
Exploring Multi-core Systems with
Lifetime Reliability and Power Consumption

Trade-offs

Dolly Sapra and Andy D. Pimentel

University of Amsterdam, Amsterdam, Netherlands
{d.sapra,a.d.pimentel}@uva.nl

Abstract. Embedded multicore systems are often built for a specific
application, operating a combination of homogeneous and heterogeneous
cores. These devices are often deployed for a long term and therefore
system lifetime reliability is an important consideration while designing
them. In principle, placing extra cores increases the lifetime reliability
albeit at the cost of increased power consumption and chip area. We pro-
pose a framework to explore platform architectures and their floorplans,
highlighting the trade-offs between lifetime reliability and power con-
sumption. The framework is based on a Genetic Algorithm and employs
a high level simulator to calculate the Mean Time to Failure (MTTF)
of the chip. The simulator runs multiple times, also called Monte Carlo
simulation, to take the averages of both failure times and power usage.
The high number of simulations required makes the framework compute
intensive. We therefore propose two variations of the design space explo-
ration to reduce the number of simulations. Our results show that total
number of simulations is reduced by ≈30% and the total GA convergence
time by ≈55%, while the resulting floorplan designs are similar in their
characteristics across all exploration varieties.

Keywords: Design Space Exploration · Multicore Systems · Lifetime
Reliability .

1 Introduction

Modern microchip design technologies are able to incorporate multiple cores of
different processor types onto a single chip. The amalgamation of resources in one
place can significantly improve the performance of these microchips. However, it
is imperative that over long periods of deployment time, some of these cores will
start to deteriorate owing to the ageing process and will eventually fail. Core
failures pose a significant challenge to system reliability over long-term use of a
multi-core System-on-Chip (SoC).

The operational temperature and power consumption of a core together are
majorly responsible for its ageing rate [5]. Higher temperatures and higher power
consumption cause faster deterioration of a core through various fault mecha-
nisms dependent on these factors [7]. In essence, the workload of the core is



2 Dolly Sapra and Andy D. Pimentel

C1
Core type: 1

C2
Core type: 3

C5
Core type: 2

C3
Core type: 2

C4
Core type: 1

Fig. 1. An example of floorplan created through our framework: 5 cores of 3 unique
core types.

the most important factor influencing its ageing process. Heavy computational
workloads draw more power to perform the needed operations and at the same
time significantly raise the temperature of the core. Moreover, a hot core can
cause the neighbouring cores to heat up simultaneously. Therefore, the workload
of the whole SoC contributes to the ageing of each core, even though it is ex-
pected that each core runs a different workload. This leads to uneven ageing of
each resource and thus different failure times for each core. Moreover, the man-
ufacturing variations and random nature of an actual fault occurrence renders
it impossible to exactly predict the moment when a core will fail [13].

Embedded multicore platforms are often designed for a specific application
and execute periodical tasks. Such systems are regularly deployed for a very long
duration and for this reason, system reliability is a crucial factor to consider at
the design time. Since the workload of such devices are typically known, it is
possible to design the hardware with extra cores. When a core fails, the workload
can be redistributed over the remaining cores. As long as task deadlines are met
with fewer cores, the SoC can remain in operation. However, placing an extra
core comes with added cost of area and power consumption. This then raises the
question of how many extra cores would really be sufficient. Every extra core in
the system may also consume some power, also known as the leakage power, even
when it is not computing anything. Embedded devices are intended to be cheap
and power-efficient, so placing every extra core on the chip has to be justified
for its extra cost.

In this paper, we propose a framework to explore platform architectures and
their floorplan, while attempting to provide a balance between lifetime reliabil-
ity and power consumption. A floorplan design considers a specific workload and
known types of available cores. The framework is based on design space explo-
ration of possible floorplans on a fixed grid size. Figure 1 illustrates one of the



Title Suppressed Due to Excessive Length 3

design points in our framework’s search space. It has five cores of three different
types. To evaluate a design point, we use a simulator to predict its Mean Time
To Failure (MTTF) and average power consumption. A higher MTTF of a chip
represents the fact that the chip will fail after longer duration and hence is pre-
dicted to operate for longer duration after initial deployment. In this context,
MTTF can be interpreted as an estimate of active lifetime of the chip and thus
the reliability of an SoC.

