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Outline

This deliverable is a report on the consortium’s work in Work Package 3, discussing all the active
tasks in the work package: Task 3.2 Design-Space Exploration of Dynamically Evolving Embedded
Systems, Task 3.3 Adaptivity-aware real-time scheduling policies, Task 3.5 Timing Analysis for
Certification in Heterogeneous Processing Platforms, and Task 3.6 Providing Formal Guarantees on
the Behavior of the Adaptation Layer.
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1 Introduction

In this report we provide a progress report and analyse the results obtained within the tasks
connected to the analysis of self-adaptive system. In particular, this work package focuses on how
to evaluate the behaviour provided by these systems at runtime. Specifically:

(i) Section 2 discusses design exploration. The ADMORPH project included the design and
implementation of a simulation tool that allows us to compare different scenarios and their
expected performance characteristics when systems include adaptation policies. The simulation
is conducted at system-level, and includes the system - hardware and software - and its
evolution. Genetic algorithms are used to find hardware configurations that belong to the
Pareto frontier and have the characteristics that it is not possible to optimise an objective
(for example: lowering power consumption, or increasing fault resilience, or minimising the
execution time of a program) without worsening the performance of the system for some
other objectives. Monte Carlo simulations are used to obtain mean characteristics like the
mean time to failure for specific system configurations and the mean performance obtained
for example with respect to power consumption.

(ii) At runtime, the morphing system can change hardware configuration depending on the current
objective and desires, and especially when faults or security attacks are identified, to achieve
resilience and fault tolerance. While the characteristics of the configurations are analysed
with the simulator, there is a need for the runtime system to determine when to change
operational mode and how to adapt. Section 3 describes adaptivity-aware real-time scheduling
policies, that are meant to change the scheduling of tasks in the system, depending on the
current configuration and operation mode. The ADMORPH scheduling policies guarantee
the execution of an application, modelled as a directed acyclic graph, within a given deadline
under the presence of faults, up to a predefined number of potentially occurring faults.

(iii) In order to obtain said adaptive scheduling policies, it is necessary to estimate the changes in
the execution time of the code for a software application under different hardware configura-
tions. The ADMORPH project enables the estimation of the worst case execution time for a
system that is dynamically adapting to faults. Section 4 describes our effort in this direction,
providing a timing analysis that connects the scheduling policies and our simulator results.

(iv) Section 5 describes our efforts in the analysis of faults. In particular, we consider that under
faults or attacks, the worst case execution time of a software application may change, and
hence tasks may experience deadline misses, and fail to provide the necessary information
and computational results within the prescribed amount of time. However, to have any hope
of recovering, we rely on the adaptation mechanism to provide resilience. We built a tool to
compare and analyse the resilience provided according to different task failure models. The
tool allows us to compare weakly-hard constraints, i.e., different types of constraints on the
amount and distribution of said deadline misses.
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(v) Finally, in Section 6 we discuss an analysis method to detect interference between applications
that are configured to run in parallel on the same hardware on a separation kernel, by
analyzing configuration files of the separation kernel.

2 Design-space exploration of dynamically-evolving sys-

tems

As already outlined in Deliverable D3.2, we use a Genetic Algorithm (GA) for efficient Design-
Space Exploration (DSE). The GA is tasked with determining a suitable system configuration,
that comprises of an hardware configuration as well as of the appropriate adaptation strategy
for application running on said hardware. The final part on Task 3.3 focuses on efficient fitness
evaluations for the GA, so that the algorithm can converge quickly and produce a Pareto-optimal
set of design points. We explain the fitness evaluation aspect of the GA and report final results in
this deliverable.

2.1 Fitness evaluation

The term fitness evaluation for a GA refers to the measurement of the quality of the individuals
within the population of the current generation. This evaluation step allows each design point to
be measured in order to determine the offspring (via the selection process) and apply other GA
operators (mutation and crossover). The evaluation step uses the simulator (developed within the
project, and presented in Deliverable D3.2), to get the objective values for an individual.

A run with the simulator provides a Time To Failure (TTF) and an estimate of the power
consumption of a specific design configuration, which does not correctly reflect the non-deterministic
nature of hardware failures. The simulator would provide more representative evaluations, that can
better describe a design point, by offering the Mean Time To Failure (MTTF) and mean power
usage. This requires the simulator to run multiple times and obtain a closer approximation of the
actual mean values for these two characteristics.

The GA maintains a set of all Pareto-optimal points through the generations (as explained in
Deliverable D3.2, Section 3.6.1). These points correspond to the configurations in which none of
the objectives of a design point can be further improved without worsening the results for (at least)
one other objective. In this section, we explain different methodologies we used for efficient fitness
evaluation through multiple simulations for each design configuration.

2.1.1 Monte Carlo Simulation

The most common and straightforward method of evaluating the MTTF is to simply run the
simulator multiple times and average the received outputs. Such an approach falls within the Monte
Carlo Simulation (MCS) methods (i.e. random sampling in order to obtain numerical results).
Algorithm 1 shows the Monte Carlo simulation to evaluate a batch of individuals.
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Within this algorithm, each design point is evaluated the same number of times. The simulation
budget is spread evenly among the design points. While this approach is useful to evaluate individual
design points, it becomes compute intensive for the DSE. This is because of a large population and
multiple iterations of the algorithm, leading to an extremely large number of simulations to be
performed. To reduce the computation costs involved per design point, we use two techniques from
Multi-Arm Bandit (MAB) algorithms, as explained in the next sub-section.

Algorithm 1 Monte Carlo simulation

Require: A list of k design points D
Require: The simulation budget n
1: function MCS(D, n)
2: Initialize X̄ ▷ the objectives vector, of size k, for each design point
3: for each design point di ∈ D do
4: simulate di by running the simulator for n/k times
5: update xi ∈ X̄ ▷ update MTTF and mean power for ith design point
6: end for
7: return X̄
8: end function

2.1.2 Multi-Arm Bandits (MAB)

MAB algorithms are a subset of Reinforcement Learning algorithms, which is a computational
approach to learn from interaction with an environment. Reinforcement learning attempts to
maximise a reward signal instead of trying to optimise an objective. In this work, a MAB algorithm
is repeatedly faced with k different candidates, and the evaluation (via simulation) of each candidate,
that yields a numerical reward from a stationary probability distribution. It is not known beforehand
how the reward probability for different candidates is distributed. The goal is to maximise the total
reward over a fixed number of simulations. Since there is no prior knowledge about each of the k
different options, the MAB algorithm has to find a trade-off between exploring unknown candidates
and sampling the current best candidates in order to maximise this total reward.

Scalarised Successive Accepts and Rejects (sSAR)
The Scalarised Successive Accepts and Rejects (sSAR) is a MAB algorithm that works in phases

where the end of each phase will rule-out a single design point. This happens when a design point
is either the best or the worst from the current set of active designs. After each consecutive phase,
the algorithm will focus more towards the so-called “grey area”, i.e., the design points that are
not obviously performing good or bad on the design objectives. As we approach later phases,
the number of active design point keeps decreasing. Since every phase has a fixed computational
budget, the design points in later phases get an increasing number of simulations. The main idea
is that within earlier phases it is easier to find the extreme design points (thus requiring fewer
simulations) while later phases will only have active design points that are more closely positioned
together, thus requiring more simulations to distinguish their objective values.
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Notably, this algorithm requires a scalarisation function, which combines all objectives into one
objective value (for comparing and ruling-out design points). Another important characteristic
of the sSAR is that the number of simulations it performs is dynamic, meaning that running the
algorithm twice with the same input will most-likely result in a different number of simulations for
the whole population.

