Cooperative Autonomous Driving in Simulation

Gongalo Costa, José Cecilio, Antonio Casimiro

LASIGE, Departamento de Informdtica, Faculdade de Ciéncias da Universidade Lisboa, Campo Grande 016,
1749-016 Lisboa; email: fc53352@alunos.ciencias.ulisboa.pt,{jmcecilio, casim} @ ciencias.ulisboa.pt

Abstract

Autonomous driving is an area that has been growing
in recent years. However, cars are unprepared to coop-
erate with others nearby, wasting resources and compu-
tational power. Thus, cooperative autonomous driving
reveals its importance in the future. In this work-in-
progress paper, we define, implement and test an archi-
tecture for a simulation environment where cooperative
autonomous driving protocols can be tested. Addition-
ally, a Manoeuvre Negotiation Protocol is implemented.
This protocol will make an existing autonomous driv-
ing (AD) stack more resilient in real driving scenarios,
improving its robustness and safety.

Keywords: Autonomous Driving stack, Simulator, Ma-
noeuvre Negotiation Protocol, SVL, Apollo

1 Introduction

With the increase in the number of vehicles present on the
roads [1], it became necessary to carry out research on au-
tonomous driving, not only to allow better traffic management
on the road and thus reduce travel time but also to reduce the
number of accidents and, consequently, the amount of money
dispended for health recovering [2].

Five levels of automation were considered to achieve a reli-
able autonomous driving system. At level 1, most components
are controlled by the human driver, and only some essential
functions are automated (computer controlled). In contrast,
at level 5, the vehicle is fully autonomous, with all controls
being automated, without any human driver intervention or
dependence [2,3,4]. Currently, the highest level of automa-
tion used in commercialized vehicles is between level 2 and
level 2.5, in which vehicles are autonomous up to a certain
point, requiring human intervention in adverse or extreme
situations [3].

Vehicle to Everything (V2X) is a concept that is very com-
mon in the area of autonomous driving and refers to commu-
nication between vehicles (V2V) and communication with
infrastructures (V2I). The V2X system is crucial for iden-
tifying and analyzing obstacles and phenomena, which are
then communicated to other vehicles and infrastructures. This
way, drivers can learn information without observing it in
person, which improves driving safety [S]. Subir et al. [6]
reinforce using V2V and V2I communication, addressing the
topic of Cooperative Collision Avoidance. This article indi-
cates the advantages of using broadcast messages instead of
performing a specific routing.

However, over these years of evolution towards autonomous
driving, there has been a significant increase in the number
of sensors and cameras in vehicles, increasing the number of
cables and data-buses that are crucial for passing and sharing
data. Furthermore, the code required for all these compo-
nents to work correctly is extensive and increasingly complex,
which can put reliability at risk. Finally, the increasing tech-
nology in vehicles requires more computational power [3]
since they comprise a lot of sensors that generate a consider-
able amount of data to be processed quickly.

This approach of putting as much technology as possible into
vehicles refers to scenarios where each vehicle reacts to the
surrounding environment. Despite being a viable approach for
the present, we must consider that in a future where all vehi-
cles are considered autonomous, there will be a considerable
waste of computation since all the vehicles will be performing
the same processing of the environment surrounding them [3].

The advantages of cooperative autonomous driving systems
have already been demonstrated and discussed in [6]. How-
ever, its implementation is not addressed. One of the main
difficulties is the costs associated with installing and testing
those systems in actual vehicles, in which the prices of cars
and infrastructure are too high [6,7,8,9, 10]. Another diffi-
culty associated with the implementation is the high number
of hours that would have to be devoted to testing the algo-
rithms on the roads, with algorithms that require hundreds
of hours of testing in different conditions (e.g., atmospheric
conditions). This makes the process very complicated to carry
out [7,8,9].

Considering all difficulties, the one that makes the entire im-
plementation process very difficult refers to the safety condi-
tions of humans, in which many tests involve pedestrians and,
in general, all tests carried out on the road can compromise the
life of any pedestrian who is present in the vicinity [7,9, 10].

According to the ISO/PAS 21448:2019 [11] standard, several
security measures were created to guarantee safety conditions
while testing autonomous driving algorithms and protocols.
Thus, using simulators of real environments to test algorithms
and protocols became necessary since we can test any con-
dition without creating dangerous situations. The main ad-
vantage of simulators is the ability to change reality for the
different tests that the algorithms need to be trained and eval-
uated [7,9, 10]. The work in [9] used the CARLA simulator
to train a driving policy through Reinforcement Learning to
test it in the real world later. As such, they recreated the
route in the simulator and trained the system according to the

Ada User Journal

Volume 1, Number 1, March 2023

Figure 1: Vehicle performing a manoeuvre at an intersection

real-world scenario. The work done in [12] also presents a
protocol for coordination between vehicles and implements it
using the V-REP simulator. The author then carried out some
tests on the protocol, namely implementing purposeful com-
munication failures, to verify the protocol’s robustness. All
these works indicate methods to test algorithms and protocols,
maintaining the security of people and infrastructures.

