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Abstract

Due to the increasing performance demands of mission-
and safety-critical Cyber-Physical Systems (of Systems),
these systems exhibit a rapidly growing complexity, man-
ifested by an increasing number of (distributed) compu-
tational cores and application components connected
via complex networks. However, with these systems’
growing complexity and interconnectivity, the chances of
hardware failures and disruptions due to cyber-attacks
will also quickly increase.
In the ADMORPH project we explore system adaptivity,
in terms of dynamically remapping application com-
ponents to processing cores, to fuse fault- and intru-
sion tolerance with the increasing performance require-
ments of mission- and safety-critical CPS(oS). This pa-
per describes the overall ADMORPH architecture and
provides an overview of the developed methodologies,
methods and tools for the specification, design, analysis
and runtime deployment of adaptive mission- and safety-
critical CPS(oS) that are robust against both component
failures and cyber-attacks.
Keywords: Cyber-Physical Systems, Adaptation, Re-
silient control, Design Space Exploration

1 Introduction
Cyber-Physical Systems (CPS) form a crucial information-
technology domain worldwide, that covers many industrial
sectors, including: health industries, industrial automation,
avionics, and space. CPS often consists of heterogeneous,
multi- or many-core systems that are distributed and con-
nected via complex networks, creating what is known as
Cyber-Physical Systems of Systems (CPSoS).

Designing CPS(oS) systems is challenging due to the stringent
and often conflicting extra-functional design requirements
they must meet. A single task in the system that misses its
computational deadlines can have severe – sometimes even
life-threatening – consequences for mission- or safety-critical
CPS(oS). Safety-critical CPS(oS) demand ultra-high levels
of dependability, which is becoming even more important as
the levels of system autonomy rise.

To ensure reliability, availability, and safety, mission- and
safety-critical CPS(oS) must be able to handle various dis-
ruptive events caused by hardware component failures or
cyber-attacks like Denial-of-Service (DoS) attacks aimed at
disrupting the system or compromising critical system func-
tionality.

System adaptation offers a promising technique to maintain
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Figure 1: Global perspective of the ADMORPH architecture.

the system’s operation at the required level of Quality of Ser-
vice (QoS) or achieve graceful degradation when disruptive
events hit the system. Allowing dynamic task relocation or
replication between different processors, processor types, or
even across hardware/software boundaries yields morphing
systems. These enable applications to execute using a va-
riety of different and dynamically interchangeable system
configurations over heterogeneous system resources. Mor-
phing systems are the key to providing a real breakthrough
in establishing robustness against unpredictable, disruptive
events that affect the dependability of systems, prolonging
their life and maximizing their efficiency during this lifetime.

The absence of systematic methodologies to design and
runtime-manage complex, adaptive embedded systems is
holding back their progress. To address this issue, the AD-
MORPH project1 is investigating holistic approaches to sys-
tematically designing, analyzing, and managing embedded
computer systems in mission- or safety-critical CPS(oS). The
approach uses the concept of system adaptation in the form
of dynamic task-to-resource allocation to achieve fault and
intrusion tolerance.

Adaptation is crucial for coping with faults over the long
run, provided the system can tolerate faults long enough for
adaptation to become effective. Moreover, it allows us to op-
timize both functional and non-functional properties of these
systems. In ADMORPH, we design and develop adaptation
strategies (1) to evade faults by relocating services to a dif-
ferent set of resources, (2) to improve resilience by including
more resources in the tolerance of faults, and (3) to match the
systems’ resilience to the perceived threat by allocating more
or less resources to the defense.

This paper presents an overview of the ADMORPH archi-
tecture and its key components (Figure 1). The architec-
ture encompasses Optimization and Analysis components
(including design space exploration, a coordination language,

1https://www.admorph.eu

and scheduling and time analysis), Application Support com-
ponents (providing various adaptation strategies, with the
support of monitors), and considers Runtime and Operating
System layers that are designed to provide real-time support
for applications, for different adaptability requirements. All
these can be used in multiple application scenarios, and in
ADMORPH we consider three specific Use Cases to validate
the several components of the architecture.