Algorithm 2 Scalarised successive accepts and rejects algorithm [6]

Require: A list of k design points D
Require: How many individuals to selected p
Require: List of scalarisation functions S
Require: The simulations budget n

1: function sSAR(D, p, S, n)
2: Aj ← D, Pj ← p
3: Initialize X̄
4: log(K) = 1

2
+
∑K

j=2
1
j

5: n0 ← 0, nk ←
⌈

1
log(K)

· n−K
K+1−k

⌉
6: for rounds k = 1, 2, ..., K − 1 do
7: for all design points i for which ∃j : Di ∈ Aj do
8: Simulate Di for nk − nk−1 times
9: update xi ∈ X
10: end for

11: for fj ∈ S do
12: Sort designs Aj according to fj scalarised emperical means
13: i∗ ← arm with Pj-th best emperical mean
14: i∗ ← arm with (Pj + 1)-th best emperical mean

15: Gap ∆i =

{
xi − xi∗ if i is among top Pj designs

xi∗ − xi otherwise

16: i← the design point with the highest gap in Aj

17: Remove i from Aj

18: if i is the best design point in Aj then
19: Pj ← Pj − 1 ▷ Design point i is accepted
20: end if
21: end for
22: end for

23: return X
24: end function

The original algorithm [6] returns the non-dominated design points of the union of all design
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points selected by the scalarisation functions, i.e.,

|S|⋃
j=1

p⋃
i=1

J j
i ,

where J j is the set of p selected individuals of scalarisation function Sj. Algorithm 2, as used in
this work, is slightly altered and does not return the non-dominated design points of this union set
because a GA requires for exactly n individuals to be selected (for creating offspring), which is not
guaranteed when taking the non-dominated individuals. In our approach, we let sSAR perform
simulations in order for it to better distinguish the top n individuals. However, selecting those
individuals is done via another analysis method, called NSGA-II [4].

Pareto Upper Confidence Bound
The Pareto Upper Confidence Bound (PUCB) algorithm [5] is another MAB algorithm that does

not require any form of scalarisation, and works directly with multiple objectives. The scalarisation
may result in a loss of information (by losing the Pareto relationships), so the PUCB algorithm is
more suited to be used in multi-objective settings.

This algorithm works in the same phase based manner as sSAR algorithm, however, in each
phase sub-optimal design points are removed. After each phase, the design points are ranked based
on the NSGA-II algorithm and the lowest ranked individuals are removed from the active design
points. In this way, the design points that are performing and potentially in the Pareto set get
more simulation runs. This algorithm thus spends most of the simulation budget on the better
individuals of the population.

The main disadvantage of the Algorithm 3 is that it needs to find the Pareto set twice per
simulation budget spent. Finding the Pareto set is dependant on a non-dominated sorting algorithm,
which is of complexity O(MN2) [4], where M is the number of objectives and N is the population
size. While it scales quadratically on the population size, it comes with a significant overhead when
having a high simulation budget, i.e. when the number of simulations per generation is large. For
example, when running a GA with a population of 100 over 50 generations with a budget of 10.000
simulations per generation, the Pareto front has to be calculated 2 · 50 · 10.000 = 1.000.000 times.
However, earlier research [5] has shown that PUCB is more fair and more robust when compared
to scalarised algorithms.

Figure 1 visualizes the differences between three methodologies discussed in this section. We
perform experiments and present our results with all of these approaches in the next section. The
design points are ranked from the best (left) to the worst (right) on the horizontal scale. Higher
(vertical) bar per design point refers to more evaluations on that design point.

2.2 Results

We study how the GA performs based on the presented simulator and GA operators. As a fitness
evaluation method, we use the MCS algorithm for this purpose. These results are obtained by
running 100 GAs with a population of 100 over 50 generations. The crossover and mutation
probability are respectively 1.0 and 0.3 and selection is done using NSGA-II.
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Algorithm 3 Pareto UCB

Require: A list of k design points D
Require: The simulation budget n

1: function pareto ucb1(D, n)
2: N ← {1}k ▷ Ni is the number of times di is simulated
3: Initialize X̄
4: for di ∈ D do ▷ simulate each individual once
5: simulate di
6: update empirical reward vector xi ∈ X
7: end for

8: repeat
9: A∗ ← Pareto set of X

10: A′ ← Pareto set when adding

√
2 ln (n 4

√
D|A∗|)

Ni

to all x ∈ X

11: simulate random individual i ∈ A′

12: update xi ∈ X

13: until
∑|N |

i Ni ≥ n ▷ When simulation budget is reached

14: return X, N
15: end function

Regular MCS

Pareto
Upper-Confidence

Bound (PUCB)

Scalarized, Successive
Accepts and Rejects

(sSAR)

GA operator: fitness/evaluation operator

1) Monte Carlo
Simulation

2) Scalarized Successive
Accepts and Rejects

3) Pareto Upper-Confidence
Bound

23

GA operator: fitness/evaluation operator

1) Monte Carlo
Simulation

2) Scalarized Successive
Accepts and Rejects

3) Pareto Upper-Confidence
Bound

23

GA operator: fitness/evaluation operator

1) Monte Carlo
Simulation

2) Scalarized Successive
Accepts and Rejects

3) Pareto Upper-Confidence
Bound

23

Figure 1: Number of evaluations performed per design point (by the simulator) in a population
based on MCS, sSAR and PUCB algorithms.
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Figure 2: Average objective values over the generations of 100 GAs with a population of 100 using
MCS with 100 simulations per design point.
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Figure 3: Average of the best candidates regarding the three objective values over 50 generations
of 100 GAs with a population of 100 using MCS with 100 simulations per design point.

Figure 2 illustrates the evolutions of objectives over the generations based on the average of
the population. From these graphs, we can observe that the MTTF increases over the generations,
while the other two objectives decrease. The standard deviation seems to be remarkably high, but
this is an inherent property of the NSGA-II selection algorithm, which aims to uphold a diverse
population by utilising the crowding distance.

Figure 3 shows the average of the best designs found at each generation. The best designs are
those with the highest MTTF, the lowest power consumption, or the smallest size. The first graph
in Figure 3 demonstrates that after 50 generations, better designs are still being detected. This is
not the case for the power consumption objective, where the best design point is found after 15
generations in all GAs. The best designs in terms of the size objective is even earlier detected, at
10 generations. Since the size is a discrete objective, finding the most optimal design point in this
objective (i.e., one CPU) can quickly be found. The optimal power consumption is also detectable
after a certain number of generations since our design space allows for all applications to be run by
a single CPU, which will result in the lowest possible power consumption.

Figure 4 shows the objective space of all the non-dominated design points at generation 50 from
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Figure 4: Non-dominated design points of the final population obtained from running 100 GAs with
a population of 100, running for 50 generations using MCS with 500 simulations per design point
compared with 10,000 random design points with 1,000 simulations each. Note that the objectives
of the GA are three-dimensional, but are projected towards a lower dimension.

the 100 GAs. It also plots 10,000 random design points to give a perspective on where the GAs
are converging. When looking at the possible combinations of two out of the three objectives, we
can see that the results of the GA are going in the correct direction. Note that there is only a
single Pareto optimal point when comparing the size with power consumption ( Right-most graph
in Figure 4) since they both try to be minimised while being dependant on each other, resulting in
one optimal point.

2.2.1 GA with MAB algorithms

In this section, we present the result of GA execution together with sSAR and PCUB algorithms.
To compare the different evaluation methods, we have been running 100 GAs with a population
of 100 over 50 generations for each of the evaluation methods with a set of three different sample
budgets. Since the number of samples that sSAR spends is dynamic, the plots of the experiments
contain the average number of samples that were spent per design point.

