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Abstract. The probability of data corruption as a result of single event
upsets (SEUs) increases as transistor sizes decrease. Software-based fault-
tolerance can help offer protection against SEUs on Commercial off The
Shelf (COTS) hardware. However, such fault tolerance relies on replica-
tion, for which there may be insufficient resources in resource-constrained
environments. Systems in the weakly-hard real-time domain can toler-
ate some faults as a product of their domain. Combining both the need
for fault-tolerance and the intrinsic ability to tolerate faults, we pro-
pose a new approach for applying fault-tolerance named strategy switch-
ing. Strategy switching minimizes the effective unmitigated fault-rate by
switching which tasks are to be run under a fault-tolerance scheme at
runtime. Our method does not require bounding the number of faults for
a given number of consecutive iterations.
We show how our method improves the steady-state fault rate by an-
alytically computing the rate for our test set of generated DAGs and
comparing this against a static application of fault-tolerance. Finally, we
validate our method using UPPAAL.

Keywords: cyber-physical systems · resource constraint · weakly-hard
real-time · fault-tolerance · single event upset · adaptivity

1 Introduction

As transistor density increases and gate voltages decreases, the frequency of
transient faults or single event upsets (SEUs) increases. As such, fault-tolerance
techniques are becoming a requirement in computer systems [12]. Fault-tolerance
techniques can either be implemented in hardware or in software. Hardware-
based techniques are (partially) implemented in silicon, and as such can offer
transparent fault-tolerance with minimal overhead. However, an implementa-
tion in silicon may not be feasible, e.g. due to the cost of manufacturing special-
purpose microprocessors. Software-based fault-tolerance offers an attractive al-
ternative due to its ability to protect workloads on Commercial Off The Shelf
(COTS) hardware. Code is protected by executing it multiple times (redundant
execution). The process of managing replication, determining consensus between
the replicas, as well as any mitigation mechanism is entirely done in software.

https://orcid.org/0000-0002-7295-6568
https://orcid.org/0000-0003-3003-1388


2 L. Miedema et al.

Redundant execution often takes shape N-Modular Modular Redundancy [11]
(NMR). NMR uses two-out-of-N voting on the output of some unit of code to
obtain a majority and mitigate the effects of a SEU. At least three replicas are
needed to obtain a majority in case of fault, which is known as Triple Modular
Redundancy (TMR). Higher levels of N offer robustness against multiple faults.

Modular redundancy can be implemented at different levels of granularity,
e.g. by replicating individual instructions threefold like SWIFT-R [6], but also at
the OS task level [1]. Regardless, significant overhead remains: instrumenting a
binary with SWIFT-Rs technique increases its execution time by 99 percent [6].
As such, constrained real-time systems may have insufficient processing resources
to complete protection with fault-tolerance. For applications consisting of mul-
tiple components or tasks, software-based fault-tolerance allows for protecting
a subset of all tasks. This holds even when multiple tasks time-share the same
processor, as the application of fault-tolerance is independent of the processor.

Control tasks may be able to tolerate non-consecutive deadline misses, which
has led to the adoption of the weakly hard model [3]. Each task i has an (mi, ki)
constraint, indicating that the task must complete at least mi times successfully
out of every ki times. We use this (mi, ki) constraint with mi < ki to deliver
more effective fault-tolerance to resource-constrained systems.

Contribution We propose strategy switching, a new approach for improving
fault-tolerance for resource-constrained real-time applications. We minimize the
effective unmitigated fault rate by selecting which tasks are to be run under
the protection of a fault-tolerance mechanism. Our approach uses weakly-hard
(mi,ki) = (1,2) constraints on tasks to improve the effective fault rate by vary-
ing which tasks are protected at runtime. Strategy switching does not require a
fault model within which the number of faults are bound, but instead minimizes
the effective fault rate regardless of whether complete fault prevention is feasi-
ble. Finally, we offer an analytical solution to computing the effective fault rate
when using strategy switching, and validate this solution using UPPAAL [2].

Organization In section 2 we introduce our task and fault model. Strategies are
organized in a state machine, which is discussed in section 3. Our state machine
construction algorithm is detailed in section 4. To evaluate the effect of our
solution on the steady-state fault rate, we propose an analytical technique for
obtaining said rate in section 5. We evaluate our strategy switching technique in
section 6. Validation of our analytical method is done using UPPAAL in section
7. Related work is discussed in section 8, after which the paper is concluded in
section 9. Finally in section 10 we discuss various future directions and propose
improvements for our strategy switching technique.