2 Optimization and Analysis
The embedded computer systems in CPS(oS) are often com-
posed of multicore systems built for a specific application,
operating a combination of homogeneous and heterogeneous
cores on a single chip. Modelling and exploring embedded
multicore systems is a time-consuming and a complex task.
Moreover, these devices can be deployed for a long term and
therefore system lifetime reliability is an important considera-
tion while designing them. However, it is imperative that over
long periods of deployment time, some of the cores in such
systems will start to deteriorate owing to the ageing process
and will eventually fail. In principle, placing extra cores on
the chip can increase the lifetime reliability albeit at the cost
of increased power consumption and chip area.

2.1 Design Space Exploration
In ADMORPH, we presented a framework [1] to explore the
design space of platform architectures and their floorplans,
with the contradictory objectives of increasing lifetime reli-
ability and lowering the average power consumption. The
exploration algorithm in this framework, based on a Genetic
Algorithm, returns the Pareto Set from the population upon
convergence. The design points in the Pareto Set exhibit the
trade-off between two objectives and one cannot be consid-
ered better over the other w.r.t both the objectives [2]. The
framework employs a high level simulator to calculate the
Mean Time to Failure (MTTF) of the chip. A higher MTTF
of a chip represents the fact that the chip will fail after longer
duration and hence is predicted to operate for longer duration
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after initial deployment. In this context, MTTF can be inter-
preted as an estimate of active lifetime of the chip and thus
its reliability.

The simulator runs multiple times, also called Monte Carlo
simulation, to take the averages of both failure times and
power usage. The high number of simulations required makes
the framework compute intensive. We therefore also proposed
variations of the exploration methodology to reduce the total
number of simulations needed for a faster convergence of the
main algorithm.

2.2 TeamPlay Coordination Language
The TeamPlay Coordination Language [3] supports the speci-
fication of CPS(oS) at a very high level of abstraction. Team-
Play adopts the principle of exogenous coordination as a key
design choice and achieves a complete separation of concerns
between the specification of stateless components (aka tasks)
and their orderly interaction in a streaming network. Com-
ponents are characterized by a set of functional as well as
non-functional contracts. The functional contracts consist
of a set of typed input and output ports as well as a set of
state ports, i.e. output ports that are short circuited to corre-
sponding input ports, and hence allow us to mimic state in an
otherwise stateless world. The non-functional contracts span
from average and worst-case execution time (on a given hard-
ware unit) to average and worst-case energy consumption (on
a given hardware unit) to fault-tolerance execution regimes,
such as dual or triple modular redundancy.

Components may have multiple versions that behave identi-
cally with respect to the functional contracts, but typically
expose different behaviour with respect to the non-functional
contracts, even when run on the same hardware. As a coordi-
nation language TeamPlay focuses on the specification and
interaction of components and leaves the implementation of
components to lower-level languages, usually C or C++ in
the domain of cyber-physical systems.

This design permits TeamPlay to adapt CPS(oS) applications
to the available hardware, usually commodity-off-the-shelf
high-performance embedded systems, under varying objec-
tives such as meeting deadlines, energy budgets or robustness
requirements [4]. To this effect we have proposed various
scheduling algorithms [5, 6], as well as the adaptive runtime
environment YASMIN [7] and investigated the best use of
constrained resources for fault-tolerance under a weakly-hard
real-time regime [8], among others.