When spending fewer samples (see the top row in Figure 5), the MAB based algorithms seems
to perform better than the MCS on the MTTF objective, but performing worse on the other two
objectives. sSAR seem to perform better on 50 samples on the MTTF objective, especially around
the 30th generation. At 100 samples, MCS and PUCB seems to both perform equally well, and
both better than sSAR for the MTTF objective. It is noteworthy that this is for the average
objective values for the whole population (for each generation). However, we are interested more in
the best individuals found by the algorithm (and the Pareto set).

When looking at the best design points on the three objectives in Figure 6 and Table 1, we
can observe more notable differences. For all the sample budgets, PUCB seems to be able to
find a design that has a higher MTTF when compared to the other two approaches. sSAR seems
to perform the worst at finding the most optimal candidates in regards to the MTTF objective.
Finding the most optimal candidates in the other two objectives does not seem to be influenced
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Average Best

Method simulations MTTF Power usage MTTF Power usage

MCS 10 50.147 ± 3.6807 0.0294 ± 0.0011 76.6266 ± 3.0939 0.0167 ± 0.0003
50 50.380 ± 3.7923 0.0296 ± 0.0011 77.0716 ± 3.1870 0.0167 ± 0.0003
100 50.988 ± 3.9172 0.0297 ± 0.0010 77.3854 ± 3.3186 0.0166 ± 0.0003

sSAR 10 50.380 ± 3.7923 0.0295 ± 0.0010 75.9460 ± 2.8626 0.0167 ± 0.0003
50 51.131 ± 4.0339 0.0298 ± 0.0010 76.9853 ± 3.2202 0.0167 ± 0.0003
100 50.725 ± 3.8127 0.0296 ± 0.0011 76.9718 ± 3.1952 0.0167 ± 0.0003

PUCB 10 50.453 ± 3.806 0.0296 ± 0.0011 76.6485 ± 3.0642 0.0166 ± 0.0003
50 50.580 ± 3.8057 0.0295 ± 0.0011 77.1815 ± 3.3270 0.0167 ± 0.0003
100 50.772 ± 3.8608 0.0297 ± 0.0010 77.5057 ± 3.4650 0.0167 ± 0.0003

Table 1: Average objectives with their standard deviation, based on the evaluation methods and
the average number of simulations per design point

much by the choice of evaluation operator.
While PUCB does seem to perform better, its actual usage in the context of a GA is limited.

When comparing the overhead of using the algorithms, PUCB adds a lot of evaluation time (≈ 50x)
to yield a slightly better result. There might be scenarios where this overhead is not problematic
and the slight benefit of better design points might be beneficial. But since DSE in itself is known
to be a very time-consuming process, an extra overhead is not preferred. Nonetheless, it does
illustrate that addition of MAB approaches to DSE can outperform MCS, when they are being
utilised as an evaluation operator.

2.3 Conclusion

Modelling and exploring adaptive embedded systems is a time-consuming and a complex task. This
work is continuation of the earlier presented adaptive system simulator, which creates and evaluates
individual hardware design solutions based on adaptive scheduling policies. For this deliverable, we
introduced a few methods to efficiently evaluating the design points through the simulator, within
a GA and provided experiments to gain insights on their performance and behaviour.

The results from our experiments also demonstrate the scope for further improvement in
evaluation time. We expected PUCB and sSAR to improve the simulation time per design point,
however we found the opposite to be true. Partial evaluations (to reward a design point for further
simulations) caused unforeseen overheads that eventually increased the overall time DSE needs
to converge. As an extension to this work, we are designing an approach where statistics or some
objective values from whole simulation of one generation define the simulation budgets for next
generation. It is still similar to MAB approach, but not really based on arms (partial evaluations)
in the traditional sense.
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Figure 5: Comparison of the average objective values over generations between MCS, sSAR and
PUCB
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Figure 6: Comparison on the average best objective values over the GA generations between MCS,
SAAR and PUBC.
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In the ADMORPH design methodology, the identified best configuration will be subjected to an
in-depth simulation to find possible failures and obtain the best possible system reaction to each
possible fault.

3 Adaptivity-aware real-time scheduling policies

Real-time applications are described by the domain-specific language (DSL), provided by Task 1.1,
and represent a directed acyclic graph (DAG). In Task 3.3, scheduling policies are developed to
guarantee the execution of the DAG within the specified deadline. To connect the tools of the
different work packages, the ADMORPH Exchange Format (AXF) was proposed to standardise
the representation of DAGs and their additional non-functional properties like deadlines. This
extensible text-based format follows the DOT format specification to describe graphs consisting of
nodes and edges in-between.

The main objective of this task is to enable a WCET estimation of a system that is dynamically
adapting to faults. Our scheduling policies will guarantee the execution of the DAG within a given
deadline under the presence of faults, up to a predefined number of potentially occurring faults.

Different countermeasures are required to keep the system in an operable state, depending on
the type of the fault. If a permanent fault occurs, a processing element (PE) fails ultimately and
has to be removed from the set of active PEs. As a consequence, an alternative task schedule has to
be selected, which is feasible with a reduced number of PEs, while still guaranteeing the complete
graph execution within its deadline. Alternatively, transient faults demand only the re-execution of
the affected task. Depending on the tightness of the schedule, the overall execution time, even with
re-execution of a single task, can be still below the WCET.

Based on the fault model with the expected rates of transient and permanent faults, the DAG
deadline, and the individual task execution times, different schedules for the DAG execution can
be calculated. By specifying the number and type of faults that must be tolerable during the
execution, the required number of PEs can be determined. This allows for a trade-off between error
coverage and cost of additional (spare) hardware.

The ADMORPH scheduling run-time environment (RTE) reads the DAG from the AXF file to
calculate possible schedules, and executes the graph. Different hardware architectures are supported,
since the tasks are provided as C source code, and are compiled for the target architecture. The RTE
allows to measure the task execution of a DAG to record the observed execution times, and stores
these execution times in the AXF. With this, the scheduling computations can be performed on a
server system, independent of the target architecture. This is especially beneficial in combination
with the design space exploration (DSE) of Task 3.2, where task schedules for different system
configurations have to be calculated repeatedly.

Building on the work described in Deliverable 3.2, the RTE was enhanced to support spare PEs
and a remapping of tasks to PEs in case of a permanent error. Further, a fault-injection mechanism
was developed to trigger the error detection mechanism of the RTE, which allows the simulation of
both permanent and transient faults.

Next, scheduling policies were developed that consider a given fault model to calculate possible
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schedules for a DAG with a specified minimum number of tolerable faults. This includes the
analysis of the reconfiguration phase and the consideration of the impact of the reconfiguration on
the overall graph execution.

However, remapping PEs on a different core in case of permanent failure, as well as switching
between schedules with different task mappings, leads to additional interferences. Given the
situation that a task was already executed once on a processing element, the local caches already
hold the instructions for subsequent executions, as well as constant data input that does not result
from another actor execution. If this core fails and the task requires to be remapped, additional
traffic hits the bus or interconnect network, since the instructions and data have to be fetched
again. This interferes with the concurrent execution of other tasks in the system, and potentially
delays the execution of other actors, thus impacting the worst case behaviour. As a consequence,
these interferences must be considered in the schedulability analysis.

4 Timing analysis for certification in heterogeneous pro-

cessing platforms

Safety-critical applications typically have tasks with real-time requirements that must be met in
order for the system to be considered safe. Adapting the execution of such tasks, if not done
properly, poses a threat to safety as timeliness and predictability become hard to verify. In
addition, contemporary heterogeneous processing platforms, in particular COTS platforms, have
complex processing architectures, an increased level of shared resources, and complex interconnect
infrastructures. This structure makes it very difficult to calculate accurate bounds for the Worst-
Case Execution Time due to shared-resource contention that causes timing interference. On top
of timing interference, adapting the execution order, i.e. the task schedule poses an additional
challenge as the amount of timing interference changes.