The main contribution of this paper is a novel framework, based on a Ge-
netic Algorithm (GA), to search for appropriate floorplan designs for a fixed-size
microchip and a specific workload. GAs are a good choice for search and opti-
mization processes with a vast number of possible design candidates that cannot
be explored by exhaustive search. The GA in our framework is constructed as
a multi-objective search algorithm for two objectives, namely: MTTF and aver-
age power consumption. We want to simultaneously maximize the MTTF and
minimize the power consumption. Generally, these two objectives are contradic-
tory to each other. MTTF can be maximized by having many extra cores on
the floorplan, which in turn maximizes the power consumption. Keeping this in
mind, the GA produces a Pareto Set of design points, where one objective can-
not be improved without worsening the other objective. It allows the designer
to be aware of the floorplan choices available, in terms of which design provides
a good trade-off between the lifetime reliability and the power consumption.

Evaluation of a design point within the framework is performed via a simula-
tor, which predicts the MTTF for a floorplan through Monte Carlo simulations
using a stochastic fault model. The simulator works at a very high abstraction
level to provide quick evaluation of a floorplan design. It estimates the active
lifespan of the chip for a specific workload and provides average power consump-
tion. The simulator builds and applies an ageing model to estimate when the
cores fail and in what order. With every core failure, the workload is redistributed
among the surviving cores, until the workload becomes unschedulable. Since core
failure is stochastic in nature, the simulator performs many simulations to pre-
dict failures and averages individual Time-To-Failures (TTFs) to estimate the
MTTF, and mean power usage. Owing to these large number of simulations re-
quired, the GA takes a considerable amount of simulations and time to evaluate
all the design points and converge. Later in the paper, we discuss techniques to
reduce the total number of simulations performed by the framework. We demon-
strate that even with a reduced number of simulations, the framework is able to
produce floorplans with similar characteristics in the final Pareto Set.

The rest of the paper is organized as follows. We discuss related published
works in Section 2. We then present the framework and detail our methodology
in Section 3 and describe experimental setup and results of our evaluations and
validations in Section 4. Finally, we conclude the paper in Section 5.



4 Dolly Sapra and Andy D. Pimentel

2 Related Work

Many simulators have been published in recent times which deep dive into life-
time reliability for multicore SoC. Task allocation and task scheduling are com-
mon approaches [18, 8, 9, 7] to improve lifetime reliability of multicore platforms.
In these algorithms, tasks (of the workload) are mapped to available resources,
and are adjusted during the deployment time to slow down the ageing of the SoC.
Usually, with these methodologies the workload is redistributed to avoid any one
core from heavy workload and thus failing much before the other cores. Utiliza-
tion control is another technique proposed by the authors of [12] to maximize
lifetime-reliability. In this approach a predictive controller adjusts core frequen-
cies to control the temperatures and thus the ageing process. These frameworks
mostly explore the software part of the embedded systems design process and
consider specific hardware to be available for which lifetime reliability can be
improved. In contrast, our framework specifically explores the hardware design
(floorplan) to find the trade-off between lifetime reliability and power consump-
tion.

Moreover, the above frameworks consider only the occurrence of a single core
failure. The authors of [4] consider the occurrence of multiple subsequent core
failures, thus offering a more precise estimation of the lifetime reliability. One of
their strategies is based on spare resources, however, the spare resources are set
by the designer without any perception of how many spare cores are sufficient
for target lifetime reliability. In comparison, our approach explores the design
space to gain insight into the number and the type of requisite cores and their
placement on floorplan. To the best of our knowledge, our framework is the first
such work to explore multicore platform design while optimizing for both lifetime
reliability and power usage.

