
1

Zero-Jitter Chains of Periodic LET Tasks
via Algebraic Rings

Enrico Bini˚, Paolo Pazzaglia:, Martina Maggio;
˚University of Turin, Italy

:Robert Bosch GmbH, Germany
;Saarland University, Germany & Lund University, Sweden

F

Abstract—In embedded computing domains, including the automotive
industry, complex functionalities are split across multiple tasks that form
task chains. These tasks are functionally dependent and communicate
partial computations through shared memory slots based on the Log-
ical Execution Time (LET) paradigm. This paper introduces a model
that captures the behavior of a producer-consumer pair of tasks in a
chain, characterizing the timing of reading and writing events. Using
ring algebra, the combined behavior of the pair can be modeled as a
single periodic task. The paper also presents a lightweight mechanism
to eliminate jitter in an entire chain of any size, resulting in a single
periodic LET task with zero jitter. All presented methods are available
in a public repository.

1 INTRODUCTION

Modern commercial real-time applications, especially in
the automotive sector, rely on multiple tasks working in
sequence to implement complex functionalities such as driv-
ing assistance systems and advanced safety functions. These
systems require integrating a higher number of sensors
and actuators, as well as complex software to process the
data. For example, a vision-control pipeline [20], [29] uses
multiple sensors to collect data. The data is processed and
passed to a vision algorithm that extracts environmental
features. From this output, a control algorithm determines
the appropriate actions for safe autonomous driving.

On the programmer side, this complexity manifests in
the challenge of integrating a large number of tasks ex-
changing data. These tasks usually run periodically. Pos-
sibly, they designed by different teams or suppliers with
mismatched rates [18], and communicate through shared
memory. To improve determinism, communication mech-
anisms such as the Logical Execution Time (LET) [15] are
currently a common choice. The functional dependencies
between LET tasks, driven by the pipeline of data, creates
so-called functional task chains [14]. When the activation of
each task in the chain is driven only by its period, these
chains are often referred to as time-triggered chains.

The high relevance of this application domain has put
a great pressure on the research community for developing
ready-to-use analysis tools, such as pyCPA [27], that allow
to obtain safe estimates of metrics of interest, such as the
input-output latency of the chain. This kind of analysis is

computationally not very complex and fairly straightfor-
ward to implement. Hence, the effort dedicated to analyze
in greater depth the details of timing of write and read
operations has been limited to the simulation of the chain
behavior, and the extraction of safe bounds that give worst-
case guarantees on the data propagation inside the chain.
Classical approaches [5] rely on the knowledge of a list of
indices for each task, to identify those jobs in the chain
that are strictly required to communicate data, in order
to achieve the correct behavior. In reality, the behavior of
time-triggered chains follows repetitive patterns, which can
enumerated by anayzing all the jobs in the hyperperiod.
This approach, however, suffers from scalability problems.
Providing analytical expressions for said patterns would
then enable the analysis of real-world workloads, without
introducing approximations and costly listings.

In this paper, we provide such an analysis and offer the
following contributions:

‚ Section 4 introduces a modular approach that combines
the behavior of a pair of communicating LET tasks into
a single task, providing a foundation for an iterative
mechanism that combines multiple tasks.

‚ Section 5 uses ring algebras to analyze the temporal
characteristics of a pair of communicating LET tasks
in a task chain, providing a closed-form solution that
answers questions such as the pattern of read or write
phasings of the pair and the jobs with the longest and
shortest input-output latency.

‚ Finally, Section 6, proposes a methodology to eliminate
read/write jitter of task chains with arbitrary length,
building upon the results obtained for task pairs. The
resulting chain behaves as a periodic LET task, paving
the way to more deterministic designs for task chains.

These methods are implemented in Python and available in
the repository (https://github.com/ebni/periodic-LET).

These results are significant for designing and analyzing
distributed applications. By ensuring that a chain of tasks
with different periods and phasings behaves as a purely
periodic system, designers can abstract the underlying chain
complexity. Additionally, this approach can be used to split
a periodic task into multiple distributed chained tasks, while
maintaining the same functional behavior.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2023.3283707

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on June 10,2023 at 13:04:27 UTC from IEEE Xplore. Restrictions apply.

https://github.com/ebni/periodic-LET

2

2 RELATED WORK

Task chains are typically categorized in literature based
on the triggering mechanism of their components, with
the most common types being event-triggered and time-
triggered chains [26]. In event-triggered chains, which are
common in avionics [11] and robotics [6], each task is
activated by its predecessor’s termination . In contrast, time-
triggered chains are activated based on their periods and
are frequently used in automotive systems [1], following
the AUTOSAR standard. In these chains, tasks communicate
data through shared variables.

Among the first mentions of time-triggered task chains,
Gerber et al. [10] proposed a method to assign periods
so that functional links are preserved. More recently, the
analysis for different end-to-end delays introduced in [9]
identifies four different semantics for latency, including the
popular reaction delay (first-to-first) and data age (last-to-
last). Many other analyses have been proposed [2], [3], [8],
[17], [19], [21], targeting the measure of the worst-case end-
to-end input-output latency or the maximum data age, as
this is a critical parameter in many application domains.
Other research works on task chains addressed the problem
of optimizing task parameters to satisfy end-to-end timing
constraints [7], [28], [31]. Recent papers targeted more com-
plex scenarios: chains that may share one or more tasks
with other chains [16], and globally asynchronous locally
synchronous distributed chains [13].

In this paper, we consider chains where tasks commu-
nicate at fixed points in time, to ensure determinism and
predictability. A popular way to achieve these goals is to
implement a communication scheme following the so-called
Logical Execution Time (LET) paradigm [15]. This can be
effectively implemented in a real-time embedded platform
by introducing multiple memory slots for shared data, such
as double- [4] or triple-buffering [22] with pointer switching,
or alternatively with the use of intermediate global labels
and a dedicated update task that performs the copies and
runs with the highest priority [5]. The LET copies can also
be performed with the usage of DMA engines [23], [24].

Recent works started addressing time-triggered task
chains communicating with the LET paradigm, comparing
their timing properties with respect to other communica-
tion mechanisms, e.g., in [2], [21], [22], [30]. Despite being
beneficial for time determinism, the usage of a LET-based
communication introduces higher (but constant) end-to-
end latencies in chains [2], [12]. Furthermore, the effects of
deadline misses in such systems has been studied in [25].

This paper offers a complete and analytic solution
for a classic time-triggered task chain under the LET
paradigm. The paper begins by examining a pair of
functionally-dependent tasks and characterizing the se-
quence of read/write phasings through algebraic rings,
resulting in a repeatable pattern described analytically. This
pattern is the first step towards a compositional analysis
of tasks and leads to proposing a new design that elim-
inates the jitter of the time-triggered chain with minimal
intervention. Notably, this is the first work that enhances a
task chain to conform to the model of a single task following
the Logical Execution Time paradigm.

