
1

Software-based security approach for networked
embedded devices

José Ferreira, Alan Oliveira, André Souto, José Cecílio
LASIGE, Departamento de Informática, Faculdade de Ciências da Universidade Lisboa, Campo Grande 016,
1749-016 Lisboa; email: fc53311@alunos.ciencias.ulisboa.pt,{aodsa,ansouto,jmcecilio}@ciencias.ulisboa.pt

Abstract

As the Internet of Things (IoT) continues to expand, data
security has become increasingly important for ensuring
privacy and safety, especially given the sensitive and,
sometimes, critical nature of the data handled by IoT de-
vices. There exist hardware-based trusted execution en-
vironments used to protect data, but they are not compat-
ible with low-cost devices that lack hardware-assisted
security features. The research in this paper presents
software-based protection and encryption mechanisms
explicitly designed for embedded devices. The proposed
architecture is designed to work with low-cost, low-end
devices without requiring the usual changes on the un-
derlying hardware. It protects against hardware attacks
and supports runtime updates, enabling devices to write
data in protected memory. The proposed solution is an
alternative data security approach for low-cost IoT de-
vices without compromising performance or functional-
ity. Our work underscores the importance of developing
secure and cost-effective solutions for protecting data
in the context of IoT.

Keywords: IoT Security, Trusted Execution Environment,
Code Protection, Memory Integrity.

1 Introduction
As a result of the Internet of Things (IoT) popularization,
millions of embedded devices are being deployed and con-
nected to the worldwide network [1]. These devices allow
IoT to extend the boundaries of the Internet. At the same
time, they connect digital processes to the physical world [2].
Although the resulting systems create added-value services
for the respective applications, they inherently also bring vul-
nerabilities [3]. The threats must be mitigated since these
systems might collect and process critical and sensitive data.

Among the techniques proposed to protect data are the Trusted
Execution Environments (TEEs). TEEs are designed to pro-
vide mechanisms to protect applications (code and critical
data), ensuring confidentiality and integrity [3]. However,
most existing TEEs proposals rely on hardware [3], such as
Trusted Platform Modules (TPMs) [4], Intel SGX [5] and
ARM TrustZone [6]. Due to cost and size constraints, those
hardware features mainly exist on high-end platforms and
are unavailable on cost-effective and low-end embedded de-
vices [3].

Alternatively, software-based approaches are being proposed,
such as PISTIS [3], Security MicroVisor (SµV) [2], Sof-
TEE [7], and Virtual Ghost [8]. These solutions have some
advantages when compared with hardware-assisted ones. One
advantage is related to update costs. It is easier and cheaper
to update a software-based TEE. Another advantage is hard-
ware portability, given that those TEEs do not require specific
hardware features (such as ARM TrustZone or Intel SGX) [7].
Despite these advantages, most of those software-based se-
cure architectures do not consider hardware-based attacks in
their scheme, i.e., they do not consider scenarios in which
the attacker has access to the device where the application is
running and can change its code.

In the literature, it is possible to find solutions hybrid architec-
tures, i.e., architectures that combine hardware and software
modules to achieve the best of both solutions [9, 10, 11, 12].
Although those solutions offer strong security guarantees
for applications running on low-end devices, to be imple-
mented in those devices, they require hardware modifica-
tion [3]. Hardware modification is impracticable in real-world
scenarios, considering that every device needs the addition of
customized hardware [3], and it is difficult for legacy devices
to take advantage of them [7]. Moreover, the hybrid solution
approaches usually consider that hardware-based attacks are
out of scope.

Considering the lack of hardware security features in low-cost
embedded systems and the benefits offered by software-based
TEEs, this work aims to develop a software-based security
approach for networked embedded devices (SbS4NED) that
provides a set of lightweight mechanisms to protect software
and data integrity (continuously verifying the integrity of
memory) and offer correction in case of unexpected changes.
The application code will also be protected using encryption.
This way, it becomes tempered resistant and offers more
reliability to the verification process. Moreover, it will be
supported by lightweight cryptography algorithms presented
at the National Institute of Standards and Technology (NIST)
competition [13]. In particular, Xoodyak [14], one of NIST’s
finalists, will be used to encrypt data.

2 Thread Model and Assumptions
Defining the assumptions about the attacker’s capabilities
and goals, the system’s components and interactions, and the
security goals that need to be achieved are essential. In this
work, we consider adversaries with the following capabilities:

Ada User Jour na l Vo lume 1, Number 1, March 2023

2 Sof tware-based secur i ty approach for networked embedded dev ices

Figure 1: SbS4NED architecture.