2 System models

Task model We assume the application is structured as a set of periodic real-time
tasks Γ = {τ1...τn} with a single, global period and deadline D such that the
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Table 1: Definitions of symbols and terms used in the task model
Item Meaning

Task model

Γ Set of all tasks, Γ = {τ1...τn}
τi ∈ Γ Task i ∈ Γ , e.g. τA is task A
E Set of all precedence relations, E = {(τi, τj), ...}
Ci Worst Case Execution Time (WCET) of task i
D Global deadline (shared by all tasks)

Fault model

λ Fault rate (Poisson distribution)
(mi, ki) Constraint indicating task i has to execute successfully for at

least mi iterations out of every ki iterations
Unmitigated fault Fault in a task not mitigated by a fault-tolerance technique
Catastrophic fault Unmitigated fault that leads to the (mi, ki) constraint of the

task being violated

period is equal to or larger than the deadline (no pipelining). For each task τi,
a worst-case execution time Ci is known. We also assume the effects of applying
fault-tolerance to a task is known: fault-tolerance may create replicas that have to
be scheduled, or the tasks’ own Ci value may increase as a result of redundancy.
Furthermore, we support non-cyclic precedence relations E = {(τi, τj)} for any
task τi and τj where τi must precede τj creating a Directed Cyclic Graph (DAG)
of tasks. Our technique requires the presence of a (global, offline) scheduler that
can schedule the task set efficiently across the processors. The scheduler must be
able to deal with fault-tolerance applied to any subset of the task set and yield
a schedule. As the use of fault-tolerance increases the utilization of the system,
the scheduler must be able to identify whether a particular subset of tasks under
fault-tolerance is schedulable – i.e. able to meet the real-time deadline. Finally,
every time the subset of tasks under fault-tolerance changes constitutes a real-
time mode switch, as the schedule effectively changes from that moment on. As
such, we require a middleware capable of making such a switch at the end of
every period (when no tasks are running).

Fault model We use the Poisson distribution as an approximation for the worst-
case fault rate of SEUs, which was argued to be a good approximation by Broster
et al. [4]. We do not assume universal fault detection: only when the task runs
under a fault-tolerance scheme can a fault be detected and mitigated. When a
task does not run with fault-tolerance, it is unknown whether or not it succeeded.
Successor tasks rely on data produced by their predecessors, as such we consider
faults to cascade across precedence relations. We use the term catastrophic fault
to describe an unmitigated fault occurring in two consecutive iterations of a task
that can tolerate a single unmitigated fault, i.e. the task i has an (mi, ki) = (1,2)
constraint. We do not consider constraints beyond ki = 2 in this paper.
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Fault mitigation We assume the presence and implementation of a particular
fault-tolerance scheme, and that any task can be run under that scheme. In
this paper, we assume that SEUs always go undetected in tasks protected by a
fault-tolerance mechanism. Fault-tolerance implemented using replication may
fail (no consensus between the replicas). As such, we assume fault mitigation
may fail, and that it is known when fault mitigation fails.

Other definitions Given the complexity and number of symbols used in this
paper, a table of all symbols and terms is compiled in Table 1. Each symbol or
term used will be defined prior to use, as well as being listed in the table.

3 A State Machine of Strategies

To swiftly select a new subset of the task set to protect with fault-tolerance,
we precompute the best subset of tasks to protect next for each situation. The
response to such a situation is identified by a strategy, dictating which tasks to
run with fault-tolerance. Exactly one strategy is active at any moment in time,
and switching between strategies is facilitated through a strategy state machine.

Table 2: Definitions of symbols and terms used in the strategy state machine
Item Meaning

States in the state machine

S Set of all strategies
s ∈ S A strategy
Γs ⊆ Γ The tasks protected under strategy s
sA,B A strategy protecting task A and B, i.e. ΓsA,B = {τA, τB}
R Set of all results
r ∈ R A result
rA,B A result where task A (τA) succeeded and task B (τB) failed

Transitions in the state machine

∆ The transition function for the strategy state machine
∆(s) The set of successors of strategy s as per the transition function ∆.

Due to the bipartite nature of the state machine, this is always a
set of results.

∆(r) The successor of result r as per transition function ∆. Always a
single element, and due to the bipartite nature of ∆ it is always a
strategy.