2.3 Scheduling and Time Analysis
For the scheduling, we assume an input AFC-file that models
an application as a directed acyclic graph, divided into section
with varying redundancy levels. This means that redundancy
levels can change dynamically in between section boundaries.
The level of redundancy at runtime depends on the number of
available processing elements and the current fault rate. To
enable the dynamic adaptation depending on the number of
cores and fault-rate, we use a set of pre-computed schedules
for the different sections that can be loaded and executed at
runtime. For the computation of the various schedules, we
use a modified version of the Heterogeneous Earliest Finish
Time (HEFT) scheduler that ensures a suitable mapping of

redundant tasks on the processing elements. Based on this
scheduler, we have developed faktum, a scheduling and anal-
ysis tool that serves two purposes: Firstly, it computes offline
a set of fault-tolerant schedules, using the HEFT scheduler
as described above, that can be fed to the design-space ex-
ploration. Secondly, it serves as a scheduling verification
and analysis tool, which estimates the feasibility of design
candidates during the design-space exploration. After the
design-space exploration, it derives the final verdict on the
suitability of the chosen candidate architecture.

2.4 Analysis of the Impact of Deadline Misses on
Control Systems

Feedback control is a central enabling technology in a wide
range of applications. Control systems are at the core of en-
ergy distribution infrastructures, regulate the behaviour of
engines in vehicles, and are embedded in household appli-
ances like washing machines. Control is centred around the
feedback mechanism. Sensors provide information about the
current state of the physical environment. This is used to
compute suitable control actions to fulfil performance require-
ments, that are then implemented by actuators. For example,
adaptive cruise control systems use measurements from a
range of sensors to determine how to adjust the throttle to
automatically regulate the vehicle’s speed, while maintaining
a safe distance from vehicles ahead.

Control actions are often calculated using hardware and soft-
ware. Hence, the computation of the new control signals is
subject to accidental faults, systematic issues, and software
bugs. In practice, these computational problems are often ig-
nored. But when can this be done safely? In ADMORPH we
introduce a framework for analyzing the behaviour of control
software subject to computational problems. We started the
analysis with the evaluation of the stability [9] and perfor-
mance [10] of control systems subject to consecutive deadline
misses. We then worked on generalising the analysis to all
the other weakly-hard [11] task models [12, 13] and creating
an experimental toolchain [14]. We also analysed the latency
of complex pipelines in which tasks in a chain of dependent
computations experience deadline misses [15] and discussed
recovery strategies for control systems [16].

3 Adaptation Methods
Applications quite naturally adapt their functionality or per-
formance to changing demands and environmental situations.
For example, planes transition through modes for taking-off,
flying, landing and taxiing from the runway to the parking po-
sition at the terminal. While the triggers for these changes are
expected or at least well predictable, one cannot equally well
predict when the system has to adapt to faults. In ADMORPH,
we focus on exactly that prediction and on the adaptation of
the fault and intrusion tolerance mechanisms that support
such adaptation. Figure 2 shows the control architecture of
ADMORPH.

In various scenarios, high-level controllers play a crucial role
in guiding the behavior of lower-level control loops, which
operate at a much higher frequency and prioritize the sys-
tem’s stability. Functional adaptation, involving transitions
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Figure 2: ADMORPH’s control architecture.

between multiple high-level controllers, typically occurs dur-
ing pre-defined configuration changes coordinated by the
coordination language, its compiler, and toolchain. Threat-
related adaptations, such as adjusting the internal resilience of
components in response to perceived threat levels, require a
combination of proactive resource planning for severe threats
and swift runtime adjustments to ensure the system maintains
the desired state when threats emerge. Both strategies require
runtime adaptations within the control architecture to respond
to unforeseen situations, utilizing available resources swiftly
and planned configurations from design-space exploration.
Such adaptations may include (a) activating the simplex sub-
system if the complex fails to provide timely and accurate
information, (b) modifying the simplex replication policy,
changing the detection quorum that enhances resilience over
subsequent control epochs, (c) relocating consistently failing
controllers to spare resources and (d) adapting the frequency
of rejuvenation. These runtime adaptations ensure efficient
system response, leveraging redundancy and planned mea-
sures for effective performance in unforeseen circumstances.

