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Abstract—Federated Learning (FL) is a distributed machine
learning approach allowing multiple parties to train a model
collaboratively without sharing sensitive data. It has gained
widespread popularity recently due to its ability to preserve data
privacy. However, FL also poses novel security challenges since
training relies on data and computations from many entities that
a malicious actor might have compromised, as they are usually
geographically dispersed and independently managed.

Evaluations of current FL security mechanisms in the liter-
ature are often based on simplistic testing environments and
demand complex programming to integrate new attacks/defenses.
Therefore, this work presents an accessible platform that lever-
ages a realistic environment to facilitate the experimentation and
evaluation of new solutions in relevant FL scenarios. Comparison
with already proposed approaches is also expedited since FADO
provides a few out-of-the-box implementations. To demonstrate
the platform’s utility, we develop a use case based on a recently
published network attack.

Index Terms—federated learning, security, testing platform,
attacks, defenses

I. INTRODUCTION

Federated Learning (FL) [1] [2] is a distributed learning
approach that aims to train models over decentralized data.
This approach tackles the limitations of traditional distributed
machine learning, which assumes that a central server stores
all the examples — a possibility that can be unrealistic both in
terms of the quantity of the data generated by devices and in
terms of preserving privacy.

The interest in training over decentralized data is tied to
the variety of information collected and stored on end-user
devices, which can be utilized to improve existing applica-
tions, such as next-word prediction (e.g., Google GBoard) [3],
autonomous driving [4], and automatic speech recognition
(e.g., Siri) [S5)]. The nature of the data processed by such
applications can be highly sensitive, and a regular user may
not be interested in giving it away because of the risk of the
raw data being exposed. Such risks become unlikely when
resorting to FL, as the data never leaves the devices.

FL is based on a central server coordinating several clients
(data owners). The training is organized in rounds — in each
round, the server selects a subset of the clients and requests
them to train the current version of the model with their data;
when the training ends, clients send their model updates back
to the server, which merges them all based on an aggregation
algorithm; the result is a new version of the global model,
which is pushed to the clients in the next round of training.
This form of operation is called cross-device. The alternative,

called cross-silo, mainly differs by engaging all clients in every
round, and therefore it is more appropriate for smaller settings
(up to 100 devices) [6].

Even though FL is a technology that brings benefits related
to privacy, attacks on these systems are still possible [[7]]-[11]]
due to the reliance on many devices that are usually dispersed
over a wide area. In fact, the study of security mechanisms
in FL is still in a premature state, with novel attacks and
defenses being developed at an increased rate. This indicates
that it is admissible that a malicious actor could create an
original attack compromising the behavior of the final model,
and depending on the application, the consequences could be
critical. For example, suppose an autonomous driving model
is being developed in cars. An attacker could manipulate the
model so that stop signs are seen as priority signs [10]], [11]],
causing cars to advance immediately in a road interception.
For this reason, it is vital to understand how these systems
can be attacked and how to protect them.

Consequently, researchers and industry aiming to evaluate
their models in the presence of specific attacks would benefit
from a realistic FL platform that facilitates testing without
wasting unnecessary effort. However, current benchmarks and
platforms to test security mechanisms in FL have several
limitations, preventing them from meeting such criteria. For
example, often, there is an absence of network communication
among the FL entities, a lack of accessibility to implementa-
tions, and unrealistic data distributions across clients.

This paper proposes FADCﬂ an emulation platform for FL
that facilitates the experimentation of attacks and defenses
under diverse conditions. The main objectives of FADO are:
(1) Realism: Experiments carried out in the platform should
provide similar results as running them in the real world;
(i) Comparable Results: It should be simple to compare
different attacks and defenses while executing them in var-
ious system settings (e.g., cross-device and cross-silo); (iii)
Scalability: Physical resources should be managed efficiently
and effectively to enable the emulation of large test case
scenarios (e.g., high numbers of clients); (iv) Ease-of-Use and
Customizability: Both novice and expert users should find
the platform to be simple to use and flexible to configure
by supporting distinct levels of interaction. In this manner,
beginner users can run an emulation with mostly default
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options, and as they become more proficient, they can tinker
with and change the emulation’s low-level workings.

The main contributions of this work are: (i) provides the
design, architecture, and implementation of FADO, a platform
that enables the creation and testing of new attacks and
defenses in a consistent, realistic, and scalable way; (ii) the
evaluation of a use case, based on a recently published network
attack, that demonstrates the utility of the platform.