• The adversaries have access to the device. They may
modify the application code running on the device to
read or change the data the application handles.

• The adversaries can sniff the network, modify messages
exchanged between devices, and perform man-in-the-
middle attacks.

• Software-based adversaries may be present on the device
where the architecture will be deployed. Their goal may
be to change the data available in memory and conse-
quently control the entities that rely on data accuracy.

We assume that the SbS4NED is correctly installed on the
devices by a trusted party. We also assume it is bug-free,
encrypted, and working as expected. Therefore, the adversary
can not surpass the code, and the verification process carried
out by its components. The final assumption is that each
device has mechanisms to compute the encryption key used
to protect the local files where SbS4NED keys are stored.

3 Software-based security Architecture
As mentioned in the Introduction, this work aims to build a
software-based tempered-resistant solution that protects the
software and data in networked embedded devices. Driven by
this goal, we design the SbS4NED proposed architecture.

Figure 1 shows a high-level description of the proposed
architecture, where the SbS4NED Computing Module
(SbS4NED_CM) runs inside the Gateway. It is responsible for
monitoring applications running on the nodes connected to the
Gateway. Each node will have an agent (SbS4NED_Agent)
generating the signature of the application code running on the
node and sending it to the SbS4NED_CM for code integrity
check. The SbS4NED_CM and the node code’s application
are encrypted to increase security and to offer more protection
to SbS4NED_CM internal processes. Moreover, the messages
exchanged between SbS4NED_CM and its agent are also en-
crypted. Next, we describe the SbS4NED components:

• App Manager – It interacts with the applications de-
ployed in the node and aims to perform application up-
dates and send and receive data from the nodes.

• Key Manager – This component is responsible for
managing (i.e., generating and renewing) the keys used
internally by SbS4NED_CM and for external communi-
cation (with a SbS4NED_Agent running on the node).
It uses Diffie-Hellman (DH) key-exchange protocol for
external communication to generate or renew the key.

Figure 2: SbS4NED modules.

• Crypto – Provides cryptography services inside the
SbS4NED_CM and the SbS4NED_Agent. It can en-
crypt, decrypt, and compute the message authentica-
tion code (MAC). In the SbS4NED_CM side, the App
Manager can also use this component to encrypt the
app-compiled code before sending it to the node. This
way, secure code update is ensured.

• Integrity Checker – Designed for memory in-
tegrity checking. It writes the data from App Manager in
the memory and holds the (randomized) position where
it is written. The Integrity Checker is also responsible
for remotely checking the integrity of the nodes’ code.

• Logger – It is responsible for keeping the log files
updated regarding the memory integrity state, which app
the data came from, which nodes are connected, and any
network activity that must be logged to easily detect if
an attacker is trying to join the network or injecting any
data on the network.

• App Thread – It is used for executing the application
code developed by the user. It offers an API to interact
with the node underlayer software and hardware layer.
All the interaction must be done using the API to ensure,
for instance, that the exchanged data is encrypted.

The system architecture of SbS4NED_CM and its agents is
illustrated in Figure 2. The figure provides an overview of the
individual components and their interconnections within the
system.

The Key Manager and Crypto components are the essential
modules used in the SbS4NED_CM and also in its agents.
These components are deployed on both sides of the system,
providing the necessary encryption services and ensuring
that data transmitted between the agents and SbS4NED_CM
remain secure and confidential.

The App Manager, Integrity Checker, and Logger are part
of SbS4NED_CM. These must be deployed in the Gateway.
The App Manager plays a crucial role in dealing with the
application code deployed in the agents, providing the neces-
sary services to manage, update, and configure them. On the
other hand, the Integrity Checker ensures that the code and

Volume 1, Number 1, March 2023 Ada User Jour na l

J. Fer re i ra et . a l 3

messages transmitted by the agent are authentic and have not
been tampered with.

3.1 Data Protection
Memory integrity is nowadays a crucial security concern. The
integrity of the data stored in memory is essential to ensure
the system’s proper functioning and to prevent unauthorized
access or manipulation of sensitive information. When data is
written in the memory, two pieces of information are stored:
the value (v) that can be accessed by any other external en-
tity, such as an actuator, and the data integrity (I) needed to
check the integrity of the data. Data integrity I is computed
using the MAC, and its purpose is to ensure that the data
in memory has not been tampered with or modified. The
formula to compute it is I =MAC(v ⊕ t), where t can be a
timestamp or a random number known only by the integrity
checker. The position of the value I in memory is arbitrary,
and only the Integrity Checker knows where it is placed. The
choice of MAC over hash functions is because MAC uses
a secret key to generate the authentication code. Assuming
that SbS4NED_CM has exclusive access to this private key,
only authorized accesses to SbS4NED_CM can generate the
correct MAC result. In contrast, anyone can compute the
hash value by identifying the function used. A secret key
prevents anyone from computing the hash value and faking
the integrity data. This way, SbS4NED_CM provides a strong
level of security against malicious attacks to the memory and
an easy and efficient verification of the memory’s integrity.