3 SYSTEM MODEL AND BACKGROUND

In this section, we model the communication between tasks
through shared memory and we apply it to a single periodic
task (Section 3.1). We also introduce the background needed
to understand the technical content (Section 3.2).

3.1 Model of tasks and communication
We denote a task with τi. Each task τi releases an infinite
sequence of jobs. Ji denotes the indices of all jobs of task τi.
We assume that Ji is a discrete, infinite, and totally ordered
set such as the set of signed integers Z. For any j P Ji we
denote by nextpjq P Ji the index of the following job of τi,
and by prevpjq the preceding one. When Ji “ Z, we have
nextpjq “ j` 1 and prevpjq “ j´ 1. We keep, however, the
more general notations of nextpjq and prevpjq, to have them
meaningful for other sets of jobs introduced in the paper.
Also, as Z allows for negative indexes, we have no notion of
“first” job released by a task. Nonetheless, if needed, such a
first job can be identified as the one indexed by j “ 0.

Each job executes a stateless computation, i.e., it does not
use its internal state but only the input data to calculate its
output. This is for example the case with image processing.
Specifically, each job j P Ji of τi performs the following
operations, in this order:

1) it reads its input data from a shared memory location
at the read instant rdipjq;

2) it performs all its operations; and
3) it writes its output data in a shared memory location at

the write instant wripjq, making it available to others.
In this paper, we specifically target a wide class of

periodic tasks, with a generic representation as follows.

Definition 1 (Periodic task). A periodic task τi is character-
ized by the following quantities:
‚ T i determines the periodicity of the released jobs;
‚ θripjq is the phasing of read instant of the job j of τi; and
‚ θwi pjq is the phasing of write instant of the job j of τi,

so that the read and write instant of the released jobs are
"

rdipjq “ j T i ` θ
r
ipjq

wripjq “ j T i ` θ
w
i pjq.

(1)

and the phasings θripjq, θ
w
i pjq are both lower and upper bounded.

The phasings θripjq and θwi pjq may encode different in-
formation, such as the relative release offset between tasks
(e.g., in the case of asynchronous periodic tasks) and their
deadlines. In the following, we abstract from the actual
execution time of the tasks, and we focus on the two instants
rdipjq and wripjq, which occur respectively before starting
the execution of the job and after the completion of the job
execution.

To ensure causality, @i, j we have:
$

’

&

’

%

rdipprevpjqq ď rdipjq ,

rdipjq ď wripjq ,

wripjq ď wripnextpjqq .

Also, we define the separation between two consecutive
read instants and the separation between two consecutive
write instants, as follows

∆rdipjq “ rdipnextpjqq ´ rdipjq

∆wripjq “ wripnextpjqq ´ wripjq .
(2)

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2023.3283707

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on June 10,2023 at 13:04:27 UTC from IEEE Xplore. Restrictions apply.

3

Finally, we show that the values introduced above can
be easily mapped to the commonly used concept of input-
output latency, which can be defined for the job j P Ji of τi
by

Lipjq “ wripjq ´ rdipjq “ θwi pjq ´ θ
r
ipjq.

In the case under analysis, we consider that LET commu-
nication is enforced between the periodic tasks in a chain.

Definition 2 (Periodic LET task). A periodic LET task τi is a
periodic task with constant phasings θripjq and θwi pjq .

For these tasks, we can drop the job index j and we use
the more compact notations θri, θ

w
i , and Li “ θwi ´ θ

r
i for the

phasings and the input-output latency, respectively.

3.2 Mathematical Background
We introduce two mathematical operators to write the equa-
tions in a compact form, extending the modulo and greatest
common divisor operators over the real numbers.

Definition 3 (Modulo operator over the real numbers).
Given x P R and m P R, with m ą 0, we define

txum “ x´
Y x

m

]

m. (3)

From the definition of txum the following properties
follow:

0 ď txum ă m (4)
@ k P Z, tx` kmum “ txum (5)

0 ď x ă m ô x “ txum (6)

The next property is useful to relate the ceiling to the
modulo operator. In fact, we have

t´xum
from (5)
“ trx{msm´ xum

from (6)
“ rx{msm´ x. (7)

Whereas the next property says that inside a modulo
operator, we can re-apply the operator to the addenda, if
any. In fact, from

txum ` tyum “ x` y ´
´Y x

m

]

`

Y y

m

]¯

m,

it follows

ttxum ` tyumum “ x` y ´
´Y x

m

]

`

Y y

m

]¯

m

´

[

x` y ´
`X

x
m

\

`
X

y
m

\˘

m

m

_

m

“ x` y ´

Z

x` y

m

^

m “ tx` yum , (8)

and with similar steps, we can show that

t´ txumum “ t´xum . (9)

Finally, the next property is useful to transform from a
modulo to another one. If x “ kd for any k and d, then

txum “ k d´

Z

k d

m

^

m “

ˆ

k ´

Z

k
m{d

^

m

d

˙

d “ tkum{d d.

(10)
We remark that if x P Z and m P N, then any txum

belongs to the commutative ring Z{mZ, which consists of a set
equipped with addition and multiplication, enjoying then

all the properties of such an algebraic structure. In such a
case txum is equivalent to modulo m congruences, that is,

txum ” x mod m.

Also, we can tighten (4) over Z{mZ by

x P Z,m P N, ñ 0 ď txum ď m´ 1. (11)

We remind the reader some properties over the ring Z{mZ.
If gcdpp,mq “ 1, then p has the multiplicative inverse over
Z{mZ. For example, over Z{5Z

2´1 ” 3 mod 5, 4´1 ” 4 mod 5.

Definition 4 (Greatest common divisor over the real num-
bers). Given x, y P R, x, y ą 0,
‚ if DG P R and D p1, p2 P N such that x “ p1G, y “ p2G

and gcd pp1, p2q “ 1, we write gcd px, yq “ G,
‚ if EG as above, then we write gcdpx, yq “ 0.

Notice that G is unique. In fact, say that G1 is another
value such that x “ p11G

1, y “ p12G
1, and gcdpp11, p

1
2q “ 1,

for some p11, p
1
2 P N. Then, pi “ p1iG

1
{G from which 1 “

gcdpp1, p2q “ gcdpp11, p
1
2qG

1
{G “ G1{G meaning that G “ G1.

For example, gcdp3{4, 5{6q “ 1{12, gcdp5
?

3, 2
?

3q “
?

3,
and gcdp1, πq “ 0. We remark that over the integers, such a
definition coincide with the standard gcdp¨, ¨q definition of
greatest common divisor.