II. RELATED WORK

This section reviews approaches used to test attacks and
defenses (A&D) in FL and then presents some of the most
studied techniques to perform these actions.

A. Frameworks

There is a standard limitation with the great majority of
state-of-the-art implementations of A&D in FL: lack of realism
in the testing environment. For example, even though FL is
a distributed solution, many works that have been released as
open-source operate as a single process, where communica-
tions are just function calls (with no network access) [[7]—-[15].

We are aware of one FL platform that permits adaptations to
enable node attacks, either on the data or during training [14].
The drawback is that it has no support for more complex
scenarios, like, for instance, compromising the packets ex-
changed among the FL nodes over secure channels (e.g., using
Transport Layer Security (TLS) [16]). Since most production
environments are expected to include such safeguards, it is
crucial to consider settings where an attacker is constrained to
carry out the same kind of activities as in the real world.

In FADO, we want to provide researchers a platform that,
on the one hand, facilitates the experimentation on distinct
(but reasonable) deployment scenarios; and, on the other hand,
that simplifies comparisons by including implementations of
existing approaches from the literature.

B. Attacks

We will briefly overview the three main categories of attacks
in FL. As expected, a malicious actor may also orchestrate an
attack combining these techniques to maximize the impact.

1) Model poisoning: The attacker modifies the training
process conducted by the client(s). This includes tampering
with the hyperparameters, the loss function [11]], or the model
updates directly [13]], [[17]. To get to a point where it can
perform this attack, the adversary has to intrude on the client’s
device, which is highly dependent on the security configura-
tions of the underlying operating system and applications. This
usually leads to situations where the attack is performed by a
small percentage of devices.

2) Data poisoning: The attacker is restricted to changing
the training data in a subset of the clients. In practice, the
dataset is tampered with to accomplish a certain goal [9], [|18]]
— this can be done either by modifying or adding examples
to the dataset. Data poisoning may be easier to perform than
model poisoning, as in the latter case, the attacker needs to
fully compromise the FL procedure in the device (instead of
the storage).

3) Network-level: Network adversaries compromise FL by
observing, altering, or dropping the packets exchanged be-
tween the server and the clients. Typically, to conduct this
attack, the adversary has to take control of a node that
intermediates the FL communications — e.g., a router or a
Wi-Fi access point. Furthermore, one aspect that dramatically
changes the practicability of network attacks is the applied
protections, namely if messages are either secured or trans-
ferred in the clear and the geographic spread of the clients.

C. Defenses

Defenses usually aim to detect attacks and mitigate their
effects on the final model. Although the literature has tried to
categorize defenses accordingly, such a goal is challenging to
attain as state-of-art safeguards frequently combine multiple
mechanisms, and the same technique can be effective against
both untargeted and targeted attacks. From now on, we will
talk about the most prevalent approaches.

a) Robust aggregators: The most commonly used algo-
rithm, FedAvg, employs the mean as the statistical operator
to aggregate the client’s gradients — which is susceptible to
outliers [19]]. To address this limitation, robust aggregation
algorithms that consider other statistical operators were pro-
posed: median, replaces the mean by choosing the value in
the center of the distribution; trimmed-mean, filters extreme
values below and above the data distribution by k-% and
then calculates the mean of the remaining values [20]]; and
geometric-median [19], computes a value that represents the
central tendency of the product of all model updates.

b) Norm Clipping: norm clipping was proposed to stop
attacks because adversaries may increase the norm of their up-
dates to enhance the impact [[12]]. Norm clipping ignores client
updates above some pre-defined threshold value or restricts the
(norm of the) update to a threshold value. This can introduce
two limitations: a strong attacker might know the threshold and
thus adjust the updates to evade the defense; a fixed threshold
value can be escaped by conducting a distributed attack [7]. To
address these issues, Guo et al. proposed a dynamic clipping
approach that adapts the threshold during training [21]. In any
case, in several realistic scenarios, clipping techniques have
been shown to be adequate protections, as demonstrated by
Shejwalkar et al. [22]].