However, control tasks are susceptible to failure or compro-
mise over time as adversaries seek to gain control of the
system and cause harm to the operating environment. En-
suring the recovery of these control tasks and the resources
they utilize becomes crucial to maintain healthy majorities
and withstanding failures. In ADMORPH, we have enhanced
both the state-capturing capability of replicated controllers
and their ability to restart replicas in a stateless manner, while
also incorporating the capability to introduce additional repli-
cas. These new replicas are initialized using pre-compiled and
pre-analyzed binary images sourced from a diverse pool. This
diversity thwarts adversarial knowledge regarding replica at-
tacks. By starting the replicas without their previous states,
the replication controller injects the captured state and main-
tains synchronization with the control tasks, ultimately tran-
sitioning the responsibility to control the device or cyber-
physical system. This approach allows for the creation of
additional replicas, which can later join the active consensus
group once they are fully operational.

Another essential aspect that ADMORPH addresses is related
to the time of adaptation and reconfiguration. In ADMORPH,

we are considering finer-grained reconfiguration, and we do
so by integrating fault models into the scheduling analysis of
redundant dataflow tasks. This way, we determine the Worst-
Case Execution Time (WCET) of such tasks in the presence
of errors down to a specific probability.

Nevertheless, certain factors can still result in unbounded
reconfiguration times, such as repeated resource reboots fol-
lowing a crash or the reactivation of the same software vul-
nerability. These situations often indicate a persistent fault
within the hardware resource or the re-instantiated software
component. In the ADMORPH approach, we are considering
software diversification and relocation to address this issue.
We have considered the implications of these actions on the
WCET of the software component.

To address these concerns, the ADMORPH control architec-
ture employs a three-step reconfiguration process: (1) the new
configuration is initiated by creating new replicas, starting
components that implement the new functionality, or utilizing
spare resources, (2) the new configuration establishes connec-
tions with the existing setup, ensuring it receives state updates,
sensor inputs, and is monitored effectively and (3) once the
preparation phase is completed and all components confirm
their readiness, control is transitioned atomically by updating
the control system and associated components to consider the
new subsystems instead of the previous configuration.

During this transition, the control system exclusively consid-
ers and applies proposals from the old configuration, leverag-
ing its inherent fault tolerance for a specific duration. Once
the new configuration is fully established, regardless of the
time taken, the control system solely considers proposals
from the new configuration at the beginning of the next con-
trol epoch. This decoupling of configurations allows timely
control to be maintained by either the old configuration (un-
til the transition point) or the new configuration (from the
transition point onwards).

4 Runtime and OS support for resilient
control

In ADMORPH, to ensure security and safety of the applica-
tion workloads, we have used a separation kernel to provide
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strict separation. Historically, a governing principle of a
separation kernel is to enable static configurations for rela-
tively simple embedded systems and applications [17]. With
safety-critical embedded systems and CPS(oS) growing to
more powerful hardware, more complex embedded systems
become feasible, and, in part the ADMORPH use cases were
helpful to gather demands for runtime and OS support.

We have shown that it is possible to extend the separation ker-
nel on the sensing side by host intrusion detection by control
flow integrity [18, 19], network intrusion detection with Suri-
cata, and safety monitoring infrastructure for heterogeneous
systems. For the acting side, we have extended the separation
kernel experimental by more flexible scheduling (run-time
adaptation of time windows and cross-CPU thread/task mi-
gration). We have also implemented mechanisms for FPGA
reconfiguration. For secure update, we have demonstrated the
use of Mender.

5 Use Cases
ADMORPH’s adaptivity technology is being evaluated
through three use cases. These use cases have been selected
to cover a significant safety- and mission-critical CPS(oS)
spectrum. They span different domains with varying system
requirements and needs regarding robustness and quality of
service.

