Achieving Crash Fault Tolerance In Autonomous
Vehicle Autopilot Software Stacks Through
Safety-Critical Module Rejuvenation

Federico Lucchetti

Critical and Extreme Security and Dependability Group (CritiX),

Interdisciplinary Centre for Security Reliability and Trust,

University of Luxembourg,

2 Avenue de I’ Universite, 4365 Esch-sur-Alzette, Luxembourg

; email: federico.lucchetti@uni.lu

Abstract

Autonomous driving vehicles (ADV), have been in recent
years, victims of their own success. Through their use of
increasingly sophisticated sensor modalities and deep
learning capabilities, ADVs have not only learned how
to probe their chaotic environment with higher gran-
ularity coupled with smooth trajectory execution but
also inherited all the vulnerabilities that were hiding
behind these new features. Ensuring the safety of ADVs
is crucial since a simple fault along their underlying au-
topilot software stack can lead to catastrophic accidents
with the loss of human lives. Therefore we propose a
crash-fault tolerant scheme that can be triggered when-
ever a crash fault of the safety critical submodules of
the autopilot software stack is detected, which executes
an emergency trajectory and effectively steers the car
into a safe spot where the autopilot can be rejuvenated.
We implement and evaluate the efficacy of this recovery
scheme in the Apollo ADV software stack in conjunction
with the SVL simulator. Keywords: autonomous driving
vehicles, rejuvenation, crash fault tolerance, simplex
architecture,apollo software stack.

1 Introduction

Autonomous driving vehicles (ADVs) have become more
advanced in recent years, incorporating advanced features
such as deep neural networks and intricate obstacle prediction
modules. These developments are crucial to the success of
computer vision algorithms, precise ADV trajectory planning,
and smooth control algorithms, and have raised the level of
driving automation to new heights. However, this increasing
sophistication also comes with a downside. The growing
complexity of ADVs increases their vulnerability to malicious
intrusions and introduces new potential faults, which can lead
to dangerous and even deadly outcomes.

Another limitation is that the autonomous driving software
stack is typically regarded as reliable and expected to with-
stand accidental failures and cyber-attacks, which lately have
become increasingly more advances. This assumption places

an additional constraint on the development of autonomous
driving technology, as it must be designed to be highly robust
and resistant to potential security breaches.

Indeed, ADVs have been involved in numerous tragic inci-
dents over the past two decades. One major contributing
factor to these accidents has been unintended accelerations
(UA), which have resulted in the deaths of 89 individuals [1].
Such behaviors can have two possible origins: they may result
from an accidental internal fault or the absence of a fail-safe
mechanism, or they may be intentionally provoked by a mali-
cious attacker [2].

The adoption of ADVs on a large scale depends on convincing
human drivers of their reliability. Therefore, the resilience
of ADVs must play a critical role in ensuring their effective
adoption by the general public. It is inevitable that faults
will occur at any level, so it is crucial to equip ADVs with
mechanisms that enable them to tolerate these faults. In
the event of faults, a responsibility gap arises, in which it
is unclear who can be held responsible for any unintended
catastrophic outcomes. This gray zone is even wider due to
the over-reliance of modern ADV modules on artificial neural
networks (NN) whose safety and reliability properties are
seldom studied in conjunction with the entire ADV software
stack [3].

In addition to their black-box nature, NNs are susceptible
to common faults that can originate from either software
or hardware issues [4]. In the former, malicious intruders
can reprogram, evade, or data-poison NNs during either the
inference or training phase [5, 6,7]. In the latter case NNs
can for instance be targets of single-event upsets leading to
permanent or transitory faults such as stuck-at or bit-flip types
which can alter the parameter space of the NN or cause an
erroneous computation of hidden layers’ activation functions

[8].

Similarly, sensors are not immune to attacks. Malicious actors
can modify the lane-keeping system by installing dirty road
patches, causing the ADV to drift out of its lane [9]. Jamming
the camera modules or executing LIDAR spoofing attacks in

Ada User Journal

Volume , Number ,

order to inject false obstacle depth can lead to false sensor
data and cause the ADV’s data processing chain to compute
erroneous control commands [10, 11]. In these cases, the
health of the sensors remains uncompromised, and traditional
fault detection schemes are unable to detect the attacks.