¢) Differential Privacy: Sophisticated backdoor attacks
are unlikely to be detected by some defenses as malicious
model updates can be crafted not to deviate much from
benign behavior [11]]. For this reason, alternative solutions
based on differential privacy (DP) were developed, consisting
typically of adding random Gaussian noise N (0, 02) to model
updates [23]], resulting in a reduction of the influence of
specific (malicious) data points. Such mechanism has been
applied at the server to prevent the injection of backdoors [12],
[24], [25]], as well as at clients to avoid attacks whose objective
is to infer information from the observed model updates [26].

III. ARCHITECTURE AND COMPONENTS

The architecture and components of FADO are displayed in
Figure|l| The architecture is divided into two parts, the Builder
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Fig. 1: FADO Architecture

and the Runner. The behavior of each of these components is
configured by a central file supplied by the user.

A. Builder

The goal of the Builder is to prepare the datasets that FL
consumes. Namely, it divides the examples through the various
clients to allow the training of their local copy of the model,
and it forwards to the server the validation/test data to support
the evaluation of the global (aggregated) model.

To accomplish this task, the Builder follows a strict se-
quence of two steps: 1) downloads the data from a repository
on the web or reads it from a file; 2) shapes the data to be
ready for training/testing. Shaping accounts with a layer of
processing that has to consider, for instance: the number of
clients being emulated; a specific target class being evaluated;
data distribution parameters; or an attack that the user wishes
to perform on the examples. For this reason, since these steps
can entail some level of complexity, the datasets we include
in FADO already have their shaping processes implemented
(see Section [TV-A).

We provide a simple interface through abstraction so the
user of FADO has the flexibility to integrate their datasets and
attacks, but in practice, the two steps mentioned before are
fully customizable. A user can implement its own downloader
to use different datasets, or a shaper, modifying the properties
(e.g., distribution) of an existing dataset.

B. Runner

The Runner is responsible for training the model according
to the traditional FL protocol.

a) Server: This component is in charge of organizing
the FL job. A set of clients is first chosen to participate in the
next round of training, and then they are sent the initial global
model that was generated. Next, the server waits to receive the
local model updates produced by clients. Those updates are
then aggregated to create a new version of the global model.
Then the model is evaluated against a test dataset, and the
results are written into a file. These steps are repeated for a
specified number of rounds until the final model is generated.

All the above steps can be customized. For example, every
client can be used in each round or just a subset; the aggre-
gation procedure can apply defense (S-Defense) or attack (S-
Attack) operations; the aggregator may wait for all responses or
give up after a pre-determined timeout. All of these aspects can
be modified through configuration options in the user file —
some variants are already built in, while others can be achieved
with user-defined implementations of the components. For
example, it would be possible to emulate variations of the
aggregation process; however, the current implementation does
not support aggregators that require client-to-client communi-
cation (e.g., secure aggregation [27]]).

b) Clients: Clients serve as workers in the FL job who
aim to receive a global model from the server and train it with
their local data to build a local model update. The update can
then be modified to apply an attack (C-Attack) or a defense
(C-Defense). Finally, the local model is sent back to the server.
As with the server, the user-written configuration file can alter
the specifics of how each client module behaves.

c) Interceptor: This component acts as a middle entity
accessing the communications between the server and the
clients. Therefore, it is capable of intercepting messages to
further develop network attacks. Two Selectors decide which
traffic is relevant to be processed (while the remaining packets
pass through to minimize overheads).

The packets that are pertinent for an attack can be exploited
using two types of actions. Basic actions may read, drop,
delay, or forward a packet. Complex actions can modify
the packet’s content and send it afterward. These actions
have access to a common state to track previously observed
communications (e.g., current FL round number and list with
clients’ IDs in a particular round).

C. Configuration and Results

The behavior of all the components is determined by a set
of configuration options specified in a user-provided file. This
file is the interface where the user selects the parameters of the
emulation — such as the number of clients, the dataset to be



used, security mechanisms to be applied (attacks or defenses),
and the percentage of clients affected by these, etc... As such,
the file is the source of all the orchestration behind the Builder
and Runner modules.

The emulation outputs the results that the user requests.
Some of these are traditional metrics, such as the model’s
accuracy on the final test set, loss values during the learning
process, or the accuracy of a particular class when presented
with malicious examples. We include in our architecture a
component, Metrics, responsible for aggregating the emulation
results and storing them in a file.

IV. IMPLEMENTATION
A. Models and Datasets

To support diverse deep learning models and foster exper-
imentation of novel NN architectures, FADO was integrated
with two main frameworks used in this area, namely PyTorch
and TensorFlow. Therefore, the tool can readily use existing
models with minimal adaptations to the FL environment.

