – in which we
don’t inject any fault. In principle, faults may occur in the
plant, during the experiments, but are not under our control.
However, we never experienced (uncontrolled) plant faults
in practice.

A. Furuta pendulum and control design

Our setup consists of a Furuta pendulum built with stan-
dard components and design choices.1 As it is common
practice in real-time embedded systems [6], we design a one-
step-delay state-feedback controller, hence the control signal
that is calculated during the k-th execution period of the
controller is applied at the beginning of the k+1-th controller
iteration. We have access to sensor measurements that report
the system state (pendulum angle, pendulum angular veloc-
ity, and velocity of the rotary joint of the pendulum base)
and use literature results for both the linearised controller
and an energy-based swing-up mechanism [3].

Specifically, our controller executes every 5ms. When the
pendulum is in the vicinity of the upright position, it uses
the following control law,

u (k + 1) = 0.375x1 (k) + 0.025x2 (k) + 0.0125x3 (k) ,

1https://build-its-inprogress.blogspot.com/2016/
08/desktop-inverted-pendulum-part-1.html

where x1 (k) is the pendulum angle, x2 (k) is the pendulum
angular velocity, and x3 (k) is the velocity of the rotational
joint in the base measured at iteration k. For every iteration,
the controller starts with the actuation of the control signal
computed during the previous execution interval, then it
receives a message with the current values of x1, x2 and x3,
and finally it uses the remaining part of the period calculating
the control signal for the following period. Clearly, it is
unlikely to imagine that such a simple computation would
not be able to complete in one period. However, the issue
could occur in situations like security attacks that prevent the
controller from completing, software bugs, or overload due
to additional computation that is executed in the controller
node.

The swing-up routine is performed with a first kick that
sets u (k + 1) = 0.05 and a following energy trajectory that
sets u (k + 1) to

c cos4 x1 (k) · x2 (k) · (−g cosx1 (k)− c x2
2 (k) + g) · 10−2

with c = 0.0075 and g = 9.81, calculated following the
method in [3] with our Furuta pendulum parameters. The
switch between the swing-up controller to the state-feedback
one occurs when |x1| ≤ 0.7.

B. Fault injection models

Our experiments are aimed at testing the robustness and
resilience of the control system to faults both in the computa-
tional unit, and in the network transmission, as we want our
results to be representative for networked control systems.

Channel model: We model the transmission channel (and
hence its possible problems) using a Simplified Gilbert Elliot
channel model [11]. According to this model, the channel is
represented with a Markov model that can be found in one
of two states: transmitting (T), faulty (F). In the transmitting
state, messages are delivered correctly. In the faulty state,
messages are not delivered.
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Fig. 2. Channel model: the transmitting (T) and faulty (F) states are
connected by transitions that are taken at transmission time. The value of pα
represents the probability of transitioning to a faulty state from a transmitting
state. The value of pβ represents the probability of the channel recovering
from the faulty state to the transmitting one.

A transition in the model is taken every time a message
is transmitted. In the transmitting state, the probability of
a failure occurring is pα. In that case, the channel state
becomes the faulty state. Correspondingly, the probability
of remaining in the transmitting state after a transmission is
1− pα. In the faulty state, the probability of transitioning to
the transmitting state is pβ and no state change occurs with
1−pβ probability. Without loss of generality, we assume the
channel initial state to be T. Figure 2 illustrates the model.



Computation models: Faults can happen at the computa-
tion level. Over time, researchers have proposed different
fault models for computational problems. In this investiga-
tion, we implemented the two most common ones: proba-
bilistic [22] and weakly-hard [5]. The weakly-hard model
includes four different submodels.

Before getting into the differences among the different
computational fault models, there is a need to discuss what
happens when a fault occurs in the computation, similarly
to what is done in the literature [9], [10]. Depending on
the details of the controller implementation and hardware
and platform used, we investigate four different alternatives.
These alternatives emerge from the need of taking two essen-
tial decisions. Suppose a fault occurred in the computation
at iteration k.

1) Since our controllers are designed embedding a one
step delay, at the beginning of the controller iteration
k + 1 we need to decide what control signal to apply.
The two most common choices are zero and hold.
Normally, one would expect hold to be the preferred
choice. However, there are control situations in which
hold is not naturally possible (for example because
additional computation is required to transform the
control signal from a domain to another one, which
is the case with electric motors, and the lack of a
control signal at the start of the k + 1 period makes
this additional computation impossible).