5.1 Autonomous Aerospace Systems
Flight delays due to airport congestion create a costly ripple
effect for airlines and airports. Enhancing aircraft autonomy
in specific flight phases can mitigate these issues while ensur-
ing safety remains crucial in unforeseen circumstances like
system faults and security attacks. In a highly regulated envi-
ronment, it is not yet clear who the decision maker for specific
actions will be. In some cases, it will be Air Traffic Control
(ATC), whereas in other cases, it will be the aircraft. This
provides a perfect environment for System of Systems (SoS)
demonstration where ADMORPH solution can be applied to
provide adaptivity and safety.

Nowadays, in commercial aircrafts, the level of autonomy
during the cruise is very high. However, takeoff, landing, and
taxiing are still pending subjects and very critical. In this use
case, we are implementing a hybrid simulation environment
that combines model-in-the-loop and hardware-in-the-loop
approaches. The co-simulation involves integrating Simulink
and FlightGear, while real-time execution takes place on the
Ultrascale+ platform. This configuration can be equipped
with a safety-critical operating system or hypervisor, such
as PikeOS, to ensure real-time characteristics. This setup
mimics the functionality of a single computer unit within
an Integrated Modular Avionics architecture, allowing for
fault injection testing. These faults will simulate operational
failures and attacks. Leveraging the expressive coordination
language utilized in the project, detecting these faults will
be used to trigger adaptivity measures, thereby ensuring the
overall system’s safety.

5.2 Radar Surveillance Systems
Radar surveillance systems are essential for ships as they pro-
vide crucial situational awareness, enabling vessels to detect
other ships, obstacles, and navigational hazards, enhancing

maritime safety and preventing collisions. This used case
involves evaluating specific methods within the context of an
industrial embedded software system (or subsystem) used for
radar surveillance processing in a laboratory setup using a
realistic processing platform. As command and control deci-
sions require reliable and robust real-time data processing, the
ability of the ADMORPH approach to achieve fault tolerance
is substantially assessed and validated.

In this particular use case within the ADMORPH framework,
the coordination language is crucial in specifying adaptive
systems alongside adaptive runtimes. This approach ensures
formal guarantees and facilitates comprehensive testing of the
runtime system itself.

5.3 Transport system
This use case focuses on evaluating ADMORPH approaches
within the context of a Train Supervision Surveillance System,
which falls under the category of a System of Systems (SoS).
The railway system operates multiple information flows be-
tween ground systems and moving trains, each serving spe-
cific purposes with varying levels of criticality. In the event
of incidents, it becomes crucial to maintain communication
channels associated with the most critical information flows.
Hence, a system capable of adapting to diverse operating
conditions such as signal level, channel interference, hard-
ware faults, and line overload is essential. In this use case,
the TeamPlay coordination language describes and generates
adaptation targets. The PikeOS hypervisor is employed to
partition the system into isolated and independent partitions
that communicate through proprietary tools. It facilitates re-
source allocation and sharing while enabling the execution
of multiple Linux instances within isolated partitions. This
configuration allows the creation of replicas and seamless
switching between them, facilitating necessary adaptations in
the presence of faults or attacks.

6 Conclusion
This paper comprehensively overviews the ADMORPH ar-
chitecture and its key components. We delve into the mecha-
nisms employed by ADMORPH to facilitate real-time adapta-
tion while upholding safety considerations. While adaptation
strategies are generated offline, potentially through design-
space exploration, the actual runtime adaptation necessitates
careful attention to ensure swift response times within in-
dividual CPSoS building blocks. Tasks with strict timing
requirements may require internal resilience mechanisms to
effectively handle accidental and malicious faults. We identi-
fied and described various strategies for adapting to different
scenarios, bounding reconfiguration times, and particularly
decoupling reconfiguration from the operational behavior of
components. These strategies enable efficient and reliable
runtime adaptation within the ADMORPH solution. Lastly,
we referred to the Use Cases that support the project by briefly
describing the challenges and how the ADMORPH solutions
can address them.
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