3 Methodology

In this section, we briefly outline the simulator and then describe the framework
based on a Genetic Algorithm. The framework is initialized with information
about the workload. All the tasks of the workload and their dependencies are
represented in a Directed Acyclic Graph (DAG) format along with the deadline
to complete one execution of the workload, see Figure 3 for an example. Addi-
tionally, as will be discussed in the next subsection, hardware specific behaviour
of these tasks (per core type) is gathered, such as power traces, worst-case ex-
ecution times and thermal behaviour. The GA based framework converges to
produce a Pareto Set of unique floorplans, which indicate the trade-offs between
lifetime reliability (via MTTF) and the average power consumption for these
design points.

3.1 Simulator

The simulator used by the framework is built using multiple tools and models
already published and publicly available. The first tool in operation is called



Title Suppressed Due to Excessive Length 5

HotSniper [15], which is a low-level cycle accurate thermal simulator. It can sim-
ulate the thermal behavior for a given a workload and hardware. Our simulator
uses HotSniper to obtain the power traces for each task, which is essentially a
periodic reading of the power consumption (of the task) on a particular core
type. Further, the input power traces are fed into MatEx [14]. MatEx is a ther-
mal model which uses analytical methods to predict the thermal behavior of a
microprocessor. MatEx takes the hardware description and power traces of a
workload as inputs to produce a temperature trace. Consequently, the temper-
ature traces obtained from MatEx are used to predict the ageing behavior. The
fault mechanism used to predict the ageing behavior in this paper is electromi-
gration, which is the wear-out caused in interconnects due to high temperature.
Subsequently, the Black’s equation [3] along with a Weibull [11] distribution is
used to obtain the fault distribution. This fault distribution is finally used to
predict a core failure.

With each core failure, the tasks are scheduled again on remaining cores, until
another core fails. This process is repeated until the tasks cannot be scheduled
anymore on the remaining cores. It is noteworthy that even with all of the
behaviour and fault models, the prediction of an actual fault time is stochastic
in nature. Hence, the simulator uses random Monte Carlo simulations, with
each simulation resulting in different moments at which the cores fail. One such
simulation predicts a Time To Failure (TTF) of the microchip and the power.
Through the Monte Carlo simulations, the simulator produces a mean of TTFs
in multiple simulations, i.e., an MTTF and average power consumption. The
multiple runs by the simulator ensures a closer approximation of the actual
mean values of these two objectives is obtained.

Algorithm 1 depicts the Monte Carlo simulation to evaluate a batch of indi-
viduals (i.e., candidate floorplan designs) in the GA. We refer to this standard
simulator as stdSim. Every design point has a simulation budget, i.e. the number
of simulations performed by the simulator for individual floorplan evaluation. In
the standard simulator, every design point has exactly the same simulation bud-
get. While this approach is useful to evaluate individual floorplans, it becomes
compute intensive for the GA. This is because of a large population and multiple
iterations of the algorithm, leading to an extremely large number of simulations
to be performed.

3.2 Genetic Algorithm

Genetic Algorithms are iterative population based algorithms where a better
population evolves over subsequent iterations [10]. The algorithm always has
a constant number of design points in its population, though the individual
floorplans keep changing through the iterations. The population size is required
to be large enough so that enough diversity is maintained among the candidates
in the population. If a floorplan is dropped from the population (when it is not
performing as well as others), then it is replaced by another floorplan. During
each iteration, some individuals from the population of floorplans are altered
using genetic mutation operators.