In this work, we will explore the advantages of cooperative
driving systems, where vehicles can cooperate with each other
in the surrounding environment. We will use a simulator
to implement and test a cooperative protocol for manoeu-
vre interception. The protocol was designed to guarantee
greater safety conditions for each vehicle while reducing
the construction complexity and code necessary for correct
operations [13]. This work is also motivated by the need
to test the protocol in different scenarios to observe its be-
haviour. Using failure scenarios to analyze their impact on
the protocol is crucial. It is also crucial to consider real-world
factors such as message losses, latency variations and mali-
cious behaviours that can influence the autonomous driving
system [3,4,6,7,9,10].

In this work, a realistic simulator (SVL [14]) is used. It
allows the simulation of a driving scenario in its entirety,
considering other vehicles, pedestrians, traffic signs and traffic
rules. Furthermore, each vehicle corresponds to an instance
of the Apollo autonomous driving stack [15], along with
the protocol proposed in [13]. A network simulator is also
integrated to recreate real conditions where failures can be
introduced.

2 Autonomous Driving Protocol

The Manoeuvre Negotiation Protocol used [13] is based on a
solution where vehicles have different priorities, depending
on the manoeuvre they intend to perform. However, to avoid
starvation, a lower-priority vehicle can increase its priority
and carry out the manoeuvre it wants to perform. Suppose
the time to complete the manoeuvre is less than the time that
the higher-priority vehicle takes to reach the intersection. In
that case, the vehicle can increase its priority and make the
intersection, as shown in Figure 1.

The protocol was designed to handle specific conditions, like
Priority Violation. It is considered that there has been a

Cooperative Autonomous Driving in Simulation

Priority Violation when a vehicle that has increased its priority
cannot complete the intersection, causing vehicles with higher
priorities to be unable to perform normal traffic behaviour. To
prevent this, the protocol predicts the time for the vehicle to
reach the intersection and pass the intersection. If the time
interval of the passing vehicle intersects the time interval of
the vehicle present on the road of the intersection, the protocol
will not allow the vehicle to cross the intersection.

Each vehicle (p;) also has a membership that indicates to
other vehicles, with higher priority, that it intends to perform
a manoeuvre.

The protocol updates the membership every T; unit of time.
It is also responsible for calculating which vehicles have
higher priority than p; and which can reach the intersection
during the execution of the manoeuvre. This way, three en-
trances are created for the three possible manoeuvres (go
straight ahead, turn left and turn right). Timestamps are used
to check the correctness of the membership to guarantee se-
curity. Finally, the value of Manoeuvre Opportunity (MO)
is determined, which only becomes True if all vehicles with
the highest priority are within the communication range. The
vehicle is in an admissible crossing opportunity if the mem-
bership is empty and fresh.

This protocol is also responsible for describing the states and
messages that vehicles send when carrying out a manoeuvre
and scenarios where messages may not reach the intended
destination due to network failures. Before any vehicle wants
to carry out a manoeuvre, it must connect to the server and
store its information (e.g., location). Then, this information
is used to create the membership. When a vehicle intends to
perform a manoeuvre, it invokes the tryManoeuvre procedure,
which generates a request tag, including the timestamp when
the request was made, the requester ID, and the manoeuvre to
be performed.

Next, the vehicle checks its state, and if it is in the NORMAL
(no manoeuvre is being performed) or TRYGET state (agent
intends to execute a manoeuvre), it invokes the Membership
Algorithm (MA). If the vehicle can perform the grant request
after invoking the MA, it sends it and starts a timer named
tRETRY. If the vehicle receives all responses and all come
with the GRANT message (sent when the agent accepts the
required manoeuvre), the vehicle changes its state to EXE-
CUTE and executes the manoeuvre. Otherwise, it sends a
RELEASE message (sent when the vehicle intends to revoke
the GRANT) to all agents, changes its state to TRYGET and
starts the tfRETRY command for a new round, avoiding a
deadlock situation. If the vehicle does not receive all the
responses within the tRETRY time, the vehicle changes its
state to TRYGET and executes the tryManoeuvre procedure
again.

In a scenario where the vehicle is in the GRANT state (vehicle
gives in to another to perform a manoeuvre) but wants to
perform a manoeuvre, it switches to the GRANTGET state
(vehicle gives a GRANT message but intends to perform
a manoeuvre) and will invoke the fryManoeuvre procedure
when the grant timer ends.

