Trusted Execution of Periodic Tasks for
Embedded Systems *

Martin Gunnarsson * Nils Vreman ** Martina Maggio ***

* RISE Cybersecurity, RISE Research Institutes of Sweden, Sweden
** Department of Automatic Control, Lund University, Sweden
*** Department of Computer Science, Saarland University, Germany

Abstract: Systems that interact with the environment around them generally run some periodic
tasks. This class of systems include, among others, embedded control systems. Embedded
controllers have been proven vulnerable to various security attacks, including attacks that
alter sensor and actuator data and attacks that disrupt the calculation of the control signals.
In this paper, we propose, and implement, a mechanism to execute a periodic task and its
communication interfaces in a trusted execution environment. This allows us to execute an
isolated controller, thus offering higher security guarantees. We analyse the overhead of switching
between the regular (possibly compromised) execution environment and the trusted execution
environment and quantify the effect of this defence mechanism on the control performance.

Keywords: Security, Embedded computer architectures, Embedded computer control systems

and applications

1. INTRODUCTION

Control systems are at the heart of many indispensable
societal functions, from energy distribution to pacemak-
ers. Although we rely on these systems, cyber-physical
controllers have been increasingly targeted by security at-
tacks. Various types of control systems have been targeted
by attacks, from critical infrastructure such as power grids
to commercial IoT devices (Duo et al., 2022).

Cyber-physical control systems normally belong to one
of three broad classes: bare-metal applications, embedded
systems executing control functions alongside a real-time
operating system, and general purpose computers running
full-fledged operating systems. We focus here on the second
of these classes and target embedded systems that execute
a real-time operating system. This is the setting of many
control applications, from automotive to avionics.

Many types of attacks on cyber-physical systems exist,
e.g., where sensor or actuator data can be compromised or
the transmission channel can be impaired. A remote adver-
sary can through software vulnerabilities gain the ability
to execute arbitrary code on a cyber-physical system. The
attacker can then utilise different techniques to elevate its
privilege and get full control of the device.

One of the most important countermeasures to combat
security threats is to isolate the program that should be
executed securely. Ensuring that no (potentially malicious)
process access another process is called software isolation.

* The authors are members of the ELLIIT Strategic Research Area
at Lund University. This project has received funding from the
European Union’s Horizon 2020 research and innovation programme
under grant agreement Number 871259 (ADMORPH project) and
SSF grant RIT17-0032 (SEC4Factory). This publication reflects only
the authors’ view and the European Commission is not responsible
for any use that may be made of the information it contains.

Several mechanisms to perform software isolation exist,
one being trusted execution. Trusted execution uses special
hardware features to restrict access to specific functions.

While trusted execution is an established technique for
process isolation, it has mainly been used to isolate sensi-
tive cryptographic operations and provide secure storage
separate from the main program. Additionally, trusted
execution environments are not designed to run periodic
tasks, which are essential to implement embedded system
functionality, e.g., control algorithms.

In this paper, we implement support for light-weight pe-
riodic task executions inside a trusted execution environ-
ment, using an ARM Cortex-M processor. In particular,
our motivation is ensuring the timely execution of control
tasks, with periods in the millisecond range. The proposed
solution ensures that the communication interfaces and a
hardware timer, used to trigger the control task, are only
accessible from within the trusted execution environment.

To evaluate the proposed implementation, we implement
an attack against a physical ball and beam plant and
show the difference of running the controller in the normal
execution environment and in the trusted environment.
For the controller implemented in the different environ-
ments, we then (i) perform measurements of the execution
time of the controller code under attack, and (ii) con-
duct a control-theoretical analysis of the achievable con-
trol performance. The analysis shows that the proposed
secure controller implementation is able to stabilise the
plant whilst delivering good quality of control; despite
the attacker starving the real-time operating system of all
resources. Additionally, the proposed secure controller im-
plementation runs with limited overhead and predictable
timing behaviour and periodicity, making this a viable
solution to implement in single-node control systems.