6 Dolly Sapra and Andy D. Pimentel

Algorithm 1 Monte Carlo simulator (stdSim)
Require: A list of k simulation points S
Require: The simulation budget n
1: function MCS(S, n)
2: Initialize X̄ ▷ the objectives vector, of size k, for each simulation point
3: for each simulation point si ∈ S do
4: simulate si by running the simulator for n times
5: update xi ∈ X̄ ▷ update MTTF and mean power for ith simulation point
6: end for
7: return X̄
8: end function

Search Space: The search space refers to all possible floorplans with their con-
figurations and constraints that the framework can evaluate. Random floorplans
are sampled from this search space to initialize the population. In this frame-
work, the search space is formulated on a fixed grid size and available types of
cores. The example shown in Figure 1 has a grid size of 3x3 and three unique
types of cores. Additionally, the physical size of the grid is required by the sim-
ulator to correctly generate thermal behaviour based on distance from adjacent
cores. Moreover, the simulator requires to run every task (from the task graph)
on each of the available core type individually, to collect power traces and sub-
sequently thermal behaviors. In addition to power traces, the framework also
needs to know the worst case execution times of the tasks on each core. This
is necessary to check the schedulability of the workload on active cores on the
microchip at any point in the simulation.

Mutations: The mutation operators are used by the GA after every iteration
to explore the search space. In a single mutation, only one floorplan from the
population undergo alterations. The aim of the mutation is to both explore and
exploit the search space. Small impact mutations, such as changing the type of
one of the cores on the floorplan explores a similar floorplan in the next itera-
tion. Big impact mutations where a core is added, removed or moved to a new
position attempt to exploit the search space by creating very different floorplans
for the next generation. Together, these mutation operators are responsible for
traversing the large design space of floorplans in an efficient manner. Figure 2
illustrates three of the mutation operations from our framework.

All these operator maintain the constraints of the search space. For instance,
a core is never moved outside the available grid area and they ensure that the
constraint on the minimum number of cores is always respected.

Selection and Replacement: One of the most important features of the GA
is that every subsequent population attempts to be better than the previous
iteration. This is achieved through selection and replacement policies designed
to retain the good floorplans at every step. Since the GA in our framework



Title Suppressed Due to Excessive Length 7

C1
Type:1

C2
Type: 3

C5
Type: 2

C3
Type: 2

C4
Type: 1

C1
Type:1

C2
Type: 3

C5
Type: 2

C3
Type: 2

C4
Type: 3

C1
Type:1

C5
Type: 2

C3
Type: 2

C4
Type: 1

C1
Type:1

C2
Type: 3

C5
Type: 2

C3
Type: 2

C4
Type: 1

Core Remove
Mutation

Core Move
Mutation

Core-Type Change
Mutation

Fig. 2. Exploring the floorplans through mutations.

is a multi-objective search, the best floorplans are selected via the NSGA-2
algorithm [6]. NSGA-2 ensures that equal importance is given to both MTTF
and power consumption objectives. These best floorplans are saved in the next
iteration, to ensure that the best candidates found so far do not get lost during
successive iterations. In addition, a tournament selector strategy is employed
to select the candidates to be replaced via the mutation operations. Wherein a
group of design points and the best among these is elected as the best to win
the tournament. The best candidate is always selected and the worst candidate
is always removed from the population in this strategy.

Algorithm: We combine all the concepts discussed in this section to outline
the algorithm for our framework. Algorithm 2 illustrates the complete algorithm,
the goal is to find floorplans, for a given workload, with lifetime reliability and
power as main objectives. The GA starts with an initial population, which is
an arbitrary group of design points from the search space. Out of the current
population, a new generation will be formed through a mutation operator. To
allow convergence towards a more optimal solution, the best floorplans of the
parental population and the offspring are selected and are used to determine the



8 Dolly Sapra and Andy D. Pimentel

next generation. This process of selection, mutation and replacement is repeated
a finite number of times.

Algorithm 2 Genetic Algorithm
Require: Task graph DAG
Require: Task information per core type
1: function GA(DAG)
2: Initialize population with design points D
3: for each iteration of GA do
4: Simulate(D, n) ▷ n is maximum simulation budget
5: Select best candidates ▷ Through NSGA-II algorithm
6: Select parents via tournaments ▷ For candidates in the next generation
7: for each parent pi do
8: Mutate pi ▷ Traverse the search space
9: end for

10: Replace population D with best candidates and new mutated offsprings
11: end for
12: Create ParetoSet
13: return ParetoSet
14: end function

Output: After all the iterations are complete, a Pareto Set is selected from
the population based on evaluated objectives. All the designs in the Pareto set
are considered to be equally adequate to be marked as the best model. In this
scenario, the final selection lies in the hands of the system designer, and may
also be based on higher priority placed on one of the objectives.