In Task 3.5, we consider the certification challenges that stem from adapting a system and
its task schedule, which is in line with ADMORPH, and not how to generate a single schedule
for heterogenous platforms. In fact, this is an on-going research topic with several EU projects
dedicated to that, e.g. ARGO, MASTECS, etc. In order to provide a system that can be certified
the standards of the domain (e.g. in avionics DO-178C, ARINC 653, etc.) define, either explicitly
or implicitly, several artifacts that should be presented to the certification authority. When it
comes to hardware configuration and scheduling, the certification authorities (CAs), at their highest
certification level, require that H/W configuration and schedules are determined at design-time and
are presented as artifacts to the CA. In lower certification levels, such requirements are gradually
relaxed and approved scheduling algorithms can be used at runtime, alleviating the need for the
a-priori generation of schedules.

In order to cover such a varying spectrum of timing analysis requirements for adaptive systems, we
employ the standardized Architecture Analysis and Design Language (AADL) and the CHEDDAR
timing analysis tools. AADL is an architecture description language, extensible by annexes, and is
used to model the software and hardware architecture of an embedded, real-time system. Having an
AADL model of the system allows to perform several types of analysis, depending on the annexes
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uses, including Fault-Tree Analysis, Failure mode and effects analysis as well as scedulability
analysis. CHEDDAR is a schedulability analysis tool for AADL that includes known scheduling
algorithms, e.g, EDF, RM, Hierarchical Scheduling policies (ARINC 653), etc. Having a common
model and industry-used tools that enable schedulability analysis along with fault-analysis is well
aligned with the goals of ADMORPH.

Nevertheless, these models and tools have not been designed for adaptive systems and it is
generally considered quite tedious to write such models. To obtain AADL models that encompass
adaptivitly and to enable the aforementioned analysis, we utilize the Multi-model Model of
Computation (MoC) defined in Task 3.4, “Models of computation and derived architectures to
allow seamless reconfiguration”.

4.1 Models of computation and derived architectures to allow seamless
reconfiguration

4.1.1 Running Example

Consider an embedded computer of a search-and-rescue civil aircraft that contains the functionality
necessary for radar and radio communication and that runs two other tasks: one high-criticality
task and another low-criticality one. An example schedule for when the aircraft is cruising is
illustrated in Figure 7a. It meets the timing requirements (deadlines) of all tasks on a dual-core
architecture. While cruising, the radar is looking for large objects in its immediate flight path,
whereas while searching for survivors the radar is looking for smaller objects in all directions. As a
result radar changes its worst case execution time requirement for the two different phases of the
mission and possibly also its invocation frequency (or period). In our working example, this would
correspond to a deadline change for the radar from time instance t = 7 to time instance t = 4.5, as
illustrated in Figure 7b. Again, a valid schedule can be found. In addition, when a core overheats,
the operating frequency of that core needs to be dropped to avoid permanent damage. This results
in potentially longer executions. As a result, radar and radio can no longer be co-located on the
same core and the low-criticality task must be dropped, both in cruise mode (Figure 7c) and in
search mode (Figure-7d), since no feasible schedule can be found with all tasks executing.

4.1.2 Task model

In task-models, a system is modeled by a set of tasks T that are executed periodically. Each task τ
releases a job jτ every pτ time units, called the period. That job j must complete within dτ ≤ pτ
times units, called relative deadline. The Worst-case execution time (WCET) for any job of task τ
is denoted as Cτ .

Definition 1 (Task-model). A task-model is the tuple TM = (T,C, P,D):

(i) T is the set of tasks.

(ii) C is the set of WCET of each task
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(a) Normal execution while cruising (b) Normal execution while searching

(c) Abnormal execution while cruising (d) Abnormal execution while searching

Figure 7: (Motivational example) Execution of the cruise/search modes in normal/abnormal timing
conditions

(iii) P is the set of periods of each task

(iv) D the set of deadlines of each task

4.1.3 Computing architecture model

At the time this report was written, several research and commercial computing platforms with
multiple Processing Elements (PE) were available. These broadly can be categorised according to
i) the type of PEs, ii) the on-chip memory organisation and iii) the network, in case of multiple
embedded devices as illustrated in Figure 8a.

Homogeneous (as opposed to heterogeneous) are platforms where all PEs are of the same type,
e.g. CPU, GPU, DSP, Routers, etc., and have the same overall speed when executing a task (i.e. all
PEs have the same clock speed, cache size, I/O interfaces and any other mechanism that can affect
the PEs’ timing behavior). From the perspective of how shared memory is organised, there are
three main categories: centralised, distributed and mixed. In a centralised memory organisation,
the time for any PE to access any memory location (typically via a bus) is uniform, when there is
no interference, that is, access times do not depend on the targeted memory location (address).
On the other hand, in the distributed memory organisation, PEs use a different mechanism, such
as Direct Memory Access (DMA) engines or on-chip-networks (NoCs), to access remote memory
locations, thus having a Non-Uniform Memory Access (NUMA) in terms of timing. The mixed
memory organisation is a combination of the centralised and distributed memory organisations,
where a subset of PEs access their shared memory uniformly, but accessing the memory shared by
another set of PEs is non-uniform.
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(a) Centralised architecture (b) Distributed architecture (c) Mixed architecture

Figure 8: Possible architectures

In order to capture the different architectures with a single model that will be used to model
adaptive systems, the generic architecture model is introduced. A single model is important as it
enhances applicability of the proposed methods, which in the context of hard real-time systems is
desirable, as safety properties have to be proven only once.

Definition 2 (Generic architecture model). A generic architecture model is a tuple GA = (C, L,
M, N ) where:

(i) C is a set of sets of PEs; each set c ∈ C is called a computing cluster, with each computing
cluster c containing one or more cores k, i.e. k ∈ c

(ii) L ⊆ C × C is a set of links among computing clusters that form the network

(iii) M is a set of memory banks/locations

(iv) N is the set of network channels of a network interface

When the generic architecture model is instantiated to a concrete architecture model matching
with one of the architecture types described earlier, parameters are chosen accordingly:

(i) the centralised architectures MA = ({{k1, . . . , kN}}, ∅,M, ∅) are instantiated without any
network (Figure 8a),

(ii) the distributed architectures DA = ({{k1}, . . . , {kN}},L,M,N ) are instantiated with one
core k per cluster (Figure 8b), and

(iii) mixed architectures are instantiated as MX = (C,L,M,N ) (Figure 8c).

For the architectures that have a network, it is assumed that each cluster has one network interface,
with multiple channels.
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Figure 9: State transition of the running example

4.1.4 Model Reconfiguration

A task model effectively describes the system requirements from a functional and timing perspective,
whereas the architecture model describes the physical capabilities of the underlying hardware.
Any change of any of the parameters of the task or architecture mode constitutes an adaptation;
revisiting our previous example of the search-and-rescue aircraft, the change in timing requirements
in the various phases of the missions, is reflected by a change in the corresponding task model, that
is transitioning from a task model TM , for the cruise mission, to a task model TM ′, for the search
mission. Such a transition can be performed safely, if it has been either pre-computed at design
time or if a schedulability test is passed at runtime. In a similar manner, a change in hardware
capabilities (e.g. the failure of a core) can be reflected as a transition from an architecture model
GA to a new architecture model GA’ without this core, as illustrated in Figure 9.

Utilizing task and architecture model pairs to describe the state of a system, including the desired
state into which a system should evolve, we can describe all required adaptations effectively, including
updates of task graphs with reconfiguration tasks, on-demand redundancies, communication re-
mapping, failing cores, etc. As such, these models can be used to build algorithms that solve the
associated optimisation problems, either at design-time or at runtime.