The architecture of our strategy switching approach distinguishes between
an online part at runtime, as well as an offline part executing ahead-of-time
not beholden to any real-time constraints. The offline component prepares the
state machine, which is then available for online playback. The strategy state
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machine is a bipartite state machine, consisting of strategy states and result
states. Figure 1b shows such a state machine. All symbols used to define the
strategy state machine is given in Table 2.

Online We introduce a strategy switching component, which plays back the strat-
egy state machine, taking transitions based on observed faults as the application
runs. At runtime, this component selects a single strategy s ahead of every ex-
ecution of the task set, which becomes active. The strategy s dictates which
tasks to protect with a fault-tolerance scheme (Γs), and which ones not (Γ \Γs).
Fault-tolerance techniques are typically not a silver bullet solution, and unmit-
igated faults may still occur in tasks in Γs. Furthermore, these techniques can
often report the fact that they failed to mitigate a fault (e.g. no consensus in
N-modular redundancy). After executing all tasks, the online component uses
this information from the execution of the task set to select the matching result
r from the state machine. This result reflects the success or fail state, or prob-
ability thereof, of each of the tasks. Each possible result r directly maps to its
best successor strategy, which is applied to the next iteration of the task set.

Offline The full set of strategies s ∈ S is computed ahead of time, as well as the
transition relation ∆ from any given result r ∈ R to the best successor strategy
∆(r) = s. Strategies which are not schedulable are pruned from S. Furthermore,
strategies which are dominated by other strategies (i.e. there is another strategy
that protects a superset of tasks) are also not considered in S.

A

B
C

(a) Task set Γ = {τA,τB ,τC}
with a precedence relation E =
{(τA, τC), (τB , τC)}

sA,C

rA,C rA,C

rA,C rA,C

sB,C

rB,C rB,C

rB,C rB,C

(b) A strategy state machine for Γ = {τA,τB ,τC}

Fig. 1: Example task set with a corresponding example state machine

4 Strategy State Machine construction

Building the strategy state machine is a two-step process: (1) enumerating valid
strategies and results, (2) determine the best successor strategy for each result.
The state machine construction process is guaranteed to produce a state machine
as long as the task set without any tasks under fault-tolerance is schedulable.
However, in the case that no strategy applying fault-tolerance is schedulable,
the strategy state machine becomes degenerate. Such a state machine consists
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exclusively of the empty strategy, i.e. S = {s∅} with Γs∅ = ∅. Given that there is
only one strategy protecting nothing, no meaningful switching can occur as there
is no other strategy to switch to. Under a degenerate strategy state machine, the
application behaves as if it runs without fault-tolerance or strategy switching.

4.1 Enumerating strategies and results

The set of all strategies S and set of all results R can be constructed by consid-
ering every subset Γs ⊆ Γ and applying fault protection accordingly.

The scheduler is used to mark subsets as either schedulable or unschedulable,
depending on its ability to produce a schedule that meets the deadline with
that subset running with fault protection. Marking each subset in effect forms
an annotated lattice over the subset relation. An example of such a lattice is
shown in Figure 2. The shown annotation could be the result of a high worst-
case execution time CX when compared to CY and CZ . As such, the extra
compute needed for running τA under fault-tolerance is much larger than doing
the same for τY or τZ . This in turn makes the strategy protecting both τY and
τZ (sY,Z) schedulable, while protecting any task together with τX makes the
strategy unschedulable (i.e. sX,Y and sX,Z).

sX,Y,Z

sX,Y sX,Z sY,Z

sX sY sZ

s∅

Unschedulable

Schedulable

Redundant

Fig. 2: Example schedulability lattice of strategies for some Γ = {τX , τY , τZ}

Some strategies protect a subset of tasks also protected by another schedu-
lable strategy (e.g. sY protects a subset of sX,Y ). In Figure 2, this is sY , sZ
and s∅. These strategies are annotated as redundant and as such are discarded
together with the unschedulable strategies. Each strategy s ∈ S has one result
r ∈ R for each possible outcome. As success or failure is only known for tasks in
τs, a result r is constructed for every combination of outcomes for tasks in τs.

4.2 Strategy linking

Each result r is linked to a successor strategy by a process called linking. When
transitioning from a result r to a strategy s, there is knowledge about two con-
secutive iterations of the task set. This is used to compute the expected number
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of catastrophic faults as shown in Theorem 4.1 by means of δ(s,r). Then, our
algorithm selects the best successor s by minimizing δ(s,r) per Definition 4.1.