3.2 Application Protection
Besides confidentiality protection provided by encryption,
the application code is locally stored in the node and de-
crypted only during execution. Application code also has
integrity protection to ensure it remains unmodified even
when other parties can access the node. To check the code’s
integrity, a challenge-response protocol is used, in which the
SbS4NED_CM will send enc(t), an encrypted challenge to
the node, where t can be a timestamp or a value randomly
generated by the SbS4NED_CM. The node has to reply with
the hash of the whole application code (ac) XOR-ed with t,
i.e., enc(hash(ac ⊕ t)). Then, the SbS4NED_CM checks
the validity of the result. If the node fails the validation,
SbS4NED_CM could force an update to restore the node
application. If the node gives no response, SbS4NED_CM
assumes that the node is lost or compromised and its data is
dropped.

3.3 Keys Renewal
A renewal cycle mechanism can extend the system’s lifetime.
Therefore, before any application update, the key used to
encrypt the application code and for communication between
the SbS4NED_CM and node is renewed using a DH proto-
col. However, the application could take a long time without
needing an update. Therefore, the node is provided with an
encryption application code, and the SbS4NED_CM can ini-
tialize the DH key exchange with the node to generate the new
key even when there is no call of the functionally. The gener-
ated key will be used to renew the encrypt of the application
code and in further communication with SbS4NED_CM.

3.4 Encryption Algorithms
Since the proposed architecture uses an encryption algorithm
and targets low-end devices, the algorithms that can be used
must be lightweight, including the cryptographic ones. Thus,
this architecture will use NIST lightweight encryption algo-
rithms to protect code and data during message exchange [13].
Although by the time of writing this manuscript, the final
stage of the NIST competition comprises ten finalists, we are
only interested in algorithms that can deal with stream encryp-
tion. The main reason is that we want the encrypted code and
messages to have the same size as the original ones. Among
the ten finalists, few support stream encryption natively. For
the SbS4NED architecture, Xoodyak and ISAP schemes with
keyed mode association are considered. Since the SbS4NED
architecture is modular, other algorithms may also be used.

4 Proof of concept
To verify and characterize the proposed architecture, we are
currently implementing it. We plan to deploy the architecture
in a prototype, enabling system testing in a distributed envi-
ronment. The prototype will consist of a Gateway on which
the SbS4NED_CM will be running, with connections to mul-
tiple nodes where the SbS4NED agents and applications will
be deployed. By conducting tests in a distributed environment,
we can ensure that the architecture can effectively handle the
communication and data exchange requirements between the
Gateway and the nodes. Additionally, we will be able to iden-
tify potential issues or limitations during deployment, which
will help us refine the architecture further.

During the early stages of designing the proposed architecture,
we conducted experiments using two NIST lightweight en-
cryption algorithms, ISAP and Xoodyak, to determine which
would be more suitable for our research. Our experiment
used a Raspberry Pi Model 3+ platform with a Quad-core
@1.4GHz and 1GB LPDDR2 SRAM. We tested both algo-
rithms for their execution time and memory usage using the
same key length of 16 bytes, a nounce of 16 bytes, and file
sizes from 1 to 65 kilobytes (kB) (Figure 3). The tests also
included both the encryption (Figure3a) and decryption (Fig-
ure 3b) processes.

Our experiment shows that Xoodyak was more suitable for
our research than ISAP in terms of both average execution
time and memory usage. The average execution time for
Xoodyak was consistently lower, especially for larger file
sizes (generally, Xoodyak is 30 to 60 times faster than ISAP
with a maximum standard deviation of 0.004 ms). Moreover,
both algorithms required about 370 kb of RAM to perform
encryption and decryption tasks. It was noticed that file size
does not affect the algorithm’s memory usage. In summary,
our experiments with ISAP and Xoodyak algorithms, con-
ducted on a Raspberry Pi Model 3+ platform, helped us to
determine which algorithm is more suitable for our research.