Autonomous driving software stacks, such as Apollo Baidu,
typically consist of a series of interconnected modules that
process information sequentially in a event-triggered manner.
Sensor values are gathered and processed in the prediction
module, then forwarded to the prediction module for obstacle
trajectory prediction. A planning module computes the safest
and shortest trajectory given the constraints forwarded by
the prediction module. The ADV trajectory coordinates are
translates into control commands by the control module and
sent to the electronic control unit (ECU) for actuation. Due
to the downstream interdependence of these modules and the
causal interlinking of the computation and safe execution of
control commands, the failure of an intermediary module can
propagate throughout the information processing chain and
result in unforeseen behaviors.

To mitigate the risk of single points of failure in ADV soft-
ware, efforts have been made to employ redundancy by gath-
ering data from multiple sources, such as RGB cameras, LI-
DAR, and RADAR, and fusing it to minimize the impact
of a faulty device [12]. However, redundancy comes at an
additional computational cost, and certain modules, such as
GPU-resource greedy NNs, cannot be easily replicated. Other
have developed adaptive control algorithms and equipped sen-
sor fusion modules with fault detection capabilities to enhance
the overall fault tolerance of ADVs [13]. However, validating
ADV software in a real physical environment is costly and not
scalable for all possible driving scenarios. Therefore, inter-
facing physics simulators like SVL [14] with ADV software
stacks is crucial to ensure quality assurance in the automotive
sector as required by the evolving standard ISO 21448: Safety
of the Intended functionality [15].

1.1 Related Work

The studies referenced in [12] and [13] investigated fault tol-
erance in ADV systems. The former focused on fusing data
from different sensor modalities to mask potentially faulty
outputs, while the latter developed a model adaptive control
algorithm with fault detection capabilities to enhance overall
fault tolerance. Abad et al. [16] studied the safety conditions
for recovering software-faulty modules in cyber-physical sys-
tems, while Abdi et al. [17] proposed a system-wide restart
method that leveraged system inertia to prevent destabiliza-
tion. The efficacy of redundancy was studied and applied
to individual neurons in trained NNs to increase fault toler-
ance [18], and Khunasaraphan et al. [19] developed a tech-
nique for quickly restoring weights and recovering the entire
NN after fault detection.

In this work we plan to design a resilience scheme that recov-
ers the full safety critical features of the ADV software stack
through rejuvenation after having triggered upon fault detec-
tion an emergency trajectory execution mechanisms which
steers the ADV into a safe spot.

Ada Work-In-Progress Paper

N
2 o &

Figure 1: Emergency parking. A module crash is detected at
time ¢t~ which triggers the simplex-planning module to compute
a trajectory into the safe spot area (green) where the whole
autopilot software stack can be rejuvenated.

The recovery method proposed in this paper belongs to the
category of shallow recovery methods, which aim to repair
faulty components of a CPS with minimal or no operation
on the system states. For instance, Abad et al. developed a
technique that restarts a failed component and replaces it with
a healthy one [16], while Shin et al. suggest leveraging re-
dundancy to fuse the output of multiple replicas and isolating
and restarting the origin of the faulty contribution upon attack
detection [20].

2 Emergency Recovery Scheme

2.1 Fault Model and System Model

In analyzing the ADV architecture shown in the top half of
Figure 2, it becomes clear that each module within the system
represents a single point of failure. This means that any
fault occurring in one module can result in either an incorrect
computation by subsequent modules or a delay and/or absence
in the transmission of information, ultimately leading to the
disruption of the ECU’s ability to generate accurate and timely
control commands. GPU greedy algorithms such as obstacle
classification and prediction that power-power the perception
and prediction module, make this part of the software stack
not only safety-critical to the safe maneuver execution of the
ADV but are also highly vulnerable to potential faults. We
consider in this work only crash fault i.e. a crash in either of
the perception and/or prediction modules leads to missing or
delayed information forwarded to the subsequent modules.

In order to tolerate this type of crash fault without the need
to investigate its source, we propose to instantiate a parallel
and more lightweight software stack following a simplex
architecture. The latter is devoid of the fault-prone perception-
prediction module complex and is composed of a simpler
planning module and a replica of the original control module.
We refer to the lightweight planning module as the simplex-
planning module whose task is to compute at every moment a
potential trajectory to the nearest safe spot e.g. an emergency
lane on a highway or a parking spot (see Figure 1).