Theorem 4.1. Expected number of catastrophic faults given r was reached and
s will be activated

δ(s, r) =
∑
τi∈Γ

P (transitive fault in τi|r) · P (transitive fault in τi|s)

Definition 4.1. Determining a successor strategy ∆(r) ∈ S

∆(r) = argmin
s∈S

δ(s, r)

The fault probability P (transitive fault in τi|r) and P (transitive fault in τi|s)
can be derived from the tasks execution time, the fault rate λ, the fault-tolerance
scheme (NMR), and the result r and strategy s. Given the Poisson distribution
and the WCET Ci, the chance of a fault in τi is given as pi in Definition 4.2,
while the chance of a fault under NMR is given as qi in Definition 4.3.
Definition 4.2. Chance of a fault in any invocation of task τi when no fault
tolerance (“NOFT”) mechanism is applied

P (fault in τi|NOFT) = e−λ·Ci = pi

Definition 4.3. Chance of a fault in any invocation of task τi when NMR is
used

P (fault in τi|NMR) = p3i +

(
3

2

)
p2i · (1− pi) = qi

The protection status of a task (either “NOFT” or “NMR”) can be read from
the strategy, as shown in Definition 4.4.

Definition 4.4. Chance of a fault in any invocation of task τi under strategy s

P (fault in τi|s) =

{
if τi protected by s = P (fault in τi|NMR)
otherwise = P (fault in τi|NOFT)

We assume faults propagate along the DAG as invalid output is sent to
successor tasks. Definition 4.5 defines the probability of a transitive fault, where
the fault can either originate from itself or from a predecessor.

Definition 4.5. Chance of a transitive fault in any invocation of task τi under
strategy s

P (transitive fault in τi|s) = P (fault in τi|s) + (1− P (fault in τi|s))

·

1−
∏

τj∈pred(τi)

1− P (fault in τj |s)


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The same idea of Definition 4.4 is used to define the chance of success given
a result, which is given in Definition 4.6. The same mechanism for handling
precedence relations as seen in Definition 4.5 can be applied using P (fault in τi|r)
to derive P (transitive fault in τi|r), which we will omit for brevity.

Definition 4.6. Chance of a fault in any invocation of task τi when result r of
strategy sr was reached

P (fault in τi|r) =


if τi succeeded per r = 1

if τi failed per r = 0

otherwise = P (fault in τi|sr)

4.3 State machine construction algorithm

We show the entire strategy state machine construction process in Algorithm 1.

1 All strategies are enumerated and the scheduler is used to determine for each
strategy its schedulability status. The lattice relation, as shown in Figure 2,
is used to significantly reduce the number of times the scheduler needs to be
invoked. When a strategy is found to be unschedulable, all strategies protect-
ing more tasks are immediately marked as unschedulable. Likewise, when an
unschedulable strategy is encountered, all strategies protecting fewer tasks
are marked as schedulable.

2 The resulting S contains all strategies, and is pruned of unschedulable strate-
gies and strategies that protect a subset of tasks than other schedulable
strategies.

3 Set S is further pruned, removing all strategies that provide equal or worse
protection when compared to some other strategy in S.

4 Results are constructed and their successor ∆(r) ∈ S is determined for
each of the remaining strategies. Each result associated with strategy s is
identified with a bitmask o over Γs such that index l in the bitmasks identifies
whether task τl at index l in Γs is protected. The results are added to R.

4.4 Algorithmic complexity

The approach, as presented here, can easily become intractable for even small
task sets due to the explosion of S and R. In section 10, we discuss ways to
lower the algorithmic complexity. For completeness, we discuss the algorithmic
complexity of the (naïve) state machine construction algorithm as presented.