4 PRELIMINARIES

The first goal of this paper is to derive a new model that
enables to treat in an unified formulation both a single
periodic LET task and the composition of multiple periodic
LET tasks in a time-triggered task chain (referred to simply
as chain in the remaining of the paper). Here, we introduce a
convenient notation so that τi can be referred to “task” and
“chain” interchangeably.

4.1 Periodic chains
We will be using the aggregate index i § ` to denote the
chain τi§` in which τ` reads the output written by τi.
Following the same spirit, we use the notation of Ji§` for the
set of jobs of the chain τi§`. Coalescing two tasks allows us
to compose chains as needed. For example, the chain τ1§2§3

is the composition of the two “chains” τ1 and τ2§3, which
in turn is the composition of τ2 and τ3. Alternatively, τ1§2§3

can be seen as the composition of τ1§2 and τ3.
As tasks are characterized by releasing jobs that process

inputs to outputs, a similar definition can then be intro-
duced for chains. We are now aiming at defining the set
Ji§` of jobs of the chain τi§`. Intuitively, a job pji, j`q of the
chain τi§` belongs to Ji§` Ă Ji ˆ J` if and only if the job
j` P J` is the first one to read the data written by the job
ji P Ji. Figure 1 illustrates this concept. Using this notation,
the chain can be characterized in a similar way with respect
to the task model of Definition 1.

Definition 5 (Periodic chain). A periodic chain τi§` is charac-
terized by the following quantities,
‚ T i§` determines the periodicity of the chain,
‚ θri§`pji, j`q is the phasing of read instant of job pji, j`q P
Ji§`, and

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2023.3283707

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on June 10,2023 at 13:04:27 UTC from IEEE Xplore. Restrictions apply.

4

‚ θwi§`pji, j`q is the phasing of write instant of the same job.

Remark 1. A periodic task can be modeled as a periodic chain
with one task only. Additionally, a periodic chain that includes
several periodic tasks can be abstracted as a single periodic task.

The procedure to define a job pji, j`q of the chain τi§`
requires more efforts and is presented next. First, we par-
tition the jobs of Ji in the family of subsets tJipj`quj`PJ` .
Every Jipj`q contains only those jobs in Ji with write instants
between rd`pprevpj`qq and rd`pj`q, formally:

Jipj`q “ tji P Ji : rd`pprevpj`qq ă wripjiq ď rd`pj`qu. (12)

Analogously, we can also define the set J`pjiq of the indices
of τ` jobs with read time between wripjiq and wripnextpjiqq

J`pjiq “ tj` P J` : wripjiq ď rd`pj`q ă wripnextpjiqqu, (13)

also illustrated in Figure 1. We remark that both Jipj`q and
J`pjiq
‚ may be empty for some j` or some ji (for example, this

is the case of J1p6q or J2p8q of Figure 1), and
‚ if not empty, they have a finite number of elements,

since the two sets are bounded respectively by rd`pj`q
and wripnextpjiqq.

From the set of Equation (12) we can now define the set
J1i§` of jobs of the chain τi§` as follows

J1i§` “ tpji, j`q P JiˆJ` : Jipj`q ‰ H, ji “ max Jipj`qu, (14)

and a “dual” definition from Equation (13) as

J2i§` “ tpji, j`q P JiˆJ` : J`pjiq ‰ H, j` “ min J`pjiqu. (15)

Next, we prove that J1i§` and J2i§` are equivalent, and this
enables a well-posed definition of the set Ji§` of jobs of τi§`.

Lemma 1. The two sets of jobs J1i§` and J2i§` are equivalent.

Proof. Let pj1i, j
1
`q be in J1i§`. This implies that j1i P Jipj1`q and

then
wri

`

j1i
˘

ď rd`
`

j1`
˘

.

Also, it must necessarily be

rd`
`

j1`
˘

ă wri
`

nextpj1iq
˘

otherwise nextpj1iq P Jipj1`q, which cannot be the case be-
cause j1i “ max Jipj1`q. Putting the pieces together

wri
`

j1i
˘

ď rd`
`

j1`
˘

ă wri
`

nextpj1iq
˘

,

which implies that j1` P J`pj1iq. Moreover, from the hypothe-
sis of j1i P Jipj1`q we have

rd`
`

prevpj1`q
˘

ă wri
`

j1i
˘

implying that prevpj1`q and all jobs earlier than prevpj1`q do
not belong to J`pj1iq. This means that j1` “ min J`pj1iq and
then that pj1i, j

1
`q P J2i§`. The dual proof that pj2i , j

2
` q P J2i§` ñ

pj2i , j
2
` q P J1i§` can be carried on in a similar way and is

omitted here for the sake of brevity.

We can finally define the set Ji§` of jobs of the chain.

Definition 6. We define the set Ji§` of jobs of the chain τi§` by
J1i§` of (14) or, equivalently, by J2i§` of (15).

The set Ji§` is discrete, infinite, and totally ordered
because it inherits these properties from J`. Hence, for any

wr1p5q wr1p6q wr1p7q wr1p8q wr1p9q wr1p10q wr1p11q wr1p12q wr1p13q

rd2p2q rd2p3q rd2p4q rd2p5q rd2p6q rd2p7q rd2p8q

J1p3q “ t5, 6, 7u J1p5q “ t8, 9u J1p7q “ t10, 11u J1p8q “ t12u

J2p7q “ t3, 4u J2p9q “ t5, 6u J2p11q “ t7u J2p12q “ t8u

Fig. 1. An example of write and read instants of the chain τ1§2. In
this scenario, the pairs of jobs tp7, 3q, p9, 5q, p11, 7q, p12, 8qu belong to
J1§2. Also, the partition tJ1pj2quj2PJ2 of the jobs in J1, and the partition
tJ2pj1quj1PJ1 of jobs in J2 defined in Equations (12) and (13) respec-
tively, are illustrated (empty sets of the partitions such as J1p4q or J2p9q,
are not reported).

pji, j`q P Ji§`, the pair of jobs nextpji, j`q P Ji§` is the
next element in Ji§` following pji, j`q in the ordering “ă”
induced by J`. As an example, in the scenario of read and
write instants of Figure 1, nextp9, 5q “ p11, 7q.

For every pji, j`q P Ji§`, the read and write instants are
defined, not surprisingly, by

"

rdi§`pji, j`q “ rdipjiq

wri§`pji, j`q “ wr`pj`q
. (16)

A particular case, which will be of interest in Section 6,
is when the periodic chain has both constant read and
write phasings, indeed behaving accordingly to the Logical
Execution Time.

Definition 7 (Periodic LET chain). A periodic LET chain τi§`
is a periodic chain with constant phasings θri§` and θwi§`.