3.3 Speeding up the GA

As mentioned earlier, the simulator works by running multiple times and taking
averages of failure times and power usage to estimate MTTF and average power
consumption of the chip. Since this leads to a very high number of simulations,
we propose two methodologies to reduce the simulation budget of some design
points.

The first variation of the simulator, called 10FSim, runs for only 10% of the
total available budget. The simulator keeps track of the number of core failures
leading to the microchip failure. By looking at the average number of core fail-
ures in 10% of the simulations, we can adjust the remaining simulation budget
to be used. When the average number of core failures is < FThresholdLow (lower
threshold for number of failures), there is little scope of getting design points
with a very long MTTF and the initial number of cores are almost sufficient for
the device (i.e. extra cores are not available for reliability). Therefore, we reduce
the total simulation budget to new simulation budget, which is SBLow% of the



Title Suppressed Due to Excessive Length 9

original budget. On the other hand, when the average number of core failures is
> FThresholdHigh (higher threshold for number of failures), there are already too
many extra cores available and MTTF is going to be higher than other design
points. So, in this scenario, the simulation budget is reduced to SBHigh% of the
original budget. All other design points where number of core failures is between
the lower and the higher threshold values are simulated with full budget. These
will be the points which will illustrate the trade-offs between power consump-
tion and MTTF appropriately. Algorithm 3 outlines the algorithm for 10FSim
simulator.

Algorithm 3 10F simulator (10FSim)
Require: A list of k simulation points D
Require: The simulation budget n
1: function 10FS(D, n)
2: Initialize X̄ ▷ the objectives vector, of size k, for each simulation point
3: for n/10 simulation points di ∈ D do ▷ 10% of the simulation budget
4: simulate di by running the simulator for n times
5: update xi ∈ X̄ ▷ update MTTF and mean power for ith simulation point
6: Update ni number of core failures
7: end for
8: Update average number of core failures Nf

9: if Nf < FThresholdLow then
10: Update n = n ∗ SBLow%− n/10
11: end if
12: if Nf > FThresholdHigh then
13: Update n = n ∗ SBHigh%− n/10
14: end if
15: Simulate for n times
16: ▷ Repeat lines 4 to 6
17: return X̄
18: end function

The second variation of the simulator, UtilSim, works in a similar manner to
the 10FSim variation. Instead of looking at number of core failures at simulation
time, it statically analyzes the (expected) core utilization after scheduling the
workload on available cores, i.e. before the simulation starts. When the core
utilization is > UtilThresholdLow, then most of the cores are busy and even one
core failure has a huge impact on schedulability of the microchip. Similar to the
first case of 10FSim simulator, the total number of simulations is reduced to
SBLow% of the original budget. When the utilization is < UtilThresholdHigh, the
total number of simulations is reduced to SBHigh% of the original simulation
budget. The rest of the design points are simulated with the whole budget. We
outine the algorithm of this UtilSim simulator variation in Algorithm 4.



10 Dolly Sapra and Andy D. Pimentel

Algorithm 4 Resource Utilization based simulator (UtilSim)
Require: A list of k simulation points D
Require: The simulation budget n
1: function utilS(D, n)
2: Initialize X̄ ▷ the objectives vector, of size k, for each simulation point
3: Check core utilization U ▷ After scheduling the tasks
4: if U > UtilThresholdLow then
5: Update n = n ∗ SBLow%
6: end if
7: if U < UtilThresholdHigh then
8: Update n = n ∗ SBHigh%
9: end if

10: for n simulation points di ∈ D do
11: simulate di by running the simulator for n times
12: update xi ∈ X̄ ▷ update MTTF and mean power for ith simulation point
13: end for
14: return X̄
15: end function

4 Experiments

In this section, we evaluate all the algorithms in the framework and outline our
experimental setup. We have used the Java based Jenetics library [1] for the GA
and the simulator is written in python. Our experiments run on Apple M1 pro
platform.