Volume 1, Number 1, March 2023

Ada User Journal

Goncalo Costa, José Cecilio, Anténio Casimiro

Membership Service

Vehicle 1 Vehicle 2
PUB—»| le—PUB
BROKER
Apollo MNP_A}—» MNP_I SUB [__SuUB. Apollo |MNP_A «—> MNP_|
A ‘ A
suB

PUB
\ v

Vehicle 3

Apollo

MNP_A }<—> MNP_I

Figure 2: Architecture of the simulator

This protocol also covers scenarios where communication can
fail. If the RELEASE message does not reach the vehicles,
they check the last position of the vehicle to whom the GRANT
message was sent and inferred, using sensors, whether it is
outside the intersection or not. The protocol can also discard
messages sent in previous rounds to avoid interfering with the
current round.

3 Autonomous Driving Simulator

Regarding the choice of the simulator, it was decided to
choose the SVL simulator [14] because it is open source,
largely customizable and has a realistic graphics engine that
can be easily extended. In addition, the SVL allows the cre-
ation of modules that can be used to establish communication
between vehicles, being crucial for the work. Regarding the
simulator’s architecture, SVL has a section responsible for
loading the map, vehicles, sensors and environmental settings.
The SVL is then responsible for sending the results obtained
by the sensors to the AD Stack. The Autonomous Driving
(AD) Stack, after receiving inputs from the SVL, is responsi-
ble for applying the protocol and updating the vehicle status
in the SVL. This update corresponds to the manoeuvre or
strategic route changes by the vehicle. There is also a Visual
section that receives the output of the SVL, corresponding to
the vehicle circulating on the road according to the actuators
provided by the AD stack.

Regarding the AD stack, the Apollo stack is used since it is
easily incorporated with the SVL, which makes the implemen-
tation of the protocol much easier. Apollo runs inside a docker
container, making it possible to create multiple instances of
Apollo, each corresponding to an autonomous vehicle.

Figure 2 represents the system architecture implemented in
this work. It comprises modules corresponding to the Ma-
noeuvre Negotiation Protocol, Apollo AD stack and the net-
work simulator used to carry out communication tests be-
tween the different vehicles.

In our architecture, each vehicle comprises an Apollo AD
stack, a Manoeuvre Negotiation Protocol Agent (MNP_A)
and a Manoeuvre Negotiation Protocol Instance (MNP_I).
The MNP_A fetches data from the Apollo AD stack and
sends it to MNP_I. Then, MNP_I updates the membership,
applies the protocol and returns the protocol commands to
the Apollo AD stack through the MNP_A. All the MNP_I
and the membership are connected to a broker. This broker
implements pub/sub mechanisms to support the integration of
multiple vehicles in a seamless way. All vehicles registered
on the broker are able to use the protocol since the messages
exchanged are broadcasted to a specific topic that everyone
is subscribed to. The protocol also defines specific message
types to update the membership. Access to these topics is
restricted to the Membership Service.

Lastly, all the vehicles are connected to the SVL simulator to
represent their status.

4 Implementation of the Simulator
Implementing the architecture defined in Figure 2, requires
docker since the Apollo AD stack runs inside a docker con-
tainer. In our implementation, there are two containers per
vehicle: one that supports and runs Apollo and another con-
tainer responsible for the protocol’s operation. In each Apollo
instance, the Planning and Control modules connect to the
MNP_A module to receive information about the vehicle,
such as speed, position, acceleration and trajectories.

The connection between MNP_A and MNP_I is made by
sending UDP messages. Then, MNP_I uses MQTT topics
to communicate with the broker and other vehicles to create
safe manoeuvres. Each MQTT message includes specific
information concerning the intention of each vehicle. For
instance, if a vehicle intends to start a manoeuvre, it must
publish a message with the vehicle identification (vehicle ID),
a timestamp, a manoeuvre code, and the trajectory.

All instances are subscribed to the same topic. The vehicles
filter each message, and if it corresponds to a message sent

Ada User Journal

Volume 1, Number 1, March 2023

by itself, it is discarded. If the vehicle ID is different, the
message is processed by the MNP_I module, allowing it to
change the values of acceleration, velocity and trajectory of
the vehicle. If necessary, it sends updated information to the
MNP_A module, which will update the information inside the
Apollo container by changing the information in the Control
module and completing the execution flow.

Finally, the communication between Apollo and SVL simula-
tor is done through a network bridge. If the entire simulation
is performed on one machine, this bridge refers to the local
host. Otherwise, the bridge refers to the IPv4 address of the
machines running the Apollo stack. In this way, SVL supports
multiple systems connected simultaneously.

The entire architecture can be implemented in a single ma-
chine. However, it requires a machine with a considerable
amount of graphics and processing power to process the sen-
sor results from the AD stack and to render the world in which
the cars are. In addition, in the implementation carried out in
this work, multiple autonomous vehicles will be used. They
will receive and process data, increasing the requirements for
a machine to process the simulation. Thus, it is important to
spread the processing across several machines when needed.