A switch reads at every moment the output of both the original
and simplex stack and by default forwards the commands of
the original module to he ECU. If a crash of the original stack
is detected via a missing or delayed control command, the
switch forwards the control commands of the simplex stack to
the ECU which steers the ADV into a safe spot. Once the car
is at a given safe spot, a reboot signal is sent to the original
software stack and consequently triggering a rejuvenation of
the latter. This is schematically represented on Figure 2.

Volume , Number ,

Ada User Journal

A. N. Author, B. Another, Y. Other

Original

Perception Prediction Planning Control | F E-O

Planning Ij Control |

Simplex

ECU

-

tr REJUVENATE

REJUVENATE
]
PARKING

)

Planning
C

g

Figure 2: Top: Switching between the original and the simplex
autopilot software stack once a crash (red boxes) in the original
stack cause a delayed response from the original control module
to the ECU. Bottom: Temporal logic of the recovery scheme
presented above in which a fault is detected at time ¢ and the
parking scenario by the simplex stack is executed by the ECU.
Green area denotes the time where the original stack is rejuve-
nated after which the normal driving conditions are restored.

We make the standard assumption that both stack, original and
simplex are isolated and diverse enough, for example through
obfuscation, to ensure that they fail independently with high
coverage. Implementation-wise, this will be achieved via
containerization (see next section). Our design employs a
hybrid architecture, in which we differentiate the fault model
of our trusted components in the simplex stack. While the
components of the original stack are susceptible to crash
failures, simplex-planning and the replicated control module
must not fail. We justify this requirement based on their
simplicity, as both components have considerably less number
of lines of code than those in the original stack. Specifically,
we assume that techniques such as ECC and scrubbing are in
place to correct the effects of accidental faults in the stored
data.

3 Implementation and Evaluation

The scheme proposed in the system model above will be
implemented in the Apollo ADV software stack and simulated
using the SVL physics simulator.

Apollo utilizes containers to provide isolation and protection
for its components. Containers provide a restricted execu-
tion environment with communication capabilities between
containers and are hosted on top of a Linux-based operating
system within Apollo. In a deployed system, we assume
that critical component containers will be directly hosted
on top of a real-time operating system (RTOS) capable of
providing the necessary isolation. However, the RTOS in
these architectures represents a single point of failure that

will need to be addressed in the future (as demonstrated in
the Midir architecture [21]). For demonstration purposes, we
will implement both the original and simplex architecture of
the software stack in two isolated containers, in which the
inter-process communication will be assured via a simple
TCP socket. Moreover, we plan to run the switching mecha-
nisms between the two stacks in a third container for further
separation.

In order to demonstrate our approach, we plan to design a
set of diverse driving scenarios in SVL comprising a simple
cruise control along a highway and a more complex situation
inside a congested city area with multiple pedestrians and
other vehicles. We will evaluate the efficacy qualitatively
i.e. the ability of the ADV to avoid sudden crashes with
surrounding obstacles. We will simulate a crash fault of the
original stack by stopping the processing of any of the original
stack submodules.

References
[1] “Toyota "unintended acceleration" has killed 89,” May
2010.

[2] A.Lima, F. Rocha, M. Vélp, and P. Esteves-Verissimo,
“Towards safe and secure autonomous and cooperative
vehicle ecosystems,” in Proceedings of the 2nd ACM
Workshop on Cyber-Physical Systems Security and Pri-
vacy, pp- 59-70, 2016.

[3] Z. Peng, J. Yang, T.-H. P. Chen, and L. Ma, “A first
look at the integration of machine learning models in
complex autonomous driving systems,” 2020.

[4] C. Torres-Huitzil and B. Girau, “Fault and error toler-
ance in neural networks: A review,” I[EEE Access, vol. 5,
pp- 17322-17341, 2017.

[5] G. E Elsayed, I. Goodfellow, and J. Sohl-Dickstein,
“Adversarial reprogramming of neural networks,” arXiv
preprint arXiv:1806.11146, 2018.

[6

[}

K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati,
C. Xiao, A. Prakash, T. Kohno, and D. Song, “Robust
physical-world attacks on deep learning visual classifi-
cation,” in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 1625-1634,
2018.