The number of strategies is up to all combinations of tasks, i.e. |S| ∈ O(|Γ |!).
Each strategy has ≤ 2|Γs| results, 2|Γs| ∈ O(2|Γ |) and thus |R| ∈ O(|Γ |! · 2|Γ |).
Let n = |Γ |, i.e. n is the number of tasks. Then, the final algorithmic time
complexity is given in Theorem 4.2.
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Algorithm 1 Complete state machine construction algorithm

1 Collect all strategies and their schedulability status
1: S ← ∅
2: for all Γj ∈ subsets of Γ do
3: if ∃s ∈ S : Γs = Γj then . Skip if a strategy for subset Γj already exists
4: continue
5: end if
6: Γs ← { NMR(τi) : τi ∈ Γj } ∪ (Γ \ Γj) . Set of all tasks with NMR applied
7: if schedulable(Γs) then
8: sj ← new Strategy(Γs, schedulable = true) . Strategy is schedulable
9: S ← S ∪ {sj}
10: for all Γk ∈ subsets of Γ where Γj ⊂ Γk do . Propagate down the lattice
11: sk ← new Strategy(Γk, schedulable = true)
12: S ← S ∪ {sk}
13: end for
14: else
15: sj ← new Strategy(Γs, schedulable = false) . Strategy is unschedulable
16: S ← S ∪ {sj}
17: for all Γk ∈ subsets of Γ where Γk ⊂ Γj do . Propagate up the lattice
18: sk ← new Strategy(Γk, schedulable = false)
19: S ← S ∪ {sk}
20: end for
21: end if
22: end for

2 Prune strategies based on schedulability and redundancy
23: S ← {s : s ∈ S, s is schedulable} . Using information in s ∈ S
24: S ← {si : si ∈ S,¬∃sj ∈ S : Γsi ⊂ Γsj} . Remove redundant strategies

3 Prune strategies based on fault-tolerance quality
25: for all si ∈ S do
26: for all sj ∈ S \ si do
27: if ∀τk ∈ Γ : P (transitive fault in τk|si) ≤ P (transitive fault in τk|sj) then
28: S ← S \ sj . sj is equal or worse for all tasks than si
29: end if
30: end for
31: end for

4 Create and link results
32: R← ∅
33: ∆← ∅
34: for all si ∈ S do
35: for all oj ∈ all combinations of success and failure for Γs do . oj is a bitmask
36: rj ← new Result(oj)
37: snext ← s ∈ S : minsk∈S δ(sk, rj) = δ(s,rj) . Linking per Definition 4.1
38: ∆(rj)← snext

39: ∆(si, oj)← rj
40: R← R∪ {rj}
41: end for
42: end for



10 L. Miedema et al.

Theorem 4.2. Time-complexity for the construction of the strategy state ma-
chine for |Γ | = n tasks

O(|R|+ |S|) ≈ O(|R|) ∈ O(|Γ |! · 2|Γ |) = O(n! · 2n)

Note that this is a high upper bound which is unlikely to be hit by an
arbitrary task graph. Redundant strategies are identified and pruned before the
results are enumerated as seen in Algorithm 1, reducing the number of results
significantly. In further work, we intend to improve the tractability by improving
the strategy enumeration process itself.

5 Evaluating State Machines

To evaluate and compare our algorithm against a static (non-switching) solution,
a way of determining the effective fault rate is necessary. We define the effective
fault rate as δ(∆). δ(∆) is the expected number of catastrophic faults for any
arbitrary period of the task set managed according to state machine ∆. δ(∆)
can be obtained analytically converting it to a Discrete-Time Markov Chain.

5.1 Discrete-Time Markov Chain evaluation

The expected number of catastrophic faults in ∆ is the weighted average of the
δ(r,s) = δ(r,∆(r)) function from Theorem 4.1. The weight of result r can be
derived from its strategy s, as shown in Theorem 5.1.

Theorem 5.1. Probability of selecting result r given strategy s

P (r|s) =
∏
τi∈Γs

{
if τi fails in r = P (transitive fault in τi|s)
otherwise = 1− P (transitive fault in τi|s)

Theorem 5.2. Expected number of catastrophic faults per period of the task set

δ(∆) =
∑
r∈R

P (s|∆) · P (r|s) · δ(r,∆(r))

P (s|∆) provides the steady-state probability of finding the strategy state
machine in strategy s. P (s|∆) can be computed by converting the state machine
into a Discrete-Time Markov Chain. Conversion is applied as follows:

1. Result states are removed, and all incoming edges are transferred directly to
the successor of each result state.

2. A transition matrix T∆ is created from ∆.
3. The steady-state vector ~SS∆ of T∆ is computed (e.g. using linear algebra).
4. ~SS∆(s ∈ S) = P (s|∆).



Strategy Switching: Resource-constrained Fault-tolerance 11

6 Evaluation

To evaluate our technique, we generate a set of task graphs and compute a
strategy state machine for each graph across a variety of scenarios.