5 Conclusion
This work proposes a software-based secure execution envi-
ronment architecture that is lightweight, requires no hardware
modifications and is resistant to the most common hardware
attacks. Currently, this architecture is being implemented
as a proof of concept. After the implementation, tests will

Ada User Jour na l Vo lume 1, Number 1, March 2023

4 Sof tware-based secur i ty approach for networked embedded dev ices

(a) [ISAP] and [Xoodyak] Encryption on Raspberry Pi 3+.

(b) [ISAP] and [Xoodyak] Decryption on Raspberry Pi 3+.

Figure 3: [ISAP] and [Xoodyak] on Raspberry Pi 3+.

be conducted to analyze its performance and characterize its
efficiency.

Acknowledgments
This work was supported by the LASIGE Research Unit (ref.
UIDB/00408/2020 and ref. UIDP/00408/2020), and by the
European Union’s Horizon 2020 research and innovation
programme under grant agreement No 871259 (ADMORPH
project).

References
[1] M. Ammar and B. Crispo, “Verify&revive: Secure de-

tection and recovery of compromised low-end embed-
ded devices,” in Annual Computer Security Applications
Conference, (New York, NY), p. 717–732, ACM, 2020.

[2] M. Ammar, B. Crispo, B. Jacobs, D. Hughes, and
W. Daniels, “Sµv—the security microvisor: A formally-
verified software-based security architecture for the in-
ternet of things,” IEEE Transactions on Dependable and
Secure Computing, vol. 16, no. 5, pp. 885–901, 2019.

[3] M. Grisafi, M. Ammar, M. Roveri, and B. Crispo, “PIS-
TIS: Trusted computing architecture for low-end em-
bedded systems,” in 31st USENIX Security Symposium,
(Boston, MA), pp. 3843–3860, Aug. 2022.

[4] T. C. Group, “TCG specification architecture
overview.” https://trustedcomputinggroup.

org/wp-content/uploads/TCG_1_4\
_Architecture_Overview.pdf, 2007. [On-
line - Accessed on 11-11-2022].

[5] V. Costan and S. Devadas, “Intel sgx explained.” Cryp-
tology ePrint Archive, Paper 2016/086, 2016. https:
//eprint.iacr.org/2016/086.

[6] B. Ngabonziza, D. Martin, A. Bailey, H. Cho, and
S. Martin, “Trustzone explained: Architectural features
and use cases,” in 2nd IEEE Int. Conf. on Collaboration
and Internet Computing, pp. 445–451, 2016.

[7] U. Lee and C. Park, “Softee: Software-based trusted exe-
cution environment for user applications,” IEEE Access,
vol. 8, pp. 121874–121888, 2020.

[8] J. Criswell, N. Dautenhahn, and V. Adve, “Virtual ghost:
Protecting applications from hostile operating systems,”
SIGARCH Comput. Archit. News, vol. 42, p. 81–96, feb
2014.

[9] I. Nunes, K. Eldefrawy, N. Rattanavipanon, M. Steiner,
and G. Tsudik, “VRASED: A verified Hardware/Soft-
ware Co-Design for remote attestation,” in 28th USENIX
Security Symposium, (Santa Clara, CA), pp. 1429–1446,
2019.

[10] K. Eldefrawy, A. Francillon, D. Perito, and G. Tsudik,
“Smart: Secure and minimal architecture for (establish-
ing a dynamic) root of trust,” in 19th Annual Network
and Distributed System Security Symposium, February
5-8, San Diego, USA (ISOC, ed.), (San Diego), 2012.

[11] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadhara-
jan, “Trustlite: A security architecture for tiny embed-
ded devices,” in Proceedings of the Ninth European
Conference on Computer Systems, EuroSys ’14, (New
York, NY, USA), ACM, 2014.

[12] F. Brasser, B. El Mahjoub, A.-R. Sadeghi, C. Wachs-
mann, and P. Koeberl, “Tytan: Tiny trust anchor for
tiny devices,” in 2015 52nd ACM/EDAC/IEEE Design
Automation Conference (DAC), pp. 1–6, 2015.

[13] NIST, “Lightweight cryptography.”
https://csrc.nist.gov/projects/
lightweight-cryptography. Accessed:
2022-12-04.

[14] J. Daemen, S. Hoffert, S. Mella, M. Peeters, G. Van Ass-
che, and R. Van Keer, “Xoodyak, a lightweight crypto-
graphic scheme,” NIST, 05 2021.

Volume 1, Number 1, March 2023 Ada User Jour na l