2. CONTROL BACKGROUND

We consider a controllable and fully observable, continuous-
time, LTI system

P t(t)=Ax(®t)+Bu(lt)+ Wuw(t) 1)
Ly =Cz(t)+Du(?),
where z (t) is the plant state, u (¢) the control signal, y (¢)

the plant output, and w (¢) the process noise. The matrices
A, B,W,C and D encode the plant dynamics.

The plant is controlled by a discrete-time LTI controller
C. {Zk_;,_l:FZk—Fnyk—FGTTk)

' up = H zp + Ky yp + K, 7,
where yj, is the k-th sampling instant of y(t), ry is the
setpoint, and z; is the controller’s internal state. The
chosen controller synthesis method and architecture (e.g.,

PID, linear-quadratic regulators, etc) determine the values
assigned to the matrices F, Gy, G,, H, K, and K,.

2.1 Control Implementation

The controller is implemented as a periodic task 7. with
period p, characterised by a sequence of jobs (ji)xen. Each
job ji is activated at time aj (ideally ar = k - p), and
performs the computations for the k-th controller step.

ag . Q41
Jk y

. Q42
Jk+1

in
X1

Y|, t

Fig. 1. Visualisation of the execution of the controller,
highlighting the job operations.

The controller’s job ji executes the following operations:

) it samples the plant output yi and the setpoint ry,
i) it computes a control value uy = A, + K,y + K, 1,
) it sends the control signals wuy to the actuators,

) it updates the state zp41 = F 2z, + Gy yi + Gr 1y, and
calculates the direct part A, = H 241 (used in the
following period), and

it sleeps until the period ends, i.e., idling until aj41.

From the real-time perspective, the execution time can be
split into two parts: (1) steps (i)—(iii) constitute the input-
output calculation, with latency £, (2) step (iv) is the
controller state update calculation. Intuitively, step (iv) is
performed after the actuation step in order to reduce ¢j.

We denote with fi the time at which job ji completes
step (iv). If the controller completes j; within its period,
then step (v) makes the controller idle for a non-zero
time, and sets aip+1 = ar + p. In the opposite case, the
next control job is immediately activated, ax+1 = fx,
and the controller period is reset. Figure 1 visualises the
phases of the execution. The execution of the control jobs
does not start immediately after activation; this is due to
overhead introduced by the real-time operating system,
and is denoted with oi. Finally, we denote the execution
time of the controller as e, = fr — ax — ozikn.

2.2 Control Evaluation

We analyse the performance of the control system using
the time-averaged quadratic cost function

t
J= %/ E [x ()T Qua(s) +u(s)” Qu u(s)} ds. (3)
0

Here, J penalises large deviations of the plant states
x (t) and control signal wu (¢) with respect to the positive
semidefinite weight matrices @, and @,. Control tools
like JitterTime (Cervin et al., 2019) implement standard
calculations of the cost function for mixed continuous-
discrete linear system models driven by white noise.

3. TRUSTED EXECUTION IN EMBEDDED
SYSTEMS

The control process is generally run in a real-time oper-
ating system alongside other processes. However, the real-
time operating system can be compromised, thus (possi-
bly) subjecting the controller to attacks. Since controllers
often implement security-critical tasks, it would be benefi-
cial to execute the control process in isolation with respect
to the other processes running on the hardware.

Process isolation is a commonly used technique to improve
the robustness, safety, and security of a computing system.
Multiple processes are executing simultaneously on the
same shared hardware, each of them being confined to
its own fraction of the shared resources, like memory and
peripherals. To enforce a strong notion of process isolation,
the system is often split in two separate parts: a Rich
Ezecution Environment (REE), and a Trusted Ezecution
Environment (TEE). The majority of the system tasks ex-
ecute in the REE, while the security-critical tasks execute
in the TEE. Usually, processes in the REE and TEE com-
municate using a shared memory area. Paraphrasing the
GlobalPlatform definition (GlobalPlatform, 2018), a TEE
is an execution environment that (i) runs alongside, but is
isolated from, the REE, (ii) has the ability of protecting
assets from software attacks, and (iii) defines safeguards
to data and functions that a program can access.