6.1 Dataset

We generate 500 task graphs with between 2 and 20 tasks using Task Graphs
For Free (TGFF) [9]. Each task graph is statically scheduled once with Forward
List Scheduling targeting a 4 core platform, without any fault-tolerance. These
schedules are used to determine each task graphs’ base makespan. We set the
fault rate to λ = 10−5s−1 and determine fault probabilities using the Poisson
distribution, i.e. P (fault in τi| NOFT) = eλ·Ci . As fault-tolerance technique we
use TMR at the task level. The scheduler is tasked with scheduling the three
replicas and voter according to their precedence relations.

To simulate resource-constrained scenarios, we obtain results for various
deadlines. We define the deadline as a multiple of the base makespan. A multi-
ple of 1 (i.e. deadline = 1×makespan) leaves only strategies that can place task
replicas in existing gaps in the schedule, while a multiple of 3 leaves enough time
available for every task to run three times.

6.2 Results

Figure 3 shows the results of the 500 task graphs with four different deadlines.
For each plot, the x-axis represents utilization without fault-tolerance, while the
y-axis presents the steady-state fault rate δ(∆) (lower is better).

The higher the utilization, the fewer unused resources there are to use for
placing replicas. The effect of this is visible – the higher the utilization, the
higher the fault rate in both the switching and non-switching case. Each plot
compares our strategy-switching solution to a non-switching one where only a
single strategy is selected, as well as one without fault-tolerance (“NOFT”).

For the extremely constrained scenario of deadline = 1×makespan (Figure
3a), our strategy-switching solution manages to hit a lower fault-rate than the
non-switching solution in most cases. Our solution offers a 17.82% lower steady-
state fault rate on average (±37.34% std. dev) when compared to the non-
switching approach. At a more relaxed deadline = 1.2×makespan, these figures
stay about the same (17.92% improvement with ±44.06% std. dev). But relaxing
the deadline to 1.4×makespan yields a fault rate reduction of 24.79% (±50.29%
std. dev). When the ratio matches the extra resource requirement of TMR (≤ 3),
all solutions perform identical as seen in Figure 3d.

We analyze this behavior at the hand of Figure 4, where the relative improve-
ment for the first 6 DAGs is shown across multiple makespan/deadline ratios.
The strategy switching solution provides a reduction in fault-rate for intermedi-
ate makespan/deadline ratios.

With more relaxed deadlines, the number of possible strategies starts to
overtake the tractability of our algorithm: at 1.2×, for 3 of the 500 task graphs
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Fig. 3: Utilization vs. steady-state fault rate for a non-switching solution and our
switching solution across various levels of resource constrainity. Lower fault rate
is better.
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a state machine cannot be constructed within 30 minutes on our hardware. This
grows to 20 of the 500 graphs for a multiplier of 1.4×. However, this does not
take away from the validity of the state machine for DAGs where it is feasible.

Our approach does not always yield an improvement. For 1×multiplier, strat-
egy switching offered an improvement when compared to a static solution in 272
of the 500 cases. In 68 of the missing cases, our strategy-switching approach
performs worse than the non-switching solution. Our greedy ∆(r) successor de-
termination method as presented in Definition 4.1 is naive and susceptible to
make locally-optimal decisions that are detrimental to the total fault-rate. Such
cases can easily be avoided however: as we propose an analytical method for
computing the fault rate in this paper, the algorithm can easily be extended to
verify that the resulting state machine outperforms a static solution. When this
is not the case, it can fall back to the static solution. In future work, we intent
on creating a better linking algorithm that could also deliver in an improvement
in these cases, and not have to fall back to a static non-switching solution.

7 Validation using UPPAAL

To improve confidence in our analytical evaluation, we model the online part of
the strategy switching using UPPAAL [2]. Online strategy switching is combined
with UPPAAL processes for tasks, edges, processors, and a variety of monitor-
ing models. These processes in effect build a complete runtime simulator with
which we can study long-running behavior of a weakly-hard real-time application
when experiencing a given incidence rate of faults. UPPAAL is used in Stochastic
Model Checking (SMC) mode [5], which lets us estimate the expected number of
catastrophic faults for a large number of periods of a particular task set. For val-
idation to succeed, this estimation must match the analytical solution obtained
per Section 5. As each model is specific to one task set and its strategy state
machine, we develop a generator that produces a UPPAAL model automatically
from a task set and strategy state machine.