To facilitate the testing of the models, we are gradually
porting commonly used datasets to the emulator. This task
always involves a little bit of effort as a meaningful distribution
of the examples has to be found, and often this requires
understanding the particular characteristics of the data (e.g.,
movie comments from a given person have to go to the same
client). Ultimately, the aim is to ensure that clients and the
server get a reasonably sized dataset. Recently, we finished
the integration of the LEAF benchmark [28]], which brings six
additional datasets fully tailored to FL.

B. Scale Emulations

The two main FL settings (cross-silo and cross-device) im-
pose distinct requirements [6]]. For example, in cross-silo, there
are around 2—-100 clients, while in cross-device, the numbers
can go much higher (up to a few million). Consequently, to
emulate different scenarios, FADO must support large numbers
of clients while efficiently using the hardware resources (to
make experiments cost-effective in practice). Some of the
factors that lead to our current approach are:

o Entity implementation: The simplest solution would be
to use a Docker container for each FADO entity (clients,
server, and interceptor). This means an emulation with
n clients would require n+2 containers. After trying this
first approach, we found that deploying more containers
in a single (medium-sized) server rapidly leads to sub-
stantial CPU utilization, limiting scalability.

e Network: An alternative is hosting numerous clients (as
separate processes) in a single container with multiple
network interfaces. Although Docker networks provide
this sort of support, this implies that to emulate » clients,
we needed to create n docker networks. Through ex-
perimentation, we discovered that creating many docker
networks also results in a significant CPU overhead.

e GPU support: We found out that a process that initializes
PyTorch/TensorFlow would occupy in the order of 400
MB of GPU memory. This meant that to run emulations

with only 100 clients in a server, we would use a
minimum of 40.8 GB (102*400 MB) of GPU memory,
which again imposes constraints on scalability.

The current solution is to create n virtual interfaces in a
container that hosts the clients. Then, we bind each client
socket to a specific interface, allowing the interceptor to
distinguish communications belonging to different clients.
This way, FADO can launch an emulation in 3 containers
(clients/interceptor/server), minimizing the CPU overhead. To
optimize the use of GPU memory, we host the clients within a
single process, each corresponding to a concurrent thread. This
way, FADO requires a minimum of 1.2 GB of GPU memory
(400 MB per node), leaving plenty of space for data and model
processing.

C. Networking and Traffic Interception

To enhance the realism of the emulations, FADO im-
plements client-server communications, offering unprotected
channels based on TCP and secure channels built on top of
TLS. With regard to network attackers, one can conceive actors
with very different capabilities in terms of access to traffic and
actions that they might do on the packets. Therefore, FADO
allows for the emulation of diverse attackers by forcing all data
to pass through a centralized interceptor. Then, when acting,
for example, as a weak attacker, the interceptor would only
call the attacker code with the packets sent from the server to
a particular client ¢, while when mimicking a stronger one, the
code would observe all packets in both directions for a group
of clients.

To implement the interceptor, it was necessary to guarantee
network segmentation by splitting the clients and the server
into two docker networks. The interceptor is located in a
separate docker container, operating as a router connect-
ing both networks and forwarding data between them. To
accomplish the role of the Selector (see Fig. [I), we use
iptables [29] rules to send the relevant FL traffic to two
user-level packet queues. Packets can then be processed inside
Python thanks to the Net filterQueue [30]. Each packet
is delivered to a user-definable Python object corresponding
to the attacker. Here, basic actions such as dropping a packet
can be carried out. Complex actions are implemented through
an interface to Scapy [31], a tool for packet manipulation.

D. Attacks on the nodes

Node attacks can be conducted in multiple ways. For
example, a compromised client can have its training process
modified, its local model weights directly manipulated (model
poisoning), or its dataset tampered with before training (data
poisoning). Furthermore, an attacker that intrudes on the server
can also replace the global model with a malicious one — in
which the clients in the FL process trust blindly, as the server
is the coordinator of the protocol.

FADO provides specific interfaces to implement data poi-
soning attacks. The changes to the examples will be applied at
the Shaper level after the download of the raw data finishes.
We choose to follow this method to decrease the Shaper’s



complexity and provide a considerable level of accessibility
to the user. To implement a custom attack at the data level,
the user creates a file with a function that receives a dataset
as input and then outputs the modified data. A configuration
file indicates to FADO the name of such a function so that it
can be called at the appropriate moment (see Figure [2).