ARM developed TrustZone-A for the Cortex-A line of
processors. Recently TrustZone-M was released for the
Cortex-M processors with Armv7-M and Armv8-M archi-
tectures; Using Cortex-M provide faster context switching
in comparison to Cortex-A, according to Ngabonziza et al.
(2016). The ARM Cortex-M family dominates the market
for resource-constrained embedded systems.

Most ARM Cortex-M processors have a Memory Protec-
tion Unit (MPU), equivalent to a memory management
unit without support for virtual memory.! The MPU en-
forces the access permission for each memory region, where
executable memory is set to secure, non-secure, or non-
secure callable. Transitions between non-secure and secure
memory is performed by branch or jump instructions.
To prevent an adversary from corrupting the execution
flow inside the TEE, secure memory can only be reached
by branching from non-secure callable memory. Non ex-
ecutable memory regions can be set to readable and/or

1 developer.arm.com/Processors/Cortex-M33

writable, while access can be limited to the TEE only, to
the REE only, or to both. 2

ARM led the development of the Platform Security Ar-
chitecture (PSA) specification (ARM, 2021). PSA is in-
tended to improve security of embedded devices used in the
Internet-of-Things with a threat model, security analysis,
and a reference implementation of a security layer. As an
instantiation of PSA, ARM initiated Trusted Firmware-M
(TF-M) that uses ARM TrustZone-M to provide separa-
tion between TEE and REE. TF-M provides a modular set
of functions that allows developers to call (from the REE)
services such as secure storage, interrupt handling, and
cryptographic operations with securely stored keys. Addi-
tionally, TF-M allows developers to define and implement
their own secure services.

The parts of an REE application that are executed in the
TEE are called the Application Root of Trust (RoT). TF-
M provides the mechanism (an interface based on inter-
process communication) to call Application RoT functions
and exchange data between the REE and the TEE. The
Application RoT functions can issue calls to the PSA RoT
functions, i.e., critical services that are provided by the
PSA but not directly exposed to the REE.

The aim of this paper is to periodically execute control
software in the TEE, ensuring its protection and providing
security guarantees. Executing a task in the TEE implies
that the task has: (i) higher priority than all tasks executed
outside TF-M, (ii) protected variables, code, and state,
and (iii) access to secure GPIO-pins for sending control sig-
nals and reading sensor values (without interrupts). How-
ever, TF-M does not inherently support periodic tasks.

4. CONTROL WITH PERIODIC TRUSTED
EXECUTION

In this section, we discuss the implementation of a secure
embedded controller. Specifically, we specify an attack
model and show an example of what could happen if
the controller is attacked. We then derive the security
requirements of our control implementation and discuss
the technical implementation details.

This problem has been studied before. Wang et al. (2022)
propose RT-TEE, that protect critical tasks and IO in-
side a TEE from a fully compromised adversary in the
REE. Compared to our solution, RT-TEE provide more
functionality, allowing the scheduling of multiple tasks
inside the TEE. However, for single-task control system
our approach provide the same functionality with less
complexity.

Pinto et al. (2017) propose a real-time operating system
inside a TrustZone-A TEE, called T-RTOS, where real-
time tasks can run periodically. Unlike the light-weight
solution we propose, T-RTOS does not permit interactions
with the physical world through peripherals.

2 In ARM terms, the TEE is called Secure Processing Environment
(SPE) and the REE is called Non-Secure Processing Environment
(NSPE). We use the more general terms TEE and REE.