7.1 UPPAAL processes

Systems models constructed in UPPAAL [2] are composed of a set of concurrently-
running UPPAAL processes derived from process templates. We define 12 tem-
plates for validation, in which three categories can be identified:

i) Our contribution: a strategy state machine process, plus a set of result
matcher processes identifying when particular results is reached

ii) Hardware & application: task, edge, NMR voter and processor templates
iii) Monitoring : task and edge monitoring templates to propagate faults and

register the actual catastrophic fault rate

For brevity we limit discussion to one template: the task process template.
This template is shown in Figure 5. A task process is created for each combina-
tion of a task τi and strategy sj . It is parameterized with task index i, strategy
id j, the release time ri, its WCET Ci, the assigned core Pi.
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start WaitingForStrategy

Unscheduled, t ≤ ri

Running, t ≤ ri + CiRunningWFault, t ≤ ri + Ci

Finished
t ≥ ri

t ≥ ri + Ci
task_finished_success[i]!

proc_transient_fault[Pi]?

t ≥ ri + Ci
task_finished_fault[i]!

Fig. 5: Simplified UPPAAL process template for a task

When the strategy sj is activated, the task process moves to the Unscheduled
location. This location is left when clock t reaches t = ri. In the Running state, it
may encounter a fault signaled via the proc_transient_fault[Pi]. The fault is
captured by moving to RunningWFault. The process finishes by either emitting a
task_finished_success[i] or task_finished_fault[i] depending on its fault
status, which is relayed to a voter process (omitted for brevity).

7.2 Validating results

The UPPAAL model is periodic, and counts the number of catastrophic faults
encountered by means of the monitoring processes. To determine the global
steady-state fault rate δ(∆), we query the number of catastrophic faults for a
large number of tasks set iterations. Then, validation succeeds when δ(∆) ≈
# catastrophic faults

# iterations . We set the confidence interval for this experiment to 95%.
We apply the UPPAAL model transformation to the first 10 task graphs with

deadline=1×makespan, the validation results of which can be seen in Table 3.
The raw data is shown in the “# faults” column, and is obtained using the query
E[<=t;128](max:catastrophic_faults). The formula estimates the number
of catastrophic faults seen until time t. 128 such simulations are conducted to
gain confidence in the stability of the value and get the bounds of the 95%
confidence interval (shown with ±). In the formula, parameter t is set to the
period × 4096 to simulate 4096 consecutive iterations of the task set. As such,
δ(∆) is approximated by dividing the output of the formula by 4096.

Two values (dag2 and dag8) are absent: the UPPAAL query did not return
a result in 24 hours. The extremely low fault-rate of dag7 makes seeing a single
fault in 4096 · 128 iterations is 0.029. The remaining values present in Table 3
are within their 95% confidence interval, giving good confidence in the accuracy
of our analytical method and therefore our results.

8 Related work

The (mi, ki) constraints have been used before to improve the efficacy of fault-
tolerance in real-time scheduling. [8] proposed a scheduler and an efficient schedu-
lability algorithm for a sporadic task set with tasks under (mi, ki) constraints.
Their scheduler allows for scheduling task sets that would normally not be
schedulable, yet utilizing their (mi, ki) constraints allows them to be scheduled.
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Table 3: Numerical evaluation using UPPAAL
DAG # tasks |S| # faults δ(∆) (numerical) δ(∆) (analytical)