2) Depending on the controller implementation, the con-
trol task may be stopped by the operating system at the
beginning of the next iteration (i.e., when a deadline
miss occurs), or it is possible to let it continue its
execution skipping the execution of the next controller
iteration. These two alternatives will be denoted re-
spectively with kill and skip.
When skip is used, after a missed deadline, it is
possible that the task completes within the following
period. In principle, it would be conceivable to apply
the resulting control signal as soon as it is available,
but this is not the common industrial practice. On
the contrary, even in case of a skipped deadline, the
control signal is only applied at the following sampling
instant after the task completion. While it could be
beneficial to combine the continuation of the previous
task with the execution of a new iteration of the
controller task, this was proven harmful in terms of
stability results [18] and hence we assume that if the
control task overruns, then the next iteration is skipped.

Note that often the choice is linked to the specific control
problem and to the choice of operating system and hardware
platform, and it is not necessarily easy to select a new policy
to handle computational problems. We therefore combine
these choices into four different policies to analyse: Kill and
Hold, Kill and Zero, Skip and Hold, and Skip and Zero.
In our experimental campaign, we show the difference that
these policies induce in the control performance.

If deadline misses and computational problems occur

without any regulation, there is no hope of the control system
to behave well regardless of the fault, as the system can
be continuously in a faulty state. To analyse these systems
fault models were introduced. As anticipated above, we
implemented the injection of two very common fault models:
probabilistic and weakly-hard.

Probabilistic constraints impose that for each iteration of
the control task, there is a given probability to overrun the
deadline. Each job of the control task is treated independently
and there is no relation between a deadline outcome and
the following ones. We denote with p(x) the probabilistic
constraint where the deadline miss probability is x.

Weakly-hard constraint, on the contrary, come with guar-
antees on the sequence of events. According to the weakly-
hard model [5], a task may satisfy one of these weakly-hard
constraints (where m,h ∈ N, k ∈ N \ {0}, m ≤ k, and
h ≤ k):

1) am (m, k): in any window of k consecutive jobs, at
most m deadlines are missed. The term am stands for
any miss, as the constraint specifies the number of
misses in a window, and the misses can follow any
pattern.

2) ah (h, k): in any window of k consecutive jobs, at least
h deadlines are hit. The term ah stands for any hit, as
the constraint specifies the number of deadline hits in
a window, and the hits can follow any pattern.

3) rm (m): at most m consecutive deadlines are missed.
The term rm stands for row miss, as the constraint
specifies the number of consecutive misses experi-
enced by the task. While usually these constraints are
specified using a window of consecutive jobs (i.e., a
sliding window), there is no need in this case to specify
the window parameter, which is always equivalent to
m+ 1.

4) rh (h, k): in any window of k consecutive jobs, at least
h consecutive deadlines are hit. The term rh stands for
row hits.

We test the control system in the presence of combinations
of injected faults. For comparison, we run the control system
50 times for a duration of a minute in nominal conditions,
i.e., without any fault.
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Fig. 3. Pendulum angle interval over 50 runs in nominal conditions (i.e.,
in absence of deadline misses and transmission failures).

In Figure 3 we show the interval of measurements in
which the pendulum angle can be found, 0 corresponding
to the upright position. Clearly, during the transient phase
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Fig. 4. Pendulum angle interval over 50 runs for am (2, 10) with Skip and
Hold, when pα = 0.2 and pβ = 0.8.

the pendulum angle can be found in different positions and
the trajectory that leads to the upright position can vary. For
every iteration of the controller, the figure shows the area
between the maximum and minimum value experienced for
the pendulum angle during the runs. As can be seen, all the
runs reach the equilibrium point within than 5 seconds and
then for all the runs, the pendulum remains in the vicinity of
the equilibrium point. We built our testing framework to log
the system state in every iteration of every run, and analyse
the data according to a few performance metrics. One of
these metrics is the percentage of time spent in the upright
position during the entire duration of the experiment, which
(for a single experiment, lasting 60 seconds, in which the
pendulum is not experiencing any fault) is around 90% on
average.

III. EXPERIMENTAL RESULTS

This section reports on our experiments conducted with the
Furuta pendulum. We compare our results with the nominal
control result shown in Figure 3, where (in 50 runs) the
pendulum reaches the upright position in less than 5 seconds
in the worst case.

Figures 4 and 5 show respectively the angle interval
over 50 iterations when the software experiences respec-
tively faults with {am (2, 10) , pα = 0.2, pβ = 0.8} and
{p (0.4) , pα = 0.2, pβ = 1.0}. In both cases, for some
of the 50 runs the pendulum is not kept in the upright
position for the entire duration of the experiment and it falls
and experiences a swing up. Note that the figures show a
summary of the 50 experiments, meaning that the angle can
be found in the interval, but may be around the equilibrium
point for some experiments and not in the upright equilibrium
interval for some other runs.

As can be seen, it takes a longer time on average for
the pendulum to reach the upright position in the first case
(Figure 4), while the pendulum seems to be quicker to reach
the equilibrium point in the second case (Figure 5). However,
the pendulum seems to experience on average more falls
during the second set of experiments.