4.1 Attack Model

We assume that an attacker is able to compromise and
execute arbitrary code in the REE;, i.e., having full control
over it and can execute any code for any duration. The
attacker can also control all peripherals that are configured
as accessible from the REE. Side-channel attacks against
TrustZone-M aims at leaking secrets from the TEE, such
as cryptographic keys. In this work, we use the TEE
to isolate computations and IO access from the REE.
Therefore, we consider side-channel attacks as out of scope.
A classic example of an attack on control systems is
the CPU-starvation attack. The attacker waits for the
triggering of the control job jg; specifically, the command
that reads sensor data. When the command is detected,
the attacker starts a high priority (malicious) task 7,
that takes over the computing unit for a given amount
of time. This delays the execution of the control task.
Figure 2 shows an example of a starvation attack against
the k-th job. When j; sends a read command, the higher
priority task 7, takes over, preempting 7. and delaying
the controller execution £} time units.

RS
K i

™ |] i
H

8| 7 \\I|ES 7 N\

Fig. 2. Malicious task 7,, delaying the execution of the
control task 7. in the k-th period, when 7. is executed
in the REE. The controller execution time e?EE and

period Py are affected by the execution of 7,,.

As can be seen in Figure 2, the introduced delay has two
effects: it lengthens the input-output latency £, of the
controller and it may also push forward the activation axq1
of the next control period. We denote with eX¥ the time
elapsed from the beginning of the task execution to its
completion, and with p; the actual period of the controller
that is experienced by the k-th job. Clearly, with a long
disruption, the attack can be detected easily. An attacker
want to avoid detection, and hence set the duration ¢} to
smaller values, but still cause problems to the plant.

This is only one of many attacks that an attacker can
inject into the system once the REE is compromised. We
introduce it here, because we use it as a test scenario in
the experimental evaluation presented in Section 5.

4.2 Security Requirements and Limitations

To secure a control system, it is necessary to devise a so-
lution with the following properties: (i) the adversary can
not interfere with the control computations, (i) control
signals and measurements must be resistant to tampering
and spoofing by the adversary, (iii) the solution must
be resilient against CPU-starvation, (iv) the adversary
has no possibility to delay or re-schedule the execution

Operating
System

Hardware

—> trigger/call
--- isolation
= REE/TEE boundary

Fig. 3. Tasks from the REE can call the configuration
interface of the controller, but cannot impact the
secure controller calculations. The UART and Timer
can be accessed only from the TEE.

of the control task, (v) the interface between the secure
controller and the REE must be minimal to reduce the
attack surface, (vi) only trusted parties are permitted to
send messages to the secure controller interface.

Combining the control system’s implementation require-
ments with these security requirements, we identify the fol-
lowing functional requirements of a secure system: (a) the
secure controller must preempt the REE to ensure that the
control process executes periodically, (b) the configuration
interface must only accept signed configuration messages
with a higher sequence number than previously accepted
messages, (c¢) the access to the peripherals used by the
secure controller must be limited to the TEE.

Moving software into a TEE can be one step in securing
an embedded system. The TEE does not intrinsically make
software more secure. Software vulnerabilities (e.g., bugs)
have been shown to work against code running inside a
TEE. It is essential to leave a minimal and secure interface
between the TEE and REE. Formal verification together
with structured testing could mitigate these vulnerabili-
ties.

We here provide a secure control implementation that sat-
isfies these functional and security requirements, including
the ability of running code periodically in TF-M. 3

4.8 Secure Control Implementation

The proposed solution uses the process separation and
ability to restrict access to peripherals, introduced in ARM
TrustZone and TF-M. Specifically, we rely on the following
hardware and software components: (i) ARM TrustZone,
(if) TF-M, (iii) a communication interface (e.g., UART)
configured to be accessible only from the TEE, (iv) a pro-
grammable timer that can generate interrupts accessible
only from the TEE, and (v) an embedded real-time operat-
ing system (RTOS). We use UART in our implementation
due to the plant communication interface; however, any
communication interface can be used. Additionally, we run

3 Our code is available as an open-source repository: github.com/
Gunzter/Lightweight-TEE-Controller

Fig. 4. Visualisation of the execution of the controller in
the TEE, highlighting the job operations.

the RTOS Zephyr OS in the REE; however, any RTOS
with support for TF-M could be used.