dag0 19 1 18.9766± 1.543 (4.633± 0.377) · 10−3 4.34 · 10−3

dag1 14 17 4.32812± 0.574086 (1.057± 0.141) · 10−3 1.01 · 10−3

dag2 21 21 Did Not Finish 3.14 · 10−3

dag3 20 1 21.9219± 2.09571 (5.352± 0.512) · 10−3 5.25 · 10−3

dag4 4 1 0.453125± 0.113753 (1.106± 0.278) · 10−4 1.09 · 10−4

dag5 5 4 0.40625± 0.112856 (9.918± 2.755) · 10−5 9.36 · 10−5

dag6 10 10 1.64844± 0.272017 (4.025± 0.664) · 10−4 3.78 · 10−4

dag7 4 1 0± 0 (0± 0) · 100 5.65 · 10−8

dag8 12 26 Did Not Finish 3.67 · 10−4

dag9 4 2 0.148438± 0.0661748 (3.624± 1.616) · 10−5 4.46 · 10−5

Chen et al. [7] proposed a solution that is similar to ours. Their method of-
fers fault-tolerance with the goal of reducing the effective fault rate as well as
lowering energy consumption. Chen et al. propose a static scheduling technique
called Static Pattern-Based Reliable Execution, ensuring each (mi, ki) constraint
is respected in the presence of transient faults. Furthermore, they propose de-
laying the execution of their static pattern if no fault is detected at runtime,
opportunistically running more unprotected instances of the task with the goal
of saving energy. However, if the static pattern is found to be unschedulable as
per their schedulability test, their implementation is unable to provide a schedule
that minimizes the fault rate for a given resource-constrained real-time system.
While their approach offers more flexibility in the task model (specifically the
support for (mi, ki) constraints with ki > 2), it does not consider that fault mit-
igation may fail. Our approach optimally lowers the fault rate, regardless of the
hardware constrains. Furthermore, our approach recognizes that fault mitigation
may fail, and includes this in the calculation for lowering the fault rate.

[10] offers a technique for measuring the fault rate of an application with
tasks under (mi, ki) constraints. Their technique provides an upper bound for
the fault probability per iteration of a Fault-tolerant Single-Input Single-Output
(FT-SISO) control loop, similar to our δ(∆) function. Their technique hopes
to provide transparency to system designers, allowing analyzing the impact on
the reliability when changing the hardware or software. However, while their
approach is aware of (mi, ki) constraints, it does not provide schedules that
utilize them. Instead, it merely includes them in the reliability calculation.

The domain of strategy switching shares some aspects with Mixed-Criticality
(MC) systems. In an MC system, the system switches between different levels
of criticality depending on the operating conditions of the system. Tasks are
assigned a criticality level, and when the system criticality is higher than that
of the task, the task is not scheduled to guarantee the successful and timely
execution of tasks with a higher criticality level. Pathan [13] combines MC with
fault-tolerance against transient faults. As is typical in MC research, as the level
of criticality increases, the pessimism increases. Pathan increases the maximum
fault rate when switching to a higher level of criticality. In our approach we do
not vary the pessimism of any parameter. Instead, we assume the λ parameter
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provides a suitable upper bound to the fault rate in all conditions. Our approach
offers some aspects typically not found in MC systems: while each strategy ap-
pears as is own a criticality level, it is a level applied to a subset of the tasks
(specifically Γs). Finally, [13] requires bounding the number of faults that can
occur in any window. As such, passing their sufficient schedulability test will
(under their fault model) guarantee the system will never experience a fault.

9 Conclusion

In this paper, we introduced strategy switching, a technique to improve fault-
tolerance for resource-constrained systems. By switching the subset of the set
of tasks that receives fault-tolerance, we are able to reduce the effective fault-
rate for resource-constrained weakly-hard real-time systems. We contribute a
comprehensive algorithm for constructing the strategy state machine, as well as
an evaluation of our technique across 500 DAGs. In our evaluation, we saw an
improvement in the majority of cases when resource constraints are significant.
Furthermore, we contribute an analytical technique for analyzing the strategy
state machine, and use UPPAAL to validate our technique.

10 Future work

We hope to address the issue of tractability in future work, as well as lower the
steady-state fault rate of applications by means of an improved linking algorithm.
Finally, we hope lift the limitation of (mi, ki) where ki ≤ 2 in a future paper.

Tractability may be improved by utilizing symmetry in the strategy set S,
as well as leveraging heuristic-driven strategy enumeration techniques. Further-
more, we intent to lower the steady-state fault rate of our strategy switching
solution by developing a new divide-and-conquer linking algorithm. When not
encountering any faults, the lowest steady-state fault rate is achieved by switch-
ing between two strategies or remaining in one strategy. This is a logical conse-
quence of the ki = 2 limitation, as it limits the effects of an unmitigated faults to
two iterations (two strategies). By identifying these pairs and devising a merge
operation, we hope to construct a high-quality composite strategy state machine.

Finally, we aim to support tasks with ki > 2 constraints. The past k − 1
successes or fails of a task is needed in δ(s,r) to compute the expected number
of catastrophic faults when evaluating successor strategy s. As such, a result
should be allocated for each combination of previous fails/successes. Naively
allocating these results is trivially intractable. Instead, we hope to create an
efficient result enumeration and linking algorithm that can operate at runtime.
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