4.1 Setup

We perform our experiments with a synthetic application (as the workload itself
is of less importance for our proof of concept), represented in DAG format, and is
illustrated in Figure 3. All the tasks (T1-T6) were executed in the HotSniper [15]
simulator to obtain the power traces for 3 types of cores. Additionally, we use
the Cecile Coordination Compiler [16] to estimate worst case execution time
on each of the core type. Scheduling of the tasks on cores is done via HEFT
algorithm [17] for a given deadline (but different algorithms can be used in the
simulator).

The search space for the floorplans is restricted to a grid of size 3x3, which
means that the search space constitutes of 49 design points and as such in-
tractable for an exhaustive search (given the fact that each design point requires
a number of simulations). The GA explores around three thousand design points
to produce a near-optimal Pareto Set.

The parameters of the algorithms are summarized in Table 1. Pareto size
refers to the range of design points that are desired in the final Pareto Set.
Mutation probability of each mutation type refers to the probability with which
a selected parent will undergo the respective mutation to create offsprings for
the next generation.



Title Suppressed Due to Excessive Length 11

T1

T6

T5

T4T3T2

Input

Outputs

Fig. 3. The task graph (DAG) of the application used in the experiments.

The parameters for Simulators, stdSim,10FSim and UtilSim were emperi-
cally determined after some initial experiments and are summarized in Table 2.
Simulation budgets were reduced to 50% in floorplans with fewer cores failures
handling capability (i.e. high core utilization). In addition, simulation budgets
were drastically reduced to 33.33% when a floorplan had large slack to handle
core failures (and low core utilization).

Table 1. Framework Setup details

Parameter Value

Number of GA iterations 100
Population size 50
Pareto size Range(10,15)
Floorplan grid size 3x3
Number of Core types 3
Scheduling policy HEFT
Mutation probability
Core-Add mutation 0.2
Core-Remove mutation 0.2
Core-Move mutation 0.3
Core-ChangeType mutation 0.3



12 Dolly Sapra and Andy D. Pimentel

Table 2. Simulator Setup details

Parameter Value

Initial simulation budget per simulation 100
10FSim parameters
FThresholdLow 2
FThresholdHigh 5
UtilSim parameters
UtilThresholdLow 0.5
UtilThresholdHigh 0.25
Simulation Budgets Modification factors
SBHigh% 33.33%
SBLow% 50%

4.2 Results

Firstly, we performed the experiment with the standard simulator with each
design point having a simulation budget of 100 runs. In this scenario, every
design point was given equal importance and their MTTF and average power
consumption was calculated using the full budget. Figure 4 shows the result of
a GA run. All the design points that are explored by the GA are represented in
this graph via their average power consumption and MTTF as estimated through
the simulator.

6 7 8 9 10 11 12
MTTF (in years)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Av
er

ag
e 

Po
we

r C
on

su
m

pt
io

n(
W

)

Pareto Front

Fig. 4. MTTF and average power consumption for all the design points explored
through the GA. The orange line highlights the point in the Pareto Set.



Title Suppressed Due to Excessive Length 13

Figure 4 illustrates the Pareto Set (in Orange) found by the GA at the
convergence. The cluster of points corresponds to a specific number of cores on
the floorplan. The points on the Pareto Set can provide the system designer
with informed choices on design points with trade-off between lifetime reliability
and power consumption. Figure 5 illustrates the floorplans of some of the points
on the pareto front. The top two floorplans refer to the two extreme points on
the Pareto front. The floorplan with the lowest power consumption has only 3
cores with approximately 7 years of estimated MTTF. On the other hand, the
floorplan with the highest MTTF (>12 years) uses 9 cores, but doubles the power
consumption. Please note that the spare cores in a system may also consume
some power (e.g., leakage power) and heat up from adjacent cores, therefore idle
cores also slowly age along with rest of the cores on the floorplan [2]. The other
two floorplans were picked randomly from middle of the Pareto Set, highlighting
the variety of design choices available to the system designer.