To schedule the execution of our secure controller without
any possibility of interference from a (potentially) compro-
mised RTOS, we use the TEE-access only hardware timer
to trigger an interrupt after a given amount of time. In the
interrupt handler we reset the hardware timer, calculate
the control command, send the control command to the
plant, and compute the next control state and direct term.

TF-M provide two ways of handling interrupts: First-Level
Interrupt Handling (FLIH) and Second-Level Interrupt
Handling (SLIH). We use FLIH, where the interrupt is
processed immediately when triggered. The FLIH-handler
only exposes limited functionality to the programmer, but
by calling the hardware abstraction layer directly we can
access the necessary hardware functions for the implemen-
tation. Figure 3 summarises the proposed implementation.

The implementation is a non-standard TF-M Application
RoT; the communication with the controller and its con-
figuration follow a standard model, but the periodic trig-
gering of the control jobs deviate from the intended usage.
An Application RoT has two special types of functions: the
init function and secure functions exposed to the REE. We
use the init function to initialise the timer and UART. To
trigger the timer, we use hardware-specific functions. It is
possible to port the solution to other hardware platforms
that satisfy the implementation requirements.

Finally, along with the execution time eEEE of ji in

the TEE environment, there is an overhead in switching
the TEE in and out, respectively §* and 6p"*. Figure 4
shows the control task’s execution in the TEE. When the
interrupt handler is triggered (i.e., at the start of 6i"), the
execution of the interrupt handler function is equivalent
(from the REE perspective) to executing a non-preemptive
task with higher priority. Hence, the secure controller
cannot be interrupted by either tasks that reside in the
REE or lower priority functionality in the TEE (such as
TF-M Core functions).

5. EXPERIMENTAL EVALUATION

We will in the following section analyse the proposed im-
plementation scheme on a ball and beam*. The objective
is to stabilise the plant while ensuring that the ball follows
a given trajectory. A continuous-time LTT model of the ball
and beam P is given with respect to Equation (1)

4 The ball and beam consists of a beam which is tilted by a servo
motor together with a ball rolling back and forth on top of the beam.

000 4.5
A=|-1000| . B=|0 ,C:[égﬂ,
010 0
and W = I, D = 0. We have access to only two

measurements (the beam angle and the ball position), and
w (t) is assumed to be white noise with covariance R. The
cost function J penalises the plant state and control signal
according to @, and @Q,, respectively

405 0 0 500
000[,Q,=(010|,Q,=1.
000 001

R:

To control P, we design a discrete linear-quadratic-
Gaussian (LQG) controller C

0.709 0.054 0.041

F =10.011 0.997 —0.219]

0.004 0.010 0.934
0.152 0.001 0 —0.001
G, =1-0.104 0.216| , G, = |0 —0.216]
—0.004 0.066 0 —0.066

H =[-2.433 1.201 0.562],
K, =[-0.672 0.368], K, = [0 —0.368].
where the matrices are given with respect to the controller
Equation (2) and the chosen sampling period is p = 10 ms.

5.1 Hardware Platform and Measurement Strateqy

To control the physical plant, we use an nRF5340 DK
board®, which accomodates two ARM Cortex-M33 cores,
respectively called the application core and the network

core. The application core supports TrustZone-M and is
clocked at 64 MHz.

To communicate with the plant, we use blocking UART
at 115200 baud, which induces a significant delay when
reading and writing data to the plant.

We want to avoid impacting the system’s behaviour when
measuring the overhead from switching in and out the
TEE, ie., 6™ and §°", and the execution time of the
controller, e T*F. Thus, we set PIN1 high in the hardware
timer interrupt handler until the interrupt handler exits.
A second pin (PIN2) is set high when entering the control
loop and low when exiting it. The GPIO pins can be
read and analysed using a logic-analyser.® By analysing
the time differences between the two pins during the k-th

controller execution, we can extract i, el P and aoue.