Remark 2. A periodic LET task can be modeled as a periodic
LET chain composed of one task only. Additionally, a periodic
LET chain formed of multiple LET tasks can be abstracted as a
single periodic LET task.

4.2 Void and redundant jobs
We are now establishing a link between our notation and
terminology with accepted definitions and concepts in the
field. The definitions of the sets Jipj`q and J`pjiq are strictly
related to the classic concepts of reachability [9], in particu-
lar with the definitions of immediate forward and backward
job chains [8].

An immediate forward job chain is constructed starting
from any job of the first task of a chain, and selecting the
first job of the successive task with read instant occurring
after the write instant of that job, in an iterative way. In our
notation, the jobs pj1, j2, . . . , jnq are an immediate forward
job chain of the task chain τ1§2§¨¨¨§n when

@i “ 1, . . . , n´ 1, pji, ji`1q P J2i§i`1.

Analogously, an immediate backward job chain is con-
structed starting from any job of the final task of the chain,
and including the last job of the previous task writing no
later than the read instant of that job, in a backward iterative
manner. In our notation, the jobs pj1, j2, . . . , jnq are an
immediate backward job chain when

@i “ 1, . . . , n´ 1, pji, ji`1q P J1i§i`1.

In literature, immediate forward job chains are used to
measure how much time is required for an event sensed by

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2023.3283707

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on June 10,2023 at 13:04:27 UTC from IEEE Xplore. Restrictions apply.

5

the first task to reach the end of the chain. The longest input-
output latency among immediate forward job chains corre-
sponds to the maximum reaction time [9] of the chain. On the
other hand, an immediate backward job chain represents a
freshness value of the data used by the last task of the chain,
and the longest input-output latency among immediate
backward job chain corresponds to the maximum data age.

In general, these state-of-the-art definitions however ab-
stract from the possible overwriting of labels due to over-
sampling/undersampling between tasks. Indeed, an imme-
diate forward job chain may include jobs whose outputs
are overwritten before being consumed by the next task,
while an immediate backward job chain may include jobs
that re-computed the same outputs of a previous job of the
same task. To better highlight this aspects, we introduce the
definitions of void and redundant jobs [1], [25].

A job ji of τi is void w.r.t. τ` if it does not propagate data,
i.e. the output of ji is overwritten by job nextpjiq before
being read by any job of τ`.

Definition 8 (Void job). Given a chain τi§`, a job ji P Ji is
void w.r.t. τ` if Ej` P J` such that pji, j`q P Ji§`.

As an example, in Figure 1 job j1 “ 8 is void w.r.t. τ2, as
its data is overwritten by job 9 of τ1. In fact, p8, 5q R J1§2.

Instead, a job j` of τ` is redundant w.r.t. τi if it repeats
the same data processing, i.e. job j` reads the same input
read by job prevpj`q and thus produces the same output.

Definition 9 (Redundant job). Given a chain τi§`, a job j` P J`
is redundant w.r.t. τi if Eji P Ji such that pji, j`q P Ji§`.

Looking again at Figure 1, job j2 “ 6 is redundant
w.r.t. τ1, as it reads the same input of the previous one,
thus performing a redundant computation with respect to
p9, 5q P J1§2.

5 PAIR OF PERIODIC LET TASKS

This section analyzes a task chain consisting of a pair of
periodic LET tasks with constant read and write phasings.
The chain is denoted as τ1§2, where task τ2 reads data
written by task τ1. The goal is to demonstrate that τ1§2 is
periodic with a period of maxtT 1, T 2u and to provide a
closed formulation of the read and write phases, enabling
the identification of the job index for any given phase
value. This formulation is also more flexible than classic
approaches, e.g. in [5], which requires an iterative check
to identify a task-by-task list of job indices of necessary
communications (with no easily available information about
how these job indices are correlated in the chain) and
that is formulated only for tasks with synchronous release.
Two examples are introduced in sections 5.1.1 and 5.2.1 to
illustrate the proposed approach.

The definition of the set J1§2 of jobs and the per-job
phases θr1§2pjq and θw1§2pjq of any job j P J1§2 of the chain
τ1§2 requires an in-depth analysis. Such analysis is divided
between the two cases T1 ě T2 and T2 ě T1. Also, it is
convenient to define

Θ “ θr2 ´ θ
w
1 , (17)

whose physical interpretation is the distance between the
write instant of the job 0 of τ1 and the read instant of the job
0 of τ2.

5.1 Case T1 ě T2

When T1 ě T2, there is always a read instant rd2pjq between
any pair of consecutive write instants of τ1, formally

@j1 P J1, J2pj1q ‰ H,

with J2pj1q defined earlier by Eq. (13). It is then convenient
to define the set J1§2 of jobs of the chain τ1§2 from Eq. (15),
which is

J1§2 “ tpj1, j2q P J1 ˆ J2 : j2 “ min J2pj1qu.

From Eq. (13) and since J2pj1q is never empty, the index
j2 P J2 above is

j2 “ mintj P J2 : wr1pj1q ď rd2pjqu

“ mintj P J2 : j1T1 ` θ
w
1 ď jT2 ` θ

r
2u

“

R

j1T1 ´Θ

T2

V

(18)

by using the definition of Θ of Equation (17). Hence, the set
of jobs J1§2 of the chain τ1§2 is

J1§2 “

"ˆ

j1,

R

j1T1 ´Θ

T2

V˙

: j1 P J1
*

. (19)

To highlight the fact that the job index pj1, j2q P J1§2 of
the chain τ1§2 depends on j1 only since j2 is a function of j1
through (18), we will be denoting jobs of the chain by pj1, ˚q.

We now aim at characterizing the chain τ1§2 as a periodic
one as in Eq. (1), with proper period T1§2 and phasings
θr1§2pjq and θw1§2pjq to be found. From the definition of
Eq. 16, the read instant of any job pj1, ˚q P J1§2 is

rd1§2pj1, ˚q “ rd1pj1q “ j1T1 ` θ
r
1,

which indicates already that:
1) the period of the chain τ1§2 is necessarily

T1§2 “ T1,

2) and that the read phasing of any job pj1, ˚q P J1§2 of the
chain is constant

@pj1, ˚q P J1§2, θr1§2pj1, ˚q “ θr1.

The write phasing θw1§2pj1, ˚q requires more efforts.
The write instant of the job pj1, ˚q P J1§2 of τ1§2 is, by the

definition of Eq. (16), equal to the write instant of the job of
τ2, that satisfies the following

wr1§2pj1, ˚q “ wr2

ˆR

j1T1 ´Θ

T2

V˙

“

R

j1T1 ´Θ

T2

V

T2 ` θ
w
2

“ j1T1 `

R

j1T1 ´Θ

T2

V

T2 ´ j1T1 ` θ
w
2

looooooooooooooooomooooooooooooooooon

θw1§2pj1,˚q

in which we write wr1§2pj1, ˚q assuming it has a period of
T1, with a per-job writing phase θw1§2pj1, ˚q.