C1
Type:1

C3
Type: 3

C2
Type: 1

C2
Type:1

C5
Type: 3

C7
Type: 2

C4
Type:1

C3
Type: 2

C1
Type: 1

C9
Type: 1

C6
Type:1

C3
Type: 2

C1
Type: 2

C8
Type: 1

Lowest Power Consumption

C1
Type: 2

C3
Type: 2

Highest MTTF

C2
Type: 1

C4
Type: 1

C2
Type: 1

C4
Type: 2

C5
Type: 1

C6
Type: 2

Floorplans
in

Pareto Set

Fig. 5. Some of the floorplans in the Pareto Set. Top two floorplans are expected to
have lowest power consumption and highest MTTF respectively. Bottom two floorplans
are randomly picked from the Pareto Set.

Further experiments were performed with the simulator varieties 10FSim and
UtilSim. The comparison between their Pareto Sets is illustrated in Figure 6. As



14 Dolly Sapra and Andy D. Pimentel

is evident from the graph, the design points on the Pareto Sets are very similar
in their characteristics. However, there is a noticeable difference in the points
lying in the high MTTF region. It is important to note that only the standard
simulator used its whole simulation budget for designs in this area, the other
two varieties used only 33.3% of the original simulation budget. It is possible
that they over-estimate the active lifetime of a floorplan with fewer simulations.
However, for faster design space exploration, an error of a few months with an
estimated MTTF of more than 12 years might be an acceptable trade-off.

7 8 9 10 11 12 13
MTTF (in years)

0.8

1.0

1.2

1.4

1.6

Av
er

ag
e 

Po
we

r C
on

su
m

pt
io

n 
(W

)

StdSim
10FSim
UtilSim

Fig. 6. Pareto fronts achieved with different simulators varieties in our framework.

The total number of simulations done by the standard simulator was ≈ 3.2 ∗
105. The 10FSim and UtilSim simulators, on the other hand, performed ≈ 2.1 ∗
105 and ≈ 2∗105 simulations in total, respectively. As also depicted in Figure 7,
by using 10FSim and UtilSim, the total number of simulations are reduced by
≈30%. On an Apple M1 pro, the standard GA took 216 minutes to finish the
exploration. With the 10FSim and UtilSim simulators, the GA finished in 97
and 94 minutes, respectively. The total GA convergence time was thus reduced
by ≈55% with the modified simulator varieties.

5 Conclusion

Modelling and exploring embedded multicore systems is a time-consuming and a
complex task. In this paper, we presented a framework to explore the design space
of platform architectures and their floorplans, with the contradictory objectives



Title Suppressed Due to Excessive Length 15

stdSim 10FSim UtilSim
Simulator Varieties

0

50

100

150

200

250

300

Nu
m

be
r o

f S
im

ul
at

io
ns

 (x
10

00
)

Number of total simulations (x1000)

0

50

100

150

200

Co
nv

er
ge

nc
e 

tim
e 

in
 m

in
ut

es

Total time for GA (in minutes)

Fig. 7. Comparison between different simulators used by our framework. By using
10FSim and UtilSim, total number of simulations are reduced by ≈30% and total GA
convergence time by ≈55%

of increasing lifetime reliability (through estimated MTTF) and average power
consumption. The GA based algorithm in our framework returns the Pareto
Set from the population upon convergence. The design points in the Pareto Set
exhibit the trade-off between two objectives and one cannot be considered better
over the other w.r.t both the objectives.

Furthermore, we proposed variations of the exploration methodology to re-
duce the total number of simulations needed for a faster convergence of the main
algorithm. These variations were able to reduce the total number of simulations
performed by ≈30% and the total GA convergence time by ≈55%, with similar
floorplans in their respective Pareto Sets.

In future, we aim to extend our framework by exploring Dynamic Voltage
and Frequency Scaling (DVFS) options for different cores in our framework. By
slowing down or increasing the core frequencies, power profile of the core changes,
thus changing their MTTF and power usage.