Fig. 2: Example implementation of a data poisoning attack. The
function attack_data () is applied before the client joins the FL
process.

# fado_config.yaml

attack_args:
data:
data_attack: custom_attack.py
# custom_attack.py

def attack_data(dataset):
""" Poisoned dataset """
poisoned_dataset = .
return poisoned_dataset

TABLE 1: Target class accuracy, in the no attack and packet-
dropping scenarios. Accuracy in the original paper (NLAFL), with the
code published by the authors but executed on our local environment
(Local), and FADO’s implementation (FADO). k is the number of
clients with examples of the target class.

Target No Attack Targeted Drop
k Class No Defense No Defense
NLAFL Local FADO | NLAFL Local FADO
EMNIST

0 0.66 0.63 0.68 0.52 0.46 0.53
9 1 0.92 0.92 0.93 0.76 0.73 0.79

9 0.56 0.54 0.60 0.46 0.43 0.51

0 0.78 0.79 0.77 0.69 0.64 0.73
12 1 0.95 0.95 0.95 091 0.85 0.92

9 0.67 0.69 0.70 0.56 0.55 0.61

0 0.80 0.85 0.81 0.76 0.82 0.79
15 1 0.96 0.96 0.96 0.94 0.95 0.95

9 0.75 0.73 0.75 0.58 0.57 0.63

FashionMNIST

0 0.47 0.47 0.59 0.39 0.40 0.43
15 1 0.95 0.95 0.95 0.94 0.94 0.94

9 0.87 0.87 0.90 0.82 0.82 0.84

DBPedia

0 0.54 0.54 0.64 0.12 0.10 0.14
15 1 0.87 0.87 0.90 0.22 0.31 0.32

9 0.60 0.60 0.67 0.12 0.15 0.16

To support model poisoning attacks, we integrate mecha-
nisms responsible for overriding specific aspects of the FL
process. See further explanations in Appendix [A]

E. Rapid experimentation

One of the key properties of FADO is its modularity and
flexibility to run multiple emulations under different config-
urations in an accessible way. In FADO, each emulation is
driven by a configuration file written in YAML. Appendix
describes this file in more detail through an example.

V. USE CASE: IMPLEMENTING NLAFL IN FADO

Network-Level Adversaries in Federated Learning (NLAFL)
is a recently proposed FL attack that aims to reduce the accu-
racy of a chosen target class in a classification task [8]. The
attack first identifies the clients that contribute significantly to
the learning of the target victim class, and then it drops their
packets containing the model updates (thus preventing these
clients from contributing to the global model training). This
attack was also complemented with a model poison campaign
to amplify the decrease in accuracy.

In greater detail, assuming the more realistic scenario where
communications are secured, the adversary does the following:
(1) it calculates the difference between the loss of the current
and the previous rounds using a test dataset, to assess the
model improvement on the accuracy of the target class on each
FL round; then, it links each client who took part in that round
to the improvement; (2) after a pre-determined number of
rounds, the attacker computes the average of the improvements
due to each client and chooses the clients with the highest
values for packet dropping (as they have contributed more
to the reduction of the loss value). After this point, and in
the remaining rounds, the contribution estimation procedure
is repeated to update the roster of clients to be dropped.

In the original NLAFL paper, all experiments were carried
out on a single process without network support. Therefore,
we decided to take NLAFL as a use case to explain the steps
needed to move the attack logic to FADO and observe how
the evaluation in FADO behaves.

a) Datasets: In the original implementation, datasets are
downloaded and then divided among the clients. Three datasets
were tested, namely EMNIST [32]], FashionMNIST [33]], and
DBPedia [34]. Dataset division is accomplished by separating
clients into two groups, depending on the examples they will
use during training. The first group gets many examples from
the target victim class, and the remaining from the other
classes. The second group only receives examples from the
other classes. In both cases, the sampling is produced using a
Dirichlet distribution.