[7] H. Aghakhani, D. Meng, Y.-X. Wang, C. Kruegel, and
G. Vigna, “Bullseye polytope: A scalable clean-label
poisoning attack with improved transferability,” in 2021
IEEE European Symposium on Security and Privacy
(EuroS&P), pp. 159-178, IEEE, 2021.

[8] B.S. Arad and A. El-Amawy, “On fault tolerant train-
ing of feedforward neural networks,” Neural Networks,
vol. 10, no. 3, pp. 539-553, 1997.

[9] T. Sato, J. Shen, N. Wang, Y. Jia, X. Lin, and Q. A.
Chen, “Dirty road can attack: Security of deep learning
based automated lane centering under {Physical-World}
attack,” in 30th USENIX Security Symposium (USENIX
Security 21), pp. 3309-3326, 2021.

Ada User Journal

Volume , Number ,

(10]

(11]

[12]

[13]

[14]

[15]

[16]

M. Panoff, R. G. Dutta, Y. Hu, K. Yang, and Y. Jin, “On
sensor security in the era of iot and cps,” SN Computer
Science, vol. 2, no. 1, pp. 1-14, 2021.

C. Zhou, Q. Yan, Y. Shi, and L. Sun, “Doublestar:
Long-range attack towards depth estimation based obsta-
cle avoidance in autonomous systems,” arXiv preprint
arXiv:2110.03154, 2021.

M. Darms, P. Rybski, and C. Urmson, “Classification
and tracking of dynamic objects with multiple sensors
for autonomous driving in urban environments,” in 2008
IEEF Intelligent Vehicles Symposium, pp. 1197-1202,
IEEE, 2008.

K. Geng and S. Liu, “Robust path tracking control for
autonomous vehicle based on a novel fault tolerant adap-
tive model predictive control algorithm,” Applied Sci-
ences, vol. 10, no. 18, p. 6249, 2020.

G. Rong, B. H. Shin, H. Tabatabaee, Q. Lu, S. Lemke,
M. Mozeiko, E. Boise, G. Uhm, M. Gerow, S. Mehta,
E. Agafonov, T. H. Kim, E. Sterner, K. Ushiroda,
M. Reyes, D. Zelenkovsky, and S. Kim, “SVL Simula-
tor: A High Fidelity Simulator for Autonomous Driving,”
arXiv e-prints, p. arXiv:2005.03778, May 2020.

L. Iso, “Pas 21448-road vehicles-safety of the intended
functionality,” International Organization for Standard-
ization, 2019.

F. A. T. Abad, R. Mancuso, S. Bak, O. Dantsker, and
M. Caccamo, “Reset-based recovery for real-time cyber-
physical systems with temporal safety constraints,” in

[17]

[18]

[19]

[20]

[21]

Ada Work-In-Progress Paper

2016 IEEE 21st International Conference on Emerging
Technologies and Factory Automation (ETFA), pp. 1-8,
IEEE, 2016.

F. Abdi, C.-Y. Chen, M. Hasan, S. Liu, S. Mohan,
and M. Caccamo, “Guaranteed physical security with
restart-based design for cyber-physical systems,” in
2018 ACM/IEEE 9th International Conference on Cyber-
Physical Systems (ICCPS), pp. 10-21, IEEE, 2018.

L.-C. Chu and B. W. Wah, “Fault tolerant neural net-
works with hybrid redundancy,” in 1990 IJCNN interna-
tional joint conference on neural networks, pp. 639-649,
IEEE, 1990.

C. Khunasaraphan, T. Tanprasert, and C. Lursinsap, “Re-
covering faulty self-organizing neural networks: By
weight shifting technique,” in Proceedings of 1994
IEEE International Conference on Neural Networks
(ICNN’94), vol. 3, pp. 1513-1518, IEEE, 1994.

J. Shin, Y. Baek, J. Lee, and S. Lee, “Cyber-physical
attack detection and recovery based on rnn in automotive
brake systems,” Applied Sciences, vol. 9, no. 1, p. 82,
2018.

I. P. Gouveia, M. Volp, and P. Esteves-Verissimo, “Be-
hind the last line of defense: Surviving soc faults and
intrusions,” Computers & Security, vol. 123, p. 102920,
2022.

Volume , Number ,

Ada User Journal