Acknowledgements. This project has received funding from the European
Union’s Horizon 2020 Research and Innovation programme under grant agree-
ment No. 871259 for project ADMORPH.

References

1. Jenetics library (2023), https://jenetics.io/



16 Dolly Sapra and Andy D. Pimentel

2. Abbas, H.M.: An investigation into ageing-resilient processor design. Ph.D. thesis,
University of Southampton (2018)

3. Black, J.R.: Electromigration failure modes in aluminum metallization for semi-
conductor devices. Proceedings of the IEEE 57(9) (1969)

4. Bolchini, C., Cassano, L., Miele, A.: Lifetime-aware load distribution policies in
multi-core systems: An in-depth analysis. In: 2016 Design, Automation Test in
Europe Conference Exhibition (DATE) (2016)

5. Coskun, A.K., Rosing, T.S., Leblebici, Y., De Micheli, G.: A simulation method-
ology for reliability analysis in multi-core socs. In: Proceedings of the 16th ACM
Great Lakes symposium on VLSI (2006)

6. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sort-
ing genetic algorithm for multi-objective optimization: Nsga-ii. In: International
conference on parallel problem solving from nature. Springer (2000)

7. Feng, S., Gupta, S., Ansari, A., Mahlke, S.: Maestro: Orchestrating lifetime re-
liability in chip multiprocessors. In: High Performance Embedded Architectures
and Compilers: 5th International Conference, HiPEAC 2010, Pisa, Italy, January
25-27, 2010. Proceedings 5. Springer (2010)

8. Huang, L., Yuan, F., Xu, Q.: Lifetime reliability-aware task allocation and schedul-
ing for mpsoc platforms. In: 2009 Design, Automation & Test in Europe Conference
& Exhibition. IEEE (2009)

9. Kathpal, C., Garg, R.: Reliability-aware green scheduling algorithm in cloud com-
puting. In: Ambient Communications and Computer Systems: RACCCS-2018. pp.
421–431. Springer (2019)

10. Katoch, S., Chauhan, S.S., Kumar, V.: A review on genetic algorithm: past,
present, and future. Multimedia Tools and Applications 80 (2021)

11. Lai, C.D., Murthy, D., Xie, M.: Weibull distributions and their applications. In:
Springer Handbooks. Springer (2006)

12. Ma, Y., Chantem, T., Dick, R.P., Hu, X.S.: Improving system-level lifetime relia-
bility of multicore soft real-time systems. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 25(6) (2017)

13. Narayanan, V., Xie, Y.: Reliability concerns in embedded system designs. Com-
puter 39(1) (2006)

14. Pagani, S., Chen, J.J., Shafique, M., Henkel, J.: Matex: Efficient transient and
peak temperature computation for compact thermal models. In: 2015 Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE). IEEE (2015)

15. Pathania, A., Henkel, J.: Hotsniper: Sniper-based toolchain for many-core thermal
simulations in open systems. IEEE Embedded Systems Letters 11(2) (2018)

16. Roeder, J., Rouxel, B., Altmeyer, S., Grelck, C.: Towards energy-, time-and
security-aware multi-core coordination. In: Coordination Models and Languages:
22nd IFIP WG 6.1 International Conference, COORDINATION 2020, Held as
Part of the 15th International Federated Conference on Distributed Computing
Techniques, DisCoTec 2020, Valletta, Malta, June 15–19, 2020, Proceedings 22.
Springer (2020)

17. Topcuoglu, H., Hariri, S., Wu, M.Y.: Task scheduling algorithms for heteroge-
neous processors. In: Proceedings. Eighth Heterogeneous Computing Workshop
(HCW’99). IEEE (1999)

18. Zhou, J., Sun, J., Zhou, X., Wei, T., Chen, M., Hu, S., Hu, X.S.: Resource man-
agement for improving soft-error and lifetime reliability of real-time mpsocs. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 38(12)
(2018)