S Conclusion

This work proposes an architecture to develop a simulator for
testing cooperative autonomous driving protocols. The solu-
tion comprises integrating an autonomous driving stack and
the SVL simulator that represents the environment and the
physical conditions/status of the sensors presented in the vehi-
cles, as well as integrating a cooperative autonomous driving
protocol. In the first prototype developed, two vehicles were
considered and we concluded that the simulator requires a ma-
chine with a considerable amount of graphics and processing
power, which may suggest spreading the processing across
several machines if more vehicles are considered. More ex-
periments and implementations are needed to evaluate the
performance of the simulator and the efficiency of the proto-
col. Additionally, scenarios where large latencies and losses
in communication must be evaluated, as well as when the
protocol is presented to a malicious vehicle.

Acknowledgments

This work was supported by the LASIGE Research Unit (ref.
UIDB/00408/2020 and ref. UIDP/00408/2020), and by the
European Union’s Horizon 2020 research and innovation
programme under grant agreement No 871259 (ADMORPH
project).

References
[1] J. Dargay and D. Gately, “Income’s effect on car and
vehicle ownership, worldwide: 1960-2015,” Transporta-

tion Research Part A: Policy and Practice, vol. 33, no. 2,
pp- 101-138, 1999.

[2] S. Mariani, G. Cabri, and F. Zambonelli, “Coordination
of autonomous vehicles: taxonomy and survey,” ACM
Computing Surveys (CSUR), vol. 54, no. 1, pp. 1-33,
2021.

Cooperative Autonomous Driving in Simulation

[3] J. Wang, J. Liu, and N. Kato, “Networking and com-
munications in autonomous driving: A survey,” I[EEE

Communications Surveys & Tutorials, vol. 21, no. 2,
pp. 1243-1274, 2018.

[4] I. Yaqoob, L. U. Khan, S. A. Kazmi, M. Imran,
N. Guizani, and C. S. Hong, “Autonomous driving cars
in smart cities: Recent advances, requirements, and
challenges,” IEEE Network, vol. 34, no. 1, pp. 174-181,
2019.

[5] A. Abacus, “Vehicle-to-everything (V2X) communica-
tion — the design engineer’s guide.” https://www.
avnet.com/wps/portal/abacus/solution
s/markets/automotive-and-transportat
ion/automotive/communications—and-c
onnectivity/v2x—-communication/, 2023.
[Online; accessed 7-February-2023].

[6] S. Biswas, R. Tatchikou, and F. Dion, “Vehicle-to-
vehicle wireless communication protocols for enhancing
highway traffic safety,” IEEE communications magazine,
vol. 44, no. 1, pp. 74-82, 2006.

[7] J. Seymour, Q.-H. Luu, et al., “An empirical testing of
autonomous vehicle simulator system for urban driving,”
in 2021 IEEE International Conference on Artificial
Intelligence Testing (AlTest), pp. 111-117, IEEE, 2021.

[8] D.Zhao, Y. Liu, C. Zhang, and Y. Li, “Autonomous driv-
ing simulation for unmanned vehicles,” in 2015 IEEE

Winter Conference on Applications of Computer Vision,
pp- 185-190, IEEE, 2015.

[9] B. Osinski, A. Jakubowski, P. Ziecina, P. Milos,
C. Galias, S. Homoceanu, and H. Michalewski,
“Simulation-based reinforcement learning for real-world
autonomous driving,” in 2020 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 6411-
6418, IEEE, 2020.

[10] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and
V. Koltun, “Carla: An open urban driving simulator,” in
Conference on robot learning, pp. 1-16, PMLR, 2017.

[11] ISO, “ISO/PAS 21448:2019(en) Road vehicles — Safety
of the intended functionality.” https://img.auto
-testing.net/testingimg/202003/19/07
1723321 .pdf, 2023. [Online; accessed 7-February-
2023].

[12] J. P. V. Pinto et al., Design and implementation of a
protocol for safe cooperation of self-driving cars. PhD
thesis, 2019.

[13] A. Casimiro, E. Ekenstedt, and E. M. Schiller,
“Membership-based manoeuvre negotiation in au-
tonomous and safety-critical vehicular systems,” arXiv
preprint arXiv:1906.04703, 2019.

[14] SVL, “Introduction.” https://www.svlsimulat
or.com/docs/getting-started/introdu

ction/, 2022. [Online; accessed 9-December-2022].

[15] Apollo, “Apollo Platform.” https://developer.
apollo.auto/developer.html, 2022. [Online;
accessed 12-December-2022].

Volume 1, Number 1, March 2023

Ada User Journal