5.2 Attacking the RTOS with 7. executing in the REE

We implement the attacker described in Section 4.1, in
which a malicious task waits for the controller to com-
municate with the process via UART, before it spawns a
malicious high priority task that runs for an amount of
time ¢} at the k-th controller iteration. The malicious
delay that the attacker introduces is selected from the
set £™ € {0.00p,0.25p,0.50p,0.75p,1.00 p,1.25p}. Each
experiment performs 50000 controller iterations. We mea-
sure the execution time of the controller and the actual
duration of the attack using the GPIO pins. Figure 5
summarises the results, revealing how the controller’s ex-
ecution time, eRFE | increases with the attack latency, £™.

5 nordicsemi.com/Products/Development-hardware/nRF5340-DK
6 github.com/pico-coder /sigrok-pico

eREE om

20 Iiﬁé 10 —_
B sLo— 7

% | I I I 5 O B Q
SR QI

QQ %' % %’ QQQ%' %Qg/i\%\%

ceE

Fig. 5. Measurements of execution time of the controller
in the REE, eR*FF when there is an ongoing attack
delaying the control execution by ™.

We remark that the execution time eREE of the controller

executing in the REE experiences significant fluctuations
even when there is no attack, specifically ey, = 1632.99 us
and epmax = 6783.8 us. The variance in the execution
time likely follows from the floating-point arithmetic used
to implement the control algorithm. When the attacker
starves the computing unit, even a delay of 0.25p causes
the maxium execution time of the controller to increase
beyond the control period (e®E > p = 10ms). This likely
follows from the higher priority task starving the function
processing the UART signal at the driver level.

In the real experiments, the controller is able to stabilise
the ball on the beam until /™ = 1.25p; however, the
ball position oscillates significantly. When the malicious
delay increases, the oscillations are further amplified and
it follows quickly that the system becomes unstable ”

5.8 Attacking the RTOS with 7. executing in the TEE

We now evaluate the controller execution in the trusted
execution environment, using three series of tests:

(i) We execute the controller in the TEE without any
attack present and without additional overhead.

(ii) We perform a test equivalent to the test presented in
Section 5.2, i.e., a malicious attacker attempts a star-
vation attack by spawning a task that is confined to
the REE, with the intention to starve the processing
unit of all resources (equivalent to £ = 00).

(iii) We perform a test that assumes a slightly more
sophisticated attack, with an attacker trying to starve
the TEE of resources by calling Application RoT
functions that are exposed to processes in the REE.

Each experiment performs 50000 controller iterations, ex-
ecuting for 500s in total.

Figure 6 shows box plots of the measurements of the
overheads 6™ and §°"* to switch in and out the TEE envi-
ronment, and of the execution time eT*F of the controller.
As can be seen, the overheads 6™ and §°"* are consistent
for all the experiments. Despite being able to continuously
call exposed functions in the TEE, in Experiment (iii),
the attacker still only manages to delay the execution of

7 A video showing respectively the REE and TEE controlled system
under attack can be viewed at: youtu.be/miDM5NhKvRI. The video
shows the experiments performed in Sections 5.2 and 5.3.

Sin 5out TEE
———— 0.7
9 | 6000
g 0.6 —
o 4000 [z
g 1.5 1 o5l |
= - —_—— 2000 |-
ses “ses oow
AN NANS NANS
< Q <) O < N\

Fig. 6. Measurements of overheads to switch in and out
the TEE and the execution time of the controller in
the TEE in the scenarios described above.

the controller by roughly 2.2 us at most (in comparison
to the nominal delay of 1.25 us). The overhead to switch
out the TEE environment also increases, but is limited to
0.6 us. Furthermore, the execution time of the controller
is completely unaffected by the presence of the attacks,
providing a strong confidence in the approach’s ability to
prevent attacks on the controller behaviour.