4.2 Multi-model to AADL generation for timing analysis

In order to be able to perform timing analyses and fault analyses, we developed an automatic
generator of AADL models from a Multi-Model MoC. The structure of the workflow is illustrated
in Figure 10. As shown in the Figure, the Multi-Model is a collection of textual files (YAML)
where each file describes the state of software and hardware in one configuration. In addition, for
the fault-analysis, several other files are created, which describe the types of errors, replication,
etc. With those inputs, the generator creates a fundamental AADL model that can be used for
schedulability and fault-analysis.
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Figure 10: AADL generation tool

Despite the fact that the generated AADL model is able to perform the aforementioned analyses,
certain elements may not be incuded as the type of certificatition heaviliy guides the extend of
the AADL model and this is a proof-of concept approach. Hence, in order to reach certification
standards the engineer may have to augment the AADL model with the required attributes, but the
skeleton and the majority of the model is generated automatically. For the sake of coherence, we
shall report more detailed examples of the used workflow and tools in Deliverable D5.3, alongside
the use-cases, where it is more relevant.

5 Providing formal guarantees on the adaptation layer

In Deliverable D3.2, we introduced the theoretical underpinning of the study of weakly-hard systems,
in the most possible general way, and the importance of the weakly-hard model for adaptive and
morphing embedded systems. Using weakly-hard systems, we can model problems and faults and
properly determine when the embedded system needs to react to external event – being these events
cyber-attacks, faults, or due to interference of any sort.

Weakly-hard tasks behave according to patterns of hit and missed deadlines that are (mainly)
window-based. The model constrains one or more of the following items: (i) the minimum number
of deadlines that are hit, (ii) the minimum number of consecutive deadlines that are hit, (iii) the
maximum number of deadlines that may be missed, or (iv) the maximum number of consecutive
deadlines that may be missed. The aim of our research here is to provide a formal analysis tool for
systems that satisfy one or more of these weakly-hard constraints. The satisfied constraints form
the set Λ, properly defined in Deliverable 3.2, where we discussed our theoretical investigation.
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The last part of our work on Task 3.6 was devoted to a more practical endeavour: the creation
of a software library1 for the analysis of weakly-hard tasks to:

(i) compare two arbitrary weakly-hard constraints or two sets of weakly-hard constraints, obtain-
ing answers about their dominance (are the two constraints equivalent, does one dominate
the other, or is there no dominance relation between the two),

(ii) translate a weakly-hard constraint or a set of weakly-hard constraints into a corresponding
directed labeled graph, that represents (and is able to generate) all the sequences that belong
to the satisfaction set of the set of constraints,

(iii) produce all the sequences of arbitrary length that satisfy a set of weakly-hard constraints.

Our software library, WeaklyHard.jl is built having scalability as a first-class citizen, to allow the
analysis of relevant large case studies like the ones defined in Work Package 5.

5.1 WeaklyHard.jl

We distribute WeaklyHard.jl as an open-source package, written in the Julia [2] programming
language. Julia is a scripting language with Just-In-Time compilation. The language design is
centered upon two concepts: type-stability and function specialisation through multiple-dispatch.
The type-stable compilation provides an implementation that is close to the hardware, resulting in
an efficient code execution. Multiple-dispatching allows us to write a user-friendly code library (or
package). Additionally, Julia’s builtin package manager simplifies the distribution of non-proprietary
packages.

Any weakly-hard constraint can be represented using an automaton. Automata have been used
in the analysis of networked systems [10, 19], schedulability [20, 7, 8], and control systems [12,
13, 14, 18]. Generally, for weakly-hard constraints, each automaton vertex represents the task’s
state, i.e., the relevant suffix of the sequence of job outcomes. Edges, on the contrary, represent
an outcome, that force a transition from a current state to a different one, based on missing or
hitting the current deadline. Weakly-hard systems are however inherently complicated to analyse,
due to their combinatorial nature. While the representation is simple enough, the complexity is
translated to the state space and comes into play when the window length increases and the number
of vertices rapidly grows.

In the following, we present a novel and scalable approach to the generation of automata that
represent sets of constraints.

5.1.1 Weakly-hard constraints as directed labeled graphs

Suppose that τ ⊢ Λ. We use GΛ = (VΛ, EΛ) to indicate the directed labeled graph GΛ corresponding
to the automaton representation of τ . Here, VΛ represents the set of vertices in the graph and
EΛ represents the directed edges between vertices (also denoted transitions). Each vertex vi ∈ VΛ

1The library is distributed as open source software at https://github.com/NilsVreman/WeaklyHard.jl
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represents a word wi ∈ S (Λ). With a slight notational abuse, vertices vi will occasionally (when
it is evident from context) be treated as their word representations wi. The transition ei,j ∈ EΛ

corresponds to a tuple ei,j = (vi, vj, ci,j) where the vertex pair vi, vj ∈ VΛ denotes respectively the
tail and head of the transition, and the character ci,j ∈ Σ corresponds to the transition’s label. A
transition ei,j is feasible if and only if the concatenation of the character ci,j to the word wi satisfies
all the constraints in Λ. Formally:

ei,j ∈ EΛ ⇔ {wi (2, |wi|) , ci,j} = wj ⊢ Λ.

Finally, for two vertices vi, vj ∈ VΛ we say that vj is a direct successor of vi if there exists a
transition ei,j ∈ EΛ. Without loss of generality, we will assume that each vertex vi ∈ VΛ can have
at most two direct successors with distinct transition outcomes, i.e., one successor vj1 through ei,j1
with label ci,j1 = 1 and (if permissible) one successor vj2 through ei,j2 with label ci,j2 = 0.

5.1.2 Addressing scalability

It is always possible to construct the automaton GΛ in a näıve way, including |SN (Λ)| vertices,
where N is the maximum window length of the constraints in Λ. In order to improve performance
and scalability, we include the following optimisations:

(i) representing words as bit strings,

(ii) minimising the automata size by combining equivalent vertices during the automata generation,
and

(iii) representing large sets of constraints with their dominant subset.

Support for bit string operations (like shifting) is essential for efficient sequence management.
Logical and bitwise operations are directly supported by all processors, thus they are highly
optimised and require a minimal amount of instruction cycles. We use the following notation: & is
the bitwise and, | is the bitwise or, and ≪ is the logical left-shift.

Each word w ∈ S (Λ) is a sequence of outcomes and can therefore be interpreted as a string
of bits. This follows from a miss or hit outcome being represented by respectively a 0 or 1 in the
alphabet Σ. The rightmost character in w is the outcome of the last job, hence w = 001 implies
that the last deadline has been a hit, but the two previous ones were missed. Assuming that the
task τ experienced the outcomes w and the next outcome is c ∈ Σ, then the new sequence of
outcomes becomes w′ = (w ≪ 1) | c.

The size of the näıve automaton can be reduced substantially by combining vertices that would
otherwise result in language-equivalent states [9]. Two vertices vi1 , vi2 ∈ VΛ are considered equivalent
if they share the same direct successors with the same transition outcomes, i.e., ei1,j = ei2,j, ∀vj ∈ VΛ.

As an example, consider the AnyHit constraint λ =
(
x
k

)
=

(
1
2

)
. Trivially there are only three

feasible vertices in the näıve automaton, since there are 2k = 4 words in Σk and w = 00 is infeasible.
The words w1 = 11 and w2 = 01 share the same direct successors with the same transition outcomes,
i.e., they are equivalent since (w1 ≪ 1) = (w2 ≪ 1) and (w1 ≪ 1) | 1 = (w2 ≪ 1) | 1, considering
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Algorithm 4 Generation of the minimal automaton representation GΛ, of a set of weakly-hard
constraints Λ.