To implement this logic in FADO, we copied the open-
source code supplied by the authors to create a new Down-
loader and Shaper extensions, which will perform the down-
load and distribution steps, respectively. Additional code was
also added to generate files to be given to clients and server.

b) Models: Two similar convolutional models were used
with the EMNIST and FashionMNIST datasets — containing
two 2D convolution layers plus two linear layers. For DB-
Pedia, the model comprised a pre-trained GloVe embedding
followed by two 1D convolution layers and two linear layers.
The EMNIST model was trained for 105 rounds, while for
FashionMNIST and DBPedia training lasted for 305 rounds.

The migration of the models to FADO was accomplished
by programming five python method We developed two
versions of the code to try out the platform, one based on
TensorFlow and the other with PyTorch.

c) Network attack: NLAFL code was constructed as a
simulation, and consequently, specific details could be skipped

2Methods: initialize, get_parameters, set_parameters, train, and evaluate



(e.g., inferring which clients participate in each round). In
FADOQO, it was necessary to address these issues, but the actual
development required little effort due to the built-in services
provided. Our implementation employs secure channels, which
makes the attack considerably more challenging.

Like in the original paper, we ensured the attacker had
access to the global model in all rounds. This was achieved
by providing an endpoint on the server that the adversary can
query to get a copy of the model. This allows the detection
when a new round is starting as model parameters change.

The adversary code can inspect all traffic by setting ap-
propriate Selectors in the interceptor. By looking at the IP
addresses, the adversary can infer which clients are involved
in the training of the round. This information can be stored in
the state module, and through it, a client contribution can be
estimated as in the original proposal. After the attacker dis-
covers which clients should have their model updates dropped,
the Actions module can be instructed to execute such a task.

d) Poisoning attack and Clipping defense: The attack
is made in two steps: (i) a set of attacker clients gets a
dataset similar to the clients with access to the target class;
in those clients, the examples of the target class have their
label changed to a distinct pre-selected class (corresponds to
a data-poisoning attack); (ii) during model training, parameter
updates of the poisoned clients are upsampled to increase their
influence in the next version of the global model (corresponds
to a model replacement attack). The defense against the
poisoning attack is attained during the aggregation process by
clipping the norm of the received updates from the clients.

In FADO, the D-Attack and C-Attack modules were used
to do the data poisoning and model poisoning, while the S-
Defense module was used to create the clipping defense.

A. Evaluation

We implemented four test configurations to evaluate the
performance of the attack in FADO and compare it with
the results of the original paper: (i) training with no attacks
or defenses; (ii) training solely with the packet drop attack;
(iii) training with the drop and poison attacks; and, (iv)
training with the attacks and the clipping defense. We compare
the original results published in the NLAFL paper for each
of these settings with the ones collected while running the
author’s code in our environment. In addition, we got the
performance results with our FADO implementation. The table
values are the average of 5 runs with different seed values.

Tables [I] and [[I] present the results for the attack-free and
network attack scenarios ((i) and (ii)). The accuracy values
for the target class were obtained by averaging the observed
accuracies in the last five rounds of training (between rounds
n and n+5). The EMNIST model was trained for n = 100
rounds, while the other two models were trained for n = 300
rounds, given their increased complexity. In the EMNIST case,
we experimented with different numbers of clients with the
target class (k = 9,12, and 15) while the other two kept the
same number (k = 15). The main observations are:

TABLE 1I: Target class accuracy, when considering a targeted
dropping + node poison without and with a clipping defense. Re-
maining parameters are similar to Table

Target Targeted Drop + Poison
k Class No Defense Clip
NLAFL Local FADO | NLAFL Local FADO
EMNIST
0 0.00 0.00 0.00 0.40 0.36 0.49
9 1 0.00 0.00 0.00 0.52 0.41 0.60
9 0.00 0.01 0.00 0.25 0.21 0.37
0 0.00 0.00 0.00 0.36 0.32 0.51
12 1 0.00 0.00 0.00 0.43 0.37 0.59
9 0.01 0.01 0.00 0.27 0.26 0.43
0 0.00 0.00 0.00 0.44 0.45 0.61
15 1 0.00 0.00 0.00 0.48 0.42 0.56
9 0.01 0.00 0.00 0.35 0.30 0.34
FashionMNIST
0 0.02 0.02 0.00 0.36 0.31 0.35
15 1 0.03 0.05 0.03 0.81 0.77 0.84
9 0.05 0.04 0.02 0.59 0.60 0.62
DBPedia

0.00 0.00 0.00 0.00 0.00 0.00
15 1 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00

e The results collected with FADO lead to similar conclu-
sions as the original implementation, indicating that the
platform can reproduce the impact of attack and defense
techniques in FL.

o The network attack is less effective when the target class
examples are distributed through more clients.

o The effectiveness of the network attack depends on the
target class and dataset as there are scenarios where the
accuracy reduction is strong (e.g., class 9 in DBPedia)
while in others is less visible (e.g., class 0 in EMNIST
with k = 15).

o The accuracy decrease is highly significant when the
network and node attacks are performed simultaneously.

o The clipping defense can reduce the attack impact in
some datasets (e.g., EMNIST and FashionMNIST) but
is unsuccessful in others (e.g., DBPedia).