5.4 Control Performance Evaluation

Finally, we evaluate the control performance using the
cost function specified in Equation (3) and the execution
time data obtained in Sections 5.2 and 5.3. We perform
the analysis using JitterTime (Cervin et al., 2019) —
a toolbox for analysing mixed continuous-discrete linear
systems. JitterTime allows us to introduce real data, such
as delay, jitter, and execution overruns while calculating
the accumulated cost from Equation (3).

The cost of the closed-loop system is derived in stationar-
ity, i.e., when the system dynamics no longer change

t

Joo=1lim - [E [x(s)T Qz z(s) +u(s)” Qu u(s)] ds

t—oo t 0
To ensure an unbiased evaluation, we normalise the ana-
lytical stationary cost by a baseline cost J acquired from
the controller executing in REE without any malicious
overhead, i.e., £f* = 0.00p. Thus, the optimal achievable
stationary cost is 1.

Figure 7 shows the normalised cost obtained with the data
from the different experiments. For TEE (i) the normalised
cost is 1.00016, i.e., less than 0.02% off the optimal value.
Similarly, for TEE (ii) and TEE (iii) the normalised
costs are respectively 1.00015 and 1.00026. On the other
hand, the REE executed controller suffers significantly for
longer delays introduced by the attacker. Already for short
malicious delays, e.g., ™ = 0.50p = 5ms, the control
performance is severely impaired, with a performance
degradation of approximately 43%. With larger delays
the cost grows exponentially until it eventually becomes
infinite, i.e., the system becomes unstable. The JitterTime
analysis confirms that the normalised stationary cost of
the TEE executed control system is unaffected by the delay
introduced by the attacker.

J; normalised
[\
(

Fig. 7. Normalised cost Jyormalised = Joo/ J where J is the
cost obtained for the execution in the REE without
attacks, £7* = 0.00 p.

6. CONCLUSION

This paper proposes a novel approach to implementing
embedded, periodic, real-time tasks in a trusted execution
environment (TEE). In the TEE, the program is guar-
anteed process isolation, a protected memory region, and
isolated communication pins, thus protecting the task from
an attacker with control of the real-time operating system.
We perform an extensive experimental campaign on real
hardware, evaluating performance and timing properties
of a periodic control task implemented in the TEE. In all
experiments, the performance and timing properties are
shown to be close to independent of whether the system
is under attack or not. Future work involve implementing
the proposed solution for additional real-time operating
systems and communication protocols, thus making the
framework suitable for a wider class of embedded applica-
tions, e.g., automotive.

REFERENCES

ARM (2021). Platform security model 1.1.
report, ARM Limited.

Cervin, A., Pazzaglia, P., Barzegaran, M., and Mahfouzi,
R. (2019). Using jittertime to analyze transient perfor-
mance in adaptive and reconfigurable control systems.
In IEEE International Conference on Emerging Tech-
nologies and Factory Automation.

Duo, W., Zhou, M., and Abusorrah, A. (2022). A sur-
vey of cyber attacks on cyber physical systems: Recent
advances and challenges. IEFE/CAA Journal of Auto-
matica Sinica, 9(5), 784-800.

GlobalPlatform (2018). TEE system architecture v1.2.
Technical report, GlobalPlatform, Inc.

Ngabonziza, B., Martin, D., Bailey, A., Cho, H., and
Martin, S. (2016). Trustzone explained: Architectural
features and use cases. In IEEE International Confer-
ence on Collaboration and Internet Computing (CIC).

Pinto, S., Gomes, T., Pereira, J., Cabral, J., and Tavares,
A. (2017). IIoTEED: an enhanced, trusted execution
environment for industrial iot edge devices. IFEE
Internet Computing, 21(1).

Wang, J., Li, A., Li, H., Lu, C., and Zhang, N. (2022). RT-
TEE: Real-time system availability for cyber-physical
systems using ARM TrustZone. In IEEE Symposium
on Security and Privacy. IEEE Computer Society.

Technical