1: procedure BuildAutomaton(Λ)
2: VΛ ← {v1 = (1≪ n)− 1}
3: EΛ ← ∅, f inished← false
4: while not finished do
5: finished← true
6: for vi ∈ VΛ do
7: if ∄ei,j ∈ EΛ then
8: finished← false
9: vj0 ← compact (Λ, (vi ≪ 1))
10: vj1 ← compact (Λ, (vi ≪ 1) | 1)
11: if vj0 ⊢ Λ then
12: VΛ ← VΛ ∪ {vj0}
13: EΛ ← EΛ ∪ {ei,j0 = (vi, vj0 , 0)}
14: end if
15: VΛ ← VΛ ∪ {vj1}
16: EΛ ← EΛ ∪ {ei,j1 = (vi, vj1 , 1)}
17: end if
18: end for
19: end while

return GΛ = (VΛ, EΛ)
20: end procedure

the window length k = 2. Intuitively, the fact that it is possible to combine vertices comes from
the realisation that the past becomes irrelevant. Once a new outcome is obtained, only the latest
outcomes are relevant. Combining the equivalent vertices results in a new vertex representing the
word w = w1 & w2. When a vertex vi is added to the graph, its direct successors vj0 and vj1 are
generated and added to the set of vertices VΛ if and only if wj0 , wj1 ⊢ Λ respectively. Thus, all
infeasible and equivalent vertices (and corresponding paths in the näıve graph) are removed at
runtime.

Finally, we construct the graph GΛ∗ for the smallest possible set of constraints Λ∗ ⊆ Λ that is
equivalent to Λ, i.e., such that S (Λ∗) = S (Λ). This equivalence also translates to the automata
GΛ∗ ≡ GΛ since they represent all the feasible sequences w ∈ S (Λ) = S (Λ∗).

Algorithm 4 explains how we generate the minimal automaton GΛ. The automaton is initialised
with a single vertex corresponding to the word w1 = 1n, v1 = (1≪ n)− 1. Here, n is the largest
number of hits required in a window from any of the constraints λi ∈ Λ, e.g., n = 3 for the
set Λ =

{(
3
5

)
,
〈
2
5

〉}
. As long as there exists vertices vi ∈ VΛ that have no direct successors, the

successors vj0 , vj1 are created and added to the vertex set if the resulting words satisfy all the
constraints in Λ. Since the weakly-hard constraints are vulnerable to additional deadline misses
(but not hits), the constraints need only to be verified in the case when a deadline miss is added to
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Figure 11: Automata Gλ1 , Gλ2 , and GΛ representing respectively λ1, λ2, and Λ = {λ1, λ2} from
Example 1.

the sequence, i.e., for vj0 .
The new words are passed through a function in order to compact them. This function reduces

the new word to the minimal, equivalent word that would still be able to represent the constraints in
Λ. In particular, if either vl0 = (vi ≪ 1) or vl1 = (vi ≪ 1) | 1 would result in an existing, equivalent
vertex vi0 or vi1 , they are reduced to the corresponding existing one.

We now provide a brief example to illustrate how the automata differ when different constraint
types are taken into account. In particular, we focus on AnyHit and RowHit constraints, since they
have been relatively neglected in the scientific literature. We consider a set Λ = {λ1, λ2} where
λ1 =

(
1
3

)
and λ2 =

〈
2
6

〉
.

Example 1 (Automaton for a Set of Constraints). Given the two weakly-hard constraints λ1 =
(
1
3

)
and λ2 =

〈
2
6

〉
, we apply the theorems presented in Deliverable D3.2 and confirm that there is

no partial ordering between the constraints, i.e. λ1 ⪯̸ λ2 and λ2 ⪯̸ λ1. Following the steps in
Algorithm 4, we generate the minimal automaton representations of the two constraints, as well as
the automaton that represents the constraint set Λ = {λ1, λ2}, i.e., Gλ1, Gλ2, and GΛ. The results
are shown in Figure 11, where the leftmost, middle, and rightmost directed labeled graphs correspond
respectively to Gλ1, Gλ2, and GΛ.

The most important novelty presented in this work is the possibility to analyse weakly-hard
constraint sets containing all the weakly-hard constraints types. Prior work proposed alternative
solutions to the automaton generation problem, handling either a specific type of constraint [18], or
a separate solution for each individual constraint type [12]. Being able to analyse sets of constraints
in a scalable way brings us one step closer to the analysis of traces coming from real systems, in
which the window lengths could be quite large and in which it is often easier to constrain the
minimum number of hits (e.g., via execution in a protected environment without interference)
rather than the maximum number of misses.
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Table 2: Functions offered by WeaklyHard.jl.

Function Description

AnyHitConstraint(x, k) Defines a constraint λ =
(
x
k

)
AnyMissConstraint(x, k) Defines a constraint λ =

(
x
k

)
RowHitConstraint(x, k) Defines a constraint λ =

〈
x
k

〉
RowMissConstraint(x) Defines a constraint λ = ⟨x⟩

is satisfied(Lambda, w) Returns true if w ⊢ Λ, i.e., if the word w satisfies all
the constraints in Λ, and false otherwise (note: can be
invoked also passing a single constraint λ as parameter)

is dominant(lambda1,

lambda2)

Returns true if λ1 ⪯ λ2 and false otherwise

is equivalent(lambda1,

lambda2)

Returns true if λ1 ≡ λ2 and false otherwise

dominant set(Lambda) Returns Λ∗ ⊆ Λ

build automaton(Lambda) Returns the automaton GΛ (note: can be invoked also
passing a single constraint λ as parameter)

random sequence(G, N) Returns a word w, |w| = N obtained through an N -step
random walk in GΛ

all sequences(G, N) Returns the satisfaction set SN (Λ) corresponding to GΛ

5.1.3 WeaklyHard.jl functionality

The most relevant user-exported functions provided by WeaklyHard.jl are summarised in Table 2.2

In addition to the automata generation, the toolbox provides functions to compare constraints
and obtain answers about their dominance and equivalence, to reduce a set of constraints to their
dominant subset, and to generate sequences of arbitrary length satisfying sets of weakly-hard
constraints. Furthermore, the tool includes additional functions as syntactic sugar to simplify the
user experience, that are excluded from the table as they do not add significant functionality.

2The code includes a README file that guides the user through the setup of the package and provides simple
usage examples. The only prerequisite is the Julia interpreter and compiler, available at https://julialang.org.
The code can be found at https://github.com/NilsVreman/WeaklyHard.jl.
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Figure 12: Execution time comparison for AnyHit and RowHit constraints with WeaklyHard.jl

and WHRTgraph [12] increasing the difference between window size and number of hits constrained.
Baseline values are reported on top of the corresponding plots.

5.2 Experimental results

We now present some brief extract of our experimental results.3 First, we assess the scalability of the
automaton generation code, comparing WeaklyHard.jl with the state-of-the-art, WHRTgraph [12, 13].
Then, we conduct a sensitivity analysis of WeaklyHard.jl to determine which parameters affect
the execution time for the automata generation in cases that cannot be handled with other tools,
i.e., sets of weakly-hard constraints. We provide results on how the type of constraints, maximum
window length, and constraint set cardinality affect the scalability of the automaton generation.
Finally, we investigate the average cardinality of the dominant constraint set Λ∗ as a function of
the cardinality of the original set, |Λ|.4

5.2.1 Comparing WeaklyHard.jl and WHRTgraph

The literature contribution that is closest to our research is WHRTgraph [12, 13]. WHRTgraph’s analysis
of weakly-hard tasks is also based on the construction of automata. While WHRTgraph handles only
one weakly-hard constraint at a time, it can construct the automaton that corresponds to AnyHit

and RowHit constraints, making it the reference in terms of analysis capabilities. WHRTgraph is
implemented in MATLAB, while WeaklyHard.jl is implemented in Julia. Hence, comparing the

3All the reported experiments ran on an Intel Xeon E5-2620 v3 @ 2.40GHz CPU with 126GB RAM memory.
4Note that the dominant set of constraints has been introduced in Deliverable 3.2 and the method to determine

which constraints belonging to the original set Λ are included in Λ∗ was presented as part of our theoretical analysis.