By exploiting the notion of modulo of Definition 3,
the expression of the writing phase θw1§2pj1, ˚q can be split

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2023.3283707

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on June 10,2023 at 13:04:27 UTC from IEEE Xplore. Restrictions apply.

6

between a constant value plus a varying but bounded term
as follows

θw1§2pj1, ˚q “

R

j1T1 ´Θ

T2

V

T2 ´ j1T1 ` θ
w
2

“

R

j1T1 ´Θ

T2

V

T2 ´ pj1T1 ´Θq ´Θ` θw2

from (7)
“ tΘ´ j1T1uT2

loooooomoooooon

varying with j1

` θw2 ´Θ
loomoon

constant

(20)

The standard property of Eq. (4) of the modulo-T2 yields
the following lower and upper bounds for θw1§2pj1, ˚q

θw2 ´Θ ď θw1§2pj1, ˚q ă θw2 ´Θ` T2. (21)

If gcdpT1, T2q “ 0, which necessarily implies that any of
two periods is irrational, then the bounds of (21) cannot
be further tightened. If instead, T1 and T2 have a non-zero
gcdpT1, T2q, then
‚ the upper and lower bounds for θw1§2pj1, ˚q can be made

tight, and
‚ the expression of the write phasing θw1§2pj1, ˚q can be

inverted, that is, for any possible phasing value θ, we
can determine exactly all j1 such that θw1§2pj1, ˚q “ θ, if
they exist.

Both results are enabled by the next theorem which pro-
cesses the per-job varying part tΘ´ j1T1uT2

of Equa-
tion (20).

Theorem 1. Let us set G “ gcdpT1, T2q. If G ą 0, then

@j1 P Z, tΘ´ j1T1uT2
“ tφ1 ´ j1p1up2 G` tΘuG (22)

with p1, p2 such that T1 “ p1G, T2 “ p2G, and φ1 integer
quotient of the following division by G

tΘuT2
“ φ1G` tΘuG . (23)

Proof. As j1 steps over Z, the quantity tΘ´ j1T1uT2
of (22)

jumps along “the ring” depicted in Figure 2 in which the
T2-modulo algebraic ring is represented.

Let us now proceed formally. First, we can certainly
write

tΘ´ j1T1uT2
“
X

t´j1T1uT2
` tΘuT2

\

T2
,

because of the property of (8). Analyzing the first adden-
dum, we find

t´j1T1uT2
“ t´j1p1Gup2G “ t´j1p1up2 G

by applying the property of Equation (10). Then from the
definition of φ1 of (23)

tΘ´ j1T1uT2
“

Y

pt´j1p1up2 ` φ1qG` tΘuG

]

T2

.

The next and final steps are made to further simplify the
right-hand-side of the equation above. It is certainly true
that

0 ď t´j1p1up2 ` φ1 ď 2p2 ´ 1

because 0 ď t´j1p1up2 ď p2´1 and it is also 0 ď φ1 ď p2´1
from its definition of (23) and the fact that T2 “ p2G. We
consider two cases. If 0 ď t´j1p1up2 ` φ1 ď p2 ´ 1, then

0 ď pt´j1p1up2 ` φ1qG ď T2 ´G

0 ď pt´j1p1up2 ` φ1qG` tΘuG ă T2

0

tΘuG

φ1G

tΘuT2
“

φ1G` tΘuG

T2 ´G

tj1up2 “ 0tj1up2 “ 1

tj1up2 “ 2

Fig. 2. Picturing the case with T1 “ 16, θr1 “ 1, θw1 “ θr1 ` T1 “ 17,
and T2 “ 10, θr2 “ 0, θw2 “ θr2 ` T2 “ 10, fully explained later
in Section 5.1.1. In such a case gcdpT1, T2q “ G “ 2, p1 “ 8,
and p2 “ 5. From these values and the definition of Θ of Eq. (17),
we have Θ “ θr2 ´ θw1 “ ´17. When j1 “ 0 the value taken by
tΘ´ j1T1uT2

is φ1G` tΘuG “ tΘuT2
“ t´17u10 “ 3. Such a quantity

is represented by a green arc and both its addenda tΘuG and φ1G
are represented by a blue and red arc, respectively. As j1 increases,
the term tΘ´ j1T1uT2

(and the write phasing θw1§2pj1,˚q too) varies by
“jumping” t´p1up2

“ t´8u5 “ 2 vertices, as represented by the arrows
through the vertices of the “star”. As formally proven in Theorem 2, the
minimal write phasing occurs at the closest vertex to the right of 0, i.e.,
when tj1up2

“ 2. Similarly, the maximum occurs when tj1up2
“ 4. As

proven in Corollary 1, the maximum span of the write phasing θw1§2pj1,˚q
is T2 ´G, illustrated by a gray arc.

and then we can remove the t¨ ¨ ¨uT2
operator by applying

the property of Eq. (6)

tΘ´ j1T1uT2
“ pt´j1p1up2 ` φ1qG` tΘuG

“ t´j1p1 ` φ1up2 G` tΘuG .

If instead p2 ď t´j1p1up2 ` φ1 ď 2p2 ´ 1, then

T2 ď pt´j1p1up2 ` φ1qG ď 2T2 ´G ñ

ñ 0 ď pt´j1p1up2 ` φ1qG` tΘuG ´ T2 ă T2

and then, by first applying the property (5) to subtract ´T2
and then the property (6) to remove the outer t¨ ¨ ¨uT2

, we
find

tΘ´ j1T1uT2
“

Y

pt´j1p1up2 ` φ1qG` tΘuG ´ T2

]

T2

“ pt´j1p1up2 ` φ1 ´ p2qG` tΘuG

“ t´j1p1 ` φ1up2 G` tΘuG ,

with the last equality holding because in this second ana-
lyzed case 0 ď t´j1p1up2`φ1´p2 ď p2´1. The expressions
of the two cases coincide with the one of Equation (22) to be
proven. This concludes the proof.

In summary, a tighter expression for θw1§2pj1, ˚q is found
by replacing (22) in (20), that is,

θw1§2pj1, ˚q “ θw2 ´Θ` tΘuG ` tφ1 ´ j1p1up2G (24)

in which we highlight:
‚ a constant term θw2 ´Θ` tΘuG plus
‚ a per-job varying term tφ1 ´ j1p1up2G.

This new expression of Eq. (24) enables us to tighten the
bounds of (21).

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2023.3283707

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on June 10,2023 at 13:04:27 UTC from IEEE Xplore. Restrictions apply.