On average, the probability of finding a deadline miss
in the first set of experiments (Figure 4) is upper bounded
by 0.2, since the am (2, 10) constraint imposes that one can
experience only up to 2 misses in every sliding window of
10 controller iterations. On the contrary, in the second case
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Fig. 5. Pendulum angle interval over 50 runs for p (0.4) with Kill and
Hold, when pα = 0.2 and pβ = 1.0.

(Figure 5) there is no upper bound to the actual deadline
miss probability but on average it should be around 0.4. In
the second case, however, the communication channel can
experience only one message drop at a time, as pβ = 1.0 and
the channel always recovers to the transmitting state after a
faulty transmission. These experiments give us a sense of
the faults, but it is hard, looking at the plots, to compare the
effect of the different components.

Hence, we devised an experimental campaign aimed at
providing a more comprehensive outlook on the effect of
faults on the pendulum angle. We still perform 50 runs
of the control system in different conditions. Rather than
showing the pendulum angle, we calculate the percentage
of time that the pendulum has spent in the proximity of the
upright equilibrium, as the amount of time during each run in
which the angle was in an interval of ±0.05 from the upright
equilibrium point. We then report a box plot of this quantity
for the set of 50 runs, each lasting one minute. Figure 6
shows the results.

The figure is composed of four plots. In the first plot,
pα = 0.0 and pβ = 1.0. This means that there is no commu-
nication failure, and both the sensor and the actuator values
are retrieved and communicated correctly. The leftmost box
plot shows the distribution of the percentage of time the
pendulum spends upright over 50 runs in nominal conditions,
i.e., in absence of deadline misses. The following boxes show
the same values when deadlines can be missed according
to the constraint indicated in the x-axis. Furthermore, the
vertical lines separate the plots according to the strategy that
is used to handle the miss (Kill and Hold, Kill and Zero, Skip
and Hold, and Skip and Zero). Without channel failures, it is
very easy to conclude that Kill and Hold is the best strategy
in terms of the pendulum stabilisation.

On the contrary, Skip and Zero does not obtain satisfactory
results, and the pendulum is often not controlled correctly,
even for constraints that are fairly simple to handle. For the
two remaining strategies, it is very obvious to see that Kill
and Zero is worse that Skip and Hold. Skip and Hold is
able to manage some of the constraints, with the pendulum
falling often when 3 consecutive deadlines are missed and
being fairly robust to other deadline-miss patterns. Generally,
the Zero actuation strategy seems to be worse than the Hold
alternative.

The following rows show what happen when the values
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Fig. 6. Box plot showing the percentages of time spent in the upright position for different experiments with the Furuta pendulum. Each box plot
summarises 50 experiments, each experiment lasts for a minute. The x-axis shows different types of constraints, from any-miss, to probabilistic, to row-
miss constraints. The first box plot always shows the nominal situation in absence of deadline misses. The first row shows the case in which no channel
failure occurs (the transmission channels start and remain in the good state, in which transmissions happen correctly). The other plots show the same
results as the first one, with different channel models and probabilities.
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Fig. 7. Pendulum angle interval over 50 runs for rm (1) with Kill and
Zero, when pα = 0.5 and pβ = 0.5.

of pα and pβ assume different values. The results without
channel faults are consistent with the results obtained in the
second and third rows, in which Kill and Hold stabilises the
pendulum better than the other strategies.

The fourth row shows some other interesting results. The
results are collected with pα = 0.5 and pβ = 0.5. This
means that in nominal conditions (i.e., no computational
faults that cause deadline misses) the chain between sensing
and actuation is successful on average in 25% of the cases.
This is because the probability that transmissions of sensor
data and actuator commands on the channel are independent
and hence the channel model is triggered twice. In this case,
Kill and Zero seem to behave better even than the nominal
conditions, which is slightly surprising, but seems to be
mostly due to the pendulum spinning continuously and being
found in the vicinity of the equilibrium more often because of
moving uncontrollably. A plot of the interval of the pendulum
angle over the 50 runs is in fact shown in Figure 7 and it is
very obvious that the better behaviour shown in the box plot
is not really much better than the other alternatives and the
pendulum is not well-behaved.

IV. CONCLUSION

In this paper we discussed the implementation of a
software framework to conduct experiments injecting faults
in control systems. We have shown a long experimental
campaign, lasting more than a week, in which a Furuta
pendulum is controlled with different faults. We performed
a statistical analysis on the results obtained from the exper-
imental campaign and discussed what is the best strategy to
mitigate faults due to computational problems.
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F. Allgöwer. Controller and triggering mechanism co-design for
control over time-slotted networks. IEEE Transactions on Control
of Network Systems, 8(1):222–232, 2021.

[17] S. Linsenmayer, M. Hertneck, and F. Allgöwer. Linear weakly hard
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