ADMORPH D3.3 Third report on analysis techniques for adaptive systems Page 27 of 37



ADMORPH – 871259

10 15 20 25 30

0.0001

0.01

1

100

max k

ex
ec
u
ti
on

ti
m
e
[s
]

(l
og

sc
al
e)

|Λ∗| = 2
Without RowHit

10 15 20 25 30

0.0001

0.01

1

100

max k

|Λ∗| = 4
Without RowHit

10 15 20 25 30

0.0001

0.01

1

100

max k

|Λ∗| = 2
With RowHit

10 15 20 25 30

0.0001

0.01

1

100

max k

|Λ∗| = 4
With RowHit

Figure 13: Execution time comparison for the generation of the automaton for sets of constraints
with increasing maximum window sizes max k. Average values are reported alongside the areas
between minimum and maximum execution times.

execution times of the two (on their own) is pointless. Furthermore, we are more interested in
assessing the scalability to an increase in the constraint window size than the absolute numbers for
the execution times. We therefore define a baseline case, for a fair comparison, i.e., the reported
results are fractions and multiples of the baseline, which is different for each tool and constraint
type.

To test the scalability of the automaton generation, we ask both WeaklyHard.jl and WHRTgraph

to generate the automata that correspond to the AnyHit
(
x
k

)
and RowHit

〈
x
k

〉
constraints for

x ∈ {1, 2, . . . , 10}, k = x+ i and i ∈ {0, 1, . . . , 10}. We divide the obtained results by the baseline
value, i.e., the execution time needed for the corresponding tool to generate the automaton for the
given constraint type, x = 2 and k = 4.5

Figure 12 shows the mean value of the execution time for the automaton generation, divided
by the corresponding baseline value, using a logarithmic y-axis. The baseline computation times
for AnyHit constraint are 8.4µs for WeaklyHard.jl and 32.4ms for WHRTgraph. On the contrary,
for a RowHit constraint, the baseline computation time is 8.6µs for WeaklyHard.jl and 17.7ms
for WHRTgraph. Due to the extensive computational time necessary to build the automata using
WHRTgraph, each automaton was built 30 times (i.e., each point in the figure is the mean of 30
execution times). WeaklyHard.jl is significantly faster, thus, each automata was built 100 000
times to reduce the variance in the resulting execution time.

WHRTgraph represents a weakly-hard constraint with an automaton that is slightly different, yet
equivalent to the one we generate in WeaklyHard.jl. In particular, the automaton generated by
WHRTgraph has fewer vertices and each transition represents the number of consecutive deadline

5The choice of the baseline case reflects the simplest constraint that is correctly handled by both WeaklyHard.jl

and WHRTgraph. Comparing the methods, we unveiled that WHRTgraph is unable to find an automaton for constraints
in which x = 1. The two plots for WHRTgraph in Figure 12 do not contain results for x = 1 (white filled markers)
precisely due to this problem.
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misses allowed between the vertices. Thus, a transition between two vertices in WHRTgraph is
not equivalent to one outcome (as for WeaklyHard.jl), reducing flexibility; multiple successive
outcomes for each transition make it difficult to handle sets of weakly-hard constraints. At a first
glance, an automaton representation with fewer nodes sounds more efficient. However, we show
that WeaklyHard.jl scales better than WHRTgraph by more than an order of magnitude (and, while
this is less relevant, the baseline numbers also show that WeaklyHard.jl is significantly faster).

Comparing the scalability of the different tools applied to the AnyHit constraints (leftmost
plots), the computational time complexities follow similar trajectories. However, we observe that
WeaklyHard.jl is more than an order of magnitude faster than WHRTgraph. The same is true for the
RowHit constraint graphs (rightmost plots). The speedup is due to the efficiency-improving features
included in WeaklyHard.jl. Additionally, despite the substantial amount of tests conducted with
WeaklyHard.jl, the execution time of WHRTgraph seem to follow a smoother trajectory. This is
due to the baseline values for WeaklyHard.jl being in the microsecond-range, i.e., if the mean
computation time for an automaton varies between 1ms and 2ms (e.g., due to extensive garbage
collection, or other types of noise like network interference) the value reported in Figure 12 would
jump from 100 to 200.

Overall, we conclude that even for a single constraint, treating scalability as a first-class citizen
allows us to reduce the execution time of the automaton generation by an order of magnitude
compared to the state of the art. In the following subsection, we focus on what WeaklyHard.jl
offers that is novel compared to the state of the art, i.e., the analysis of sets of heterogeneous
weakly-hard constraints.

5.2.2 Analysing sets of weakly-hard constraints

WeaklyHard.jl is the first tool that provides the ability to analyse sets of weakly-hard constraints.
In the following we conduct a sensitivity analysis to assess the scalability of the automaton generation
for a set of weakly hard constraints. In particular, we are interested in finding how the window size
affects the execution time of the tool, and how the composition of the set influences the execution
time.

We therefore conduct an experimental campaign, varying the input parameters and measuring the
execution time for the automaton generation. We randomise minimal dominant sets of constraints,
imposing that at least one of the constraints has a window size of k ∈ {10, 11, . . . , 30} and denoting
this value with max k. We generate sets with either |Λ∗| = 2 or |Λ∗| = 4. We allow these sets
to include one RowHit constraint or none, to test our conjecture that the inclusion of RowHit

constraints leads to an increase in the execution time for the automaton generation.
The results of our study are shown in Figure 13. For each of the values of max k in the figure,

we generate 50 dominant sets of constraints Λ∗. The figure shows the average execution time in
seconds (as a line) and the area representing the span between minimum and maximum execution
time values.

The first conclusion that we can draw is that the average execution times follow straight lines
in a logarithmic scale, thus clearly pointing to the exponential time complexity that follows an
increase of the maximum window size of the constraints. As mentioned in previous work [16], the
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complexity is inevitable when working with such expressive task models.
When the cardinality of the set |Λ∗| increases (i.e., comparing the two leftmost plots and the

two rightmost plots with one another) we do not experience a significant change in the maximum
execution time. In our experiments, we increase the cardinality of the set Λ∗ without introducing
dominated constraints. The additional constraints will very often just prune the resulting automata.
In fact, states that would have been reachable with fewer constraint become unreachable due to the
additional constraints. However, we experience a slight reduction of the execution times variance.
The reduction in the variance is explained by the nature of the dominant set. We compare two
dominant sets, Λ∗

1 and Λ∗
2, with the same max k. When |Λ∗

1| = 2 and |Λ∗
2| = 4, the set Λ∗

2 includes
constraints that are less restrictive (otherwise they would dominate the other constraints in the set).
Hence, the set Λ∗

2 is less likely to be trival to analyse, with the automaton generation taking longer
time in general. Incidentally, this is also the reason why we believe analysing sets that include more
than 4 weakly-hard constraints would not give additional insights on WeaklyHard.jl’s scalability.

Finally, when we include a RowHit constraint in the set Λ∗, the execution time increases by
more or less an order of magnitude. This is unsurprising and follows from RowHit constraints being
more difficult to analyse and enforce. In fact, combining the RowHit constraint with the other
weakly-hard constraints reduces the number of language-equivalent vertices in the automata and
hence increases the execution time of the algorithm. This is further reinforced by the fact that
when a dominant set Λ∗ includes a RowHit constraint, this implies that the other constraints in the
set have to be very conservative in order to neither dominate nor be dominated by it.

Overall, we remark that WeaklyHard.jl is able to generate an automaton for a set Λ∗ of 4
constraints with max k = 30, including a RowHit constraint, in less than 200 seconds. This is
achieved thanks to scalability being treated as a first-class citizen and enables the analysis of
constraints with large windows.

5.2.3 Dominant constraint set

In Section 5.2.2 we investigated dominant sets Λ∗ with cardinality |Λ∗| ∈ {2, 4}. Here we justify
why this is a relevant benchmark despite the low cardinality.

We select a maximum window size max k = 100. The window size is large enough that we can
find an expressive variety of constraints without partial ordering. We randomly generate sets Λ
containing |Λ| ∈ {1, . . . , 100} constraints. For each value of |Λ| we generate 1000 different sets,
excluding all the trivial constraints that would reduce to λ and λ. We then compute the minimal
dominant set Λ∗ corresponding to each set. Figure 14 shows the average cardinality of Λ∗ (solid
line) and the experienced range (area).

As can be seen, most constraint sets reduce to minimal dominant sets with cardinality less than
4, therefore motivating the relevance of our investigation of the automaton generation execution
time. Generally, it is also interesting to see that the generation of additional constraints tends
to reduce the cardinality of Λ∗ after a peak is reached. This is not surprising, as adding a new
random constraint increases the chances of the added constraint being dominant over some of the
constraints in the set.
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Figure 14: Average cardinality of the dominant set Λ∗ as a function of |Λ| with max k = 100 for
1000 randomly generated constraint sets Λ.

5.3 Conclusion

The research behind this work package is motivated by the attention the weakly-hard model is
receiving both in academic and in industrial research. We have developed WeaklyHard.jl, an
open-source tool for the analysis of weakly-hard tasks, including both functions to relate different
weakly-hard constraints to one another and functions to generate automata-based models for the
outcome of tasks that may miss some deadlines.

We envision WeaklyHard.jl to be used for understanding the relation between different weakly-
hard constraints and multiple constraint types. As an example, to validate our conjectures on
the relation between AnyHit and RowHit constraints, we used WeaklyHard.jl to generate all
the sequences satisfying a given constraint. We then inquired about the satisfaction of another
constraint via brute force testing. This gave us confidence in the formulation and proof of Theorems
presented in Deliverable D3.2, that complete the relation graph that links weakly-hard constraints
of different types.

This deliverable included an experimental evaluation focusing on the scalability of the most
critical function in WeaklyHard.jl, the generation of the automaton representing a set of weakly-
hard constraints. Furthermore, we analysed the dominance between different constraints and built
minimal dominant sets of constraints. To the best of our knowledge, WeaklyHard.jl is the first
tool that enables the analysis of tasks that satisfy sets of weakly-hard constraints.

6 Automatic validation of safety and security cases for

adaptive systems

Servers and consumer electronics (such as PCs or smartphones) have since long been designed
as generic platforms, which host many of different applications over their lifetime. With growing
flexibility demands for embedded systems, this trend of providing a platform has sprung over to
embedded systems. Embedded systems such as cars, trains, airplanes or e.g. satellites however
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have much more stringent security and safety requirements than consumer electronics. Thus, mixed
criticality systems are systems that allow the coexistence of software of different criticality levels
on the same hardware, while ensuring non-interference.[1, 17]

Figure 15: Example MILS system with partitions of different criticalities (red = untrusted, green
=trusted)

Mixed critical systems allow to run many applications in parallel. The integrity of safety and
security-critical systems is characterized by the need for non-interference. Non-interference is key
to avoid failure propagation.

Multiple Independent Levels of Security and Safety (MILS) is a high-assurance security ar-
chitectural approach for such mixed-critical systems based on the concepts of separation and
controlled information flow, providing strongly separated execution environments (15). These exe-
cution environments (“partitions”) can host e.g. standalone applications or entire guest operating
systems (such as e.g. Linux). MILS has origins in security since the 1980s [15]. However, also
safety is frequently included in the acronym’s expansion, given that the provision of deterministic
execution environments also covers non-interference e.g. protection from safety faults such as
accidental denial-of-service (“babbling idiots”). The MILS design can enable effective and efficient
compositional certification.

To be viable as a COTS product, a separation kernel is used in many types of different embedded
systems. That is, for a specific embedded system (e.g. in a car, in an electricity counter, etc.), a
system integrator buys a separation kernel and does an individual configuration suited to the needs
of the system[3]. In particular, the configuration also allows to connect workloads in partitions
together and to share resources (e.g. joint use of a network card or use of shared memory for
sharing data between partitions). But conversely this ability means that a system integrator that
does not understand or does not follow the guidance properly (by unintended configurations of
sharing of resources) may introduce interference.

In principle the assignment of communication channels and resources to a separation kernel can
be seen as a graph, as shown in Figure 16.
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Figure 16: Resources; graph representation of resource allocation

In addition to the the resource configuration at the separation kernel, applications can have
their own assignment of resources, as shown exemplarily for a webserver application in Figure 17.

Figure 17: Graph of a webserver

Of course, these representations also can be combined, as shown in Figure 18.
The German IDEA project had previously experimentally encoded graphs in the neo4j graph

database, which allowed us to visualise conflicts created by shared resources. Figure 19 shows the
detection of a shared resource (in this case, a console used for debugging purposes). In this case
having this shared console in a testing (debugging-enabled) system was intentional, but the system
integrator should pay attention to not having this configuration in the production system, if a
possible undesired interference channel is to be avoided.

In the ADMORPH project, we have automated the encoding of graphs: Our workflow now is to
parse the XML configuration file of the separation kernel as XML DOM, push that data into graph
analysis software (igraph in this case) and find shared resources by graph analysis. By application
of the this approach we have created queries to igraph on selected resources that check for shared
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Figure 18: Graph of a webserver combined with graph of separation kernel

Figure 19: Graph analysis detects shared resource usage

resources. A system integrator can use this, to detect shared resources, and then (manually) has to
judge whether the sharing was intentional or not.

When parsing the XML configuration, a lesson learned is that some of the configuration data
refers to the local context, and other to a global resource context. This has to be taken into account.
That is, when parsing configuration data (XML) globally shared resources must be detected and
appropriately handled. We therefore added resource attributes to the XML notation to identify
global resources, i.e. to distinguish global from local resources.

7 Conclusion

The research conducted in this work package has been presented in the following peer reviewed
publications:
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(i) Sobhan Niknam, Anuj Pathania, Andy Pimentel; T-TSP: Transient-Temperature Based
Safe Power Budgeting in Multi-/Many-Core Processors; IEEE International Conference on
Computer Design (ICCD 2021),

(ii) Nils Vreman, Richard Pates, and Martina Maggio; WeaklyHard.jl: Scalable Analysis of
Weakly-Hard Constraints; IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS 2022).

The simulator, whose latest advance is described in Section 2, is available as open source software at
https://github.com/sea-art/Simuflage/. WeaklyHard.jl, described in Section 5, is available
as open source software at https://github.com/NilsVreman/WeaklyHard.jl, and included in
the General Julia registry (https://github.com/JuliaRegistries/General).

When dealing with control systems, the joint spectral radius [11] is a very important tool.
Combining the automaton generation presented in Task 3.6 with the joint spectral radius (as
discussed in Work Package 1, Task 1.3) allows us to provide guarantees for control systems. This is
included in the following publications:6

(i) Jie Wang, Martina Maggio and Victor Magron; SparseJSR: A Fast Algorithm to Compute
Joint Spectral Radius via SparseSOS Decompositions; American Control Conference (ACC
2021).

(ii) Nils Vreman, Paolo Pazzaglia, Jie Wang, Victor Magron and Martina Maggio; Stability of
Control Systems under Extended Weakly-Hard Constraints; IEEE Control Systems Letters
and International Conference on Decision and Control (CDC 2022).
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Bertrand Leconte, Benôıt Triquet, Kevin Müller, Michael Paulitsch, Axel Söding-Freiherr von
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