VI. CONCLUSION

The paper presents a platform that enables the experimen-
tation of security mechanisms in federated learning under
realistic scenarios. Users can develop novel attack and defense
techniques in FADO and then observe their impact in the train-
ing of deep-learning models. To demonstrate the platform’s
utility, we created a use case based on a recently published
work, which includes network and node attacks and defenses.
Our results show that FADO can accurately reproduce the
original paper’s conclusions.
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APPENDIX

A. Performing Model Poisoning Attacks

When a model poisoning attack is specified in the config-
uration file, the implementation of that attack is injected into
the compromised clients, and consequently, the behavior of
these clients is changed. More specifically, the training process
can be overwritten, or the model updates directly manipulated
[13], [17] to perform untargeted attacks. When it comes to
the server, FADO also has mechanisms to change the global
model in any way the user desires, based on the specified
implementation.

Fig. 3: Example model poisoning attack. The implementation of each
method is not mutually exclusive.

Fig. 4: Example of a configuration file following the structure and
key-value pairs accepted by FADO.

# fado_config.yaml

attack_args:
model :
model_attack: custom_attack.py
# custom_attack.py

def attack_training (dataset):
""" Attack training process
model_updates =

return model_updates
attack_after_training (model_updates):
""" Attack model updates """
poisoned_model_updates =

return poisoned_model_updates

non

def

When implementing a model poisoning attack, the user
has two interfaces at its disposal: one to override the train-
ing process completely [11], [[12], and the other to directly
manipulate the model updates that were the result of the
training process [13]]. In Figure 3] we show a high-level
view of the implementation of a model poisoning attack: 1)
specify in the fado_con fig.yaml file the name of the function
(and the name of the file) making the attack; 2) the file
custom_attack.py with the code of the adversarial functions.

B. Configuration File

The configuration file that drives the emulation behavior (as
explained in Section is written in YAML, in which each
key-value pair defines a particular setting. Besides a value, a
user can also indicate a list of values in order to instruct FADO
to run multiple emulations. For example, if a user sets three of
the keys with three lists of size 4 (four different settings), then
FADO will perform 43 different emulations using the product
of all varying settings. By relying on this mechanism, the user
can rapidly evaluate the effectiveness of an attack under certain
conditions (e.g., reduced vs. a high number of clients).

Fig. f] shows that the user is able to customize a great
number of aspects of the emulation: in the FL training
procedure (number of rounds, aggregator properties, number
of clients, clients per round, ...); in the client tasks (batch
size, learning rate, ...); in the implementation of security

general :
random_seed: [0,2,4,6,8]
use_gpu: false

fl_training_process:
rounds: 105
aggregator: mean
agg_learning_rate: 0.25
client_optimizer: sgd
number_clients: 100
clients_per_round: 10
participant_selector: random
client_training_process:
engine: tensorflow
model: nlafl_emnist_tf
batch_size: 32
epochs: 2
learning_rate: 0.1

attack_args:

malicious_clients: 10

target_class: [0,1,9]

network :
network_attack: nlafl
drop_count_multiplier: 2
drop_start: 30

model :
model_attack_name: 'nlafl_poison
poison_count_multiplier: 2
boost_factor: 10.0

'

defense_args:
server:
server_defense_name :
clip_norm: 1

clip

dataset_spec:
dataset: nlafl_emnist
data_distribution: niid
num_classes: 10

communication:

encrypt_comm: true

mechanisms (attacks and defenses to apply and their prop-
erties); in the training dataset specifications (e.g., which and
how to distribute among clients); and finally, in the network
communication properties (encrypted or not).

In addition, when specifying custom implementations as
described in section [A] a user can add new key-value pairs
and then use them inside the code — FADO makes this
information visible through a dictionary.
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