7

Corollary 1. Let us set G “ gcdpT1, T2q. If G ą 0, then

tΘuG ď θw1§2pj1, ˚q ´ pθ
w
2 ´Θq ď tΘuG ` T2 ´G. (25)

Proof. From the bounds of (11), the expression tφ1 ´ j1p1up2
is bounded by

0 ď tφ1 ´ j1p1up2 ď p2 ´ 1,

which implies, through Theorem 1, that

tΘuG ď tΘ´ j1T1uT2
ď pp2 ´ 1qG` tΘuG .

Plugging now the bounds above into the expression for
θw1§2pj1, ˚q of (24), we smoothly find (25), concluding then
the proof.

Corollary 1 provides bounds to θw1§2pj1, ˚q. Hence, the
natural question is whether these upper and lower bounds
are tight or not. The next theorem provides an affirmative
answer and it additionally gives the explicit expression of
the write phasings for all j1.

Theorem 2. Let us set G “ gcdpT1, T2q. If G ą 0, then for any
k “ 0, . . . , p2 ´ 1

j1 ” pφ1 ´ kqp
´1
1 mod p2 ô

θw1§2pj1, ˚q “ θw2 ´Θ` tΘuG ` kG (26)

with φ1 as in (23) and p´1
1 denoting the multiplicative inverse of

p1 over Z{p2Z.

Proof. We first observe that, from the definition of G “

gcdpT1, T2q, we have gcdpp1, p2q “ 1 with T1 “ p1G and
T2 “ p2G. Consequently, p1 has the multiplicative inverse
over the ring Z{p2Z. Now, from j1 ” pφ1 ´ kqp´1

1 mod p2
we find

φ1 ´ j1p1 ” k mod p2

tφ1 ´ j1p1up2 “ k

and by applying Eq. (22) and the expression of θw1§2pj1, ˚q
of (20), we immediately find (26) concluding the proof.

The proven theorem provides the explicit expression of
the write phasing θw1§2pj1, ˚q and, more importantly, it tells
what are the indices j1 P J1 “ Z for which the write
phasing takes any given value. For example, the minimum
and maximum phasings are taken respectively when

θw1§2pj1, ˚q is min ô k “ 0 ô j1”φ1p
´1
1 mod p2

θw1§2pj1, ˚q is max ôk “ p2 ´ 1ô j1”pφ1`1qp´1
1 mod p2

Also, they are equal to the lower and upper bounds of (25),
respectively, hence the bounds of (25) are tight.

In the example of Figure 2, we have p2 “ 5 and p1 “ 8
and then p´1

1 “ 2 because t8ˆ 2u5 “ t16u5 “ 1. Since φ1 “
1, then the minimum write phasing is taken when

j1 ” φ1p
´1
1 ” 2 mod 5,

while the maximum occurs when

j1 ” pφ1 ` 1qp´1
1 ” 4 mod 5.

While the separation between the read instant of two
consecutive jobs of τ1§2 is constantly equal to T1, the separa-
tion between write instants has a more complex expression.

0
k “ 0

k “ 1

k “ 2 “ tp1 ´ 1up2

k “ 3 “ tp1up2

k “ 4 “ p2 ´ 1

: p‹q ě 0, ∆wr1§2pj1, ˚q is max
: p‹q ă 0, ∆wr1§2pj1, ˚q is min

Fig. 3. Illustrating the proof of Lemma 2, with the same parameters as
the example of Figure 2. In such a case, we have p2 “ 5 and tp1up2

“ 3.
For each value of k “ tφ1 ´ j1p1up2

, the arrow points to tk ´ p1up2
. The

difference p‹q “ tk ´ p1up2
´k is non-negative when “moving” from k to

tk ´ p1up2
we do not cross the 0 (black arrows). It is negative otherwise

(gray arrows).

Lemma 2. If G “ gcdpT1, T2q ą 0, then

∆wr1§2pj1, ˚q “

T1 `

#

´ tp1up2 G if tφ1 ´ j1p1up2 ě tp1up2
t´p1up2 G otherwise

(27)

with φ1 as in (23).

Proof. First, from the expression of θw1§2pj1, ˚q of (24), we
find

∆wr1§2pj1, ˚q “

pt´pj1 ` 1qp1 ` φ1up2 ´ t´j1p1 ` φ1up2qG` T1

By setting
k “ tφ1 ´ j1p1up2

the only term of ∆wr1§2pj1, ˚q which has a dependency on
j1 can be rewritten as

tφ1 ´ pj1 ` 1qp1up2́ tφ1 ´ j1p1up2“ tk ´ p1up2́ k “ p‹q.

We now study in greater depth the quantity p‹q, also
represented in Figure 3. If k ě tp1up2 then

p‹q “

Y

k ´ tp1up2

]

p2
´ k “ k ´ tp1up2 ´ k “ ´ tp1up2 ,

in which we have applied
‚ the properties (8) and (9) for the first equality, and
‚ the property (6), applicable because k ´ tp1up2 ě 0, for

the second equality.
If instead k ď tp1up2´ 1, then

p‹q “

Y

k ` p2 ´ tp1up2

]

p2
´k “ k`p2´tp1up2´k “ t´p1up2 .

By replacing the two expressions we find exactly Eq. (27),
which concludes the proof.

From the expression of the ∆wr1§2pj1, ˚q of (27) it is not
immediately apparent that ∆wr1§2pj1, ˚q is a multiple of T2

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2023.3283707

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on June 10,2023 at 13:04:27 UTC from IEEE Xplore. Restrictions apply.

8

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100

wr1p0q wr1p1q wr1p2q wr1p3q wr1p4q wr1p5q

rd2p0q rd2p1q rd2p2q rd2p3q rd2p4q rd2p5q rd2p6q rd2p7q rd2p8q rd2p9q

θw1§2p0,˚q θw1§2p1,˚q θw1§2p2,˚q

Fig. 4. Illustrating the example of Section 5.1.1, with T1 “ 16, T2 “ 10, θr1 “ 1, θr2 “ 0, and θwi “ θri ` Ti for both tasks. Every job is represented
by a curvy arrow starting at its read instant and ending at the write one. Any job j of τ1 (in red) reads at rd1pjq “ θr1 ` jT1 and writes at
wr1pjq “ θw1 ` jT1. Jobs of τ2 are in blue. Black vertical arrows are placed at write and read instants. The write phases of the jobs of the whole
chain τ1§2 are also shown by horizontal arrows. Since we aim at modeling the chain with the same formalism of periodic tasks of (1), the read/write
phasings are relative to multiples of the chain period T1§2 “ T1, represented by thick vertical dashed gray segments.

for all j1, as one would expect it to be. The next corollary
confirms that such intuition is correct.

Corollary 2. If G “ gcdpT1, T2q ą 0, then

∆wr1§2pj1, ˚q “

#

tT1{T2uT2 if tφ1 ´ j1p1up2 ě tp1up2
rT1{T2sT2 otherwise

(28)
with φ1 as in (23).

Proof. The corollary can be easily proven by exploiting the
definition of t¨um in the formulation of Equation (27), which
can be rewritten as follows:

T1 ´ tp1up2 G “ T1 ´

ˆ

p1 ´

Z

p1
p2

^

p2

˙

G “

Z

T1
T2

^

T2

T1 ` t´p1up2 G “ T1 `

ˆ

´p1 ´

Z

´p1
p2

^

p2

˙

G

“ ´

Z

´p1
p2

^

T2 “

R

p1
p2

V

T2 “

R

T1
T2

V

T2.

This concludes the proof.

We conclude the analysis of the case with T1 ě T2
by showing that in the harmonic case, all these results
are in accordance to the common intuition. If T1 is an
integer multiple of T2, then G “ gcdpT1, T2q “ T2. In turn
p2 “ 1, meaning that the write phasing is constantly equal
to θw1§2pj1, ˚q “ θw2 ´ Θ ` tΘuT2

and that the separation
between two consecutive writes is also constant and equal
to T1.

5.1.1 An example
Let us now illustrate the results found through an example.
We consider a pair of tasks τ1 and τ2 with parameters

T1 “ 16 T2 “ 10

θr1 “ 1 θr2 “ 0

θw1 “ θr1 ` T1 “ 17 θw2 “ θr2 ` T2 “ 10.

and τ2 reading from τ1. The greatest common divisor be-
tween the two periods is G “ gcd p16, 10q “ 2, thus p1 “ 8
and p2 “ 5 so that T1 “ p1G and T2 “ p2G, respectively.
From Equations (17) and (23), we obtain Θ “ θr2´θ

w
1 “ ´17

and φ1 “ 1. Read and write instants are drawn in Figure 4.
This same parameter values can be found in our repository
at https://github.com/ebni/periodic-LET.

Since T1 ě T2 the period of the chain T1§2 is equal to T1.
Also, Table 1 reports, for each job j1 of τ1,

‚ the value of tφ1 ´ j1p1up2 P
Z{p2Z, which is the expres-

sion determining the per-job variability of the write
phasing, as shown in (24). We remind that such ex-
pression can be visualized as the position over the ring
shown in Figure 2,

‚ the write phasing θw1§2pj1, ˚q of the job pj1, ˚q of the
chain τ1§2 originated from job j1 of τ1, found from its
expression of (24),

‚ the absolute write instant wr1§2pj1, ˚q “ j1T1§2 `

θw1§2pj1, ˚q, and
‚ the separation ∆wr1§2pj1, ˚q to the next write instant.

As stated in Theorem 2, the write phasing is minimal
when tφ1 ´ j1p1up2 “ 0, which happens if and only if

j1 ” φ1p
´1
1 ” 2 mod 5

because the inverse p´1
1 of p1 over Z{p2Z “ Z{5Z is 2.

Hence, the job indices with minimal θw1§2pj1, ˚q are j1 “
. . . ,´8,´3, 2, 7, 12, 17, . . . With the same argument, the
write phasing θw1§2pj1, ˚q is maximal, when tφ1 ´ j1p1up2 “

p2 ´ 1, i.e., j1 “ . . . ,´6,´1, 4, 9, . . .

Finally, Lemma 2 allows us to determine analytically the
separation ∆wr1§2pj1, ˚q of two consecutive writes for any
given job. When tφ1 ´ j1p1up2 P ttp1up2 , . . . , p2 ´ 1u equal
to t3, 4u in our example, then ∆wr1§2pj1, ˚q is equal to its
smaller value tT1{T2uT2. Otherwise, it is equal to rT1{T2sT2.
In our example

∆wr1§2pj1, ˚q “

#

20 if k P t0, 1, 2u
10 if k P t3, 4u

with j1 ” pφ´ kqp´1
1 mod p2.

TABLE 1
Job indexing and latency characterization for the example of

Section 5.1.1.

j1 0 1 2 3 4 5 6 7 . . .
tφ1 ´ j1p1up2

1 3 0 2 4 1 3 0 . . .
θw1§2pj1,˚q 30 34 28 32 36 30 34 28 . . .
wr1§2pj1,˚q 30 50 60 80 100 110 130 140 . . .

∆wr1§2pj1,˚q 20 10 20 20 10 20 10 20 . . .

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2023.3283707

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on June 10,2023 at 13:04:27 UTC from IEEE Xplore. Restrictions apply.

https://github.com/ebni/periodic-LET

9

5.2 Case T2 ě T1

We are now assuming that T2 ě T1. This section mimics the
same steps of 5.1. Hence, we may omit some details when
they do not add value to the discussion.

When T2 ě T1, there is always a write instant wr1pjq be-
tween any pair of consecutive read instants of τ2. Borrowing
the definitions of Section 4, this fact is formally expressed by

@j2 P J2, J1pj2q ‰ H,

which allows us to define J1§2 through Equation (14) as

J1§2 “ tpj1, j2q P J1ˆJ2 : j1 “ max J1pj2qu “
"ˆZ

j2T2 `Θ

T1

^

, j2

˙

: j2 P J2
*

with Θ as defined earlier in (17). Also, to recall that jobs
pj1, j2q P J1§2 are identified by j2 only, we write them as
p˚, j2q.

Aiming now at describing the chain τ1§2 as a periodic
one, the expression of the write instants of any job p˚, j2q P
J2

wr1§2p˚, j2q “ wr2pj2q “ j2T2 ` θ
w
2

reveals that
1) the period of the chain τ1§2 is

T1§2 “ T2

2) and that the write phasing of any job p˚, j2q P J1§2 of
the chain is constant

@p˚, j2q P J1§2, θw1§2p˚, j2q “ θw2 .

The read instant of job p˚, j2q is instead more involved

rd1§2p˚, j2q “

Z

j2T2 `Θ

T1

^

T1 ` θ
r
1

“ j2T2 `

Z

j2T2 `Θ

T1

^

T1 ´ j2T2 ` θ
r
1

“ j2T2 ` θ
r
1§2p˚, j2q (29)

with the job-dependent read phasing equal to

θr1§2p˚, j2q “

Z

j2T2 `Θ

T1

^

T1 ´ j2T2 ` θ
r
1

“

Z

j2T2 `Θ

T1

^

T1 ´ pj2T2 `Θq `Θ` θr1

“ ´ tj2T2 `ΘuT1
` θr1 `Θ. (30)

Similarly as in Section 5.1, if gcdpT1, T2q ą 0 the next
theorem enables us to find a tighter value for θr1§2p˚, j2q.

Theorem 3. Let us set G “ gcdpT1, T2q. If G ą 0, then

@j2 P Z, tj2T2 `ΘuT1
“ tj2p2 ` φ2up1 G` tΘuG (31)

with p1, p2 such that T1 “ p1G, T2 “ p2G, and φ2 integer
quotient of the following division by G

tΘuT1
“ φ2G` tΘuG (32)

Proof. By making the following substitutions

j2 ÝÑ ´j1

T2 ÝÑ T1

T1 ÝÑ T2

the statement of (31) is the same as the one of (22) of
Theorem 1. Hence, this theorem holds too.

The just proved theorem allows us writing the following
tighter expression for the read phasing

θr1§2p˚, j2q “ θr1 `Θ´ tΘuG ´ tj2p2 ` φ2up1 G (33)

and to determine tighter lower and upper bounds.

Corollary 3. Let us set G “ gcdpT1, T2q. If G ą 0, then

´ tΘuG ´ T1 `G ď θr1§2p˚, j2q ´ pθ
r
1 `Θq ď ´ tΘuG (34)

Proof sketch. The result follows from the bounds to
tj2p2 ` φ2up1 from Eq. (11) and the expression of θr1§2p˚, j2q
of Eq. (33).

Following the same steps of Section 5.1, we now “invert”
the expression of Eq. (33) to find explicitly the job indices
p˚, j2q for which the θr1§2p˚, j2q takes any given value.

Corollary 4. Let us set G “ gcdpT1, T2q. If G ą 0, then for
any k “ 0, . . . , p1 ´ 1

j2 ” pk ´ φ2qp
´1
2 mod p1 ô

θr1§2p˚, j2q “ θr1 `Θ´ tΘuG ´ kG (35)

with φ2 as in (32) and p´1
2 denoting the multiplicative

inverse of p2 over Z{p1Z.

Proof sketch. The corollary follows by finding j2 as function
of k from k “ tj2p2 ` φ2up1 . Then substituting in (33), we
find (35).

Somehow “dually” to the case T1 ě T2, Corollary 4
affirms that the upper and lower bounds of (34) are taken
when k “ 0 and k “ p1 ´ 1, respectively (while the upper
and lower bounds for θw1§2pj1, ˚q in the case with T1 ě T2
were taken when k “ p2 ´ 1 and k “ 0). From (35), the
job indices p˚, j2q P J1§2 with minimum and maximum read
phasing are

θr1§2p˚, j2q is min ôk “ p1´1ô j2”´pφ2`1qp´1
2 mod p1

θr1§2p˚, j2q is max ô k “ 0 ô j2”´φ2p
´1
2 mod p1

The next lemma determines tight bounds on the separa-
tion between two consecutive readings.

Lemma 3. If G “ gcdpT1, T2q ą 0, then

∆rd1§2p˚, j2q “

#

rT2{T1sT1 if tj2p2 ` φ2up1 ě t´p2up1
tT2{T1uT1 otherwise

(36)
with φ2 as in (32).

Proof. From (33),

∆rd1§2p˚, j2q“ T2´ptpj2 ` 1qp2 ` φ2up1́ tj2p2 ` φ2up1qG.

If T2 is a multiple of T1, that is, p1 “ 1, then

∆rd1§2p˚, j2q “ T2

because txu1 “ 0 for any integer x. For the rest of the proof,
we assume then that T2 is not a multiple of T1

Let us now investigate the only term depending on j2.

tpj2 ` 1qp2 ` φ2up1 ´ tj2p2 ` φ2up1 “ tk ` p2up1 ´ k “ p‹q

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2023.3283707

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on June 10,2023 at 13:04:27 UTC from IEEE Xplore. Restrictions apply.

10

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270

wr1p0q wr1p1q wr1p2q wr1p3q wr1p4q wr1p5q wr1p6q wr1p7q wr1p8q wr1p9q wr1p10q

rd2p0q rd2p1q rd2p2q rd2p3q rd2p4q rd2p5q rd2p6q rd2p7q

θr1§2p˚, 1q
θr1§2p˚, 2q

θr1§2p˚, 3q

θr1§2p˚, 4q

Fig. 5. Illustrating the example of Section 5.2.1. In this case T2 ě T1 implies that the period T1§2 is equal to T2. The write phasing of the chain is
then constant over the jobs and it is θw1§2p˚, j2q “ θw2 pj2q “ 41. The read phasings of the jobs of the chain, instead, vary with the pattern reported
in Table 2. Observe that the labeling of the τ1§2 jobs by the job index j2 of τ2 produces negative read phases θr1§2p˚, j2q. This is represented by
arrows pointing backward from the multiple of periods at j2T2.

with
k “ tj2p2 ` φ2up1 .

If k “ 0 then p‹q ě 0. The expression p‹q remains non-
negative for all next values of k until tk ` p2up1 “ p1 ´ 1,
which is reached when k “ t´p2 ´ 1up1 . Hence, for all k P
r0, . . . , t´p2 ´ 1up1s, p‹q ě 0 and then

p‹q “ tk ` p2up1´ k “
Y

tk ` p2up1´ k
]

p1
“ tp2up1

∆rd1§2p˚, j2q “ T2 ´ tp2up1G “ T2 ´ pp2 ´ tp2{p1u p1qG

“ tT2{T1uT1

If instead k ě t´p2up1 then ´pp1 ´ 1q ď p‹q ď ´1. By
adding and subtracting p1 we find

p‹q “

Pr0,p1´1s
hkkkkkkkkkkkikkkkkkkkkkkj

tk ` p2up1 ´ k ` p1´p1 “ tp2up1 ´ p1

∆rd1§2p˚, j2q “ T2 ´ tp2up1G` T1 “ tT2{T1uT1 ` T1

“ rT2{T1sT1

because T2 is not a multiple of T1. This concludes the proof.

0 tΘuG “ t´16u3 “ 2

tj2up1 “ 0, k “ φ2 “ 2

: p‹q ě 0, ∆wr1§2pj1, ˚q is max
: p‹q ă 0, ∆wr1§2pj1, ˚q is min

Fig. 6. Similarly as in Figure 2, this one represents the variable part
tj2T2 `ΘuT1

of the read phasing θr1§2p˚, j2q as function of the job j2 of
τ2. In this example, T1 “ 24 and T2 “ 33, meaning that G “ 3, p1 “ 8
and p2 “ 11. The phasings of θr1 “ 0, θw1 “ θr1 ` T1 “ 24, and θr2 “ 8,
θw2 “ θr2 ` T2 “ 41 makes Θ “ θr2 ´ θw1 “ 8 ´ 24 “ ´16. From these
parameters, the first job j2 “ 0 starts at vertex k “ φ2 “ 2.

5.2.1 An example
For the case of T2 ě T1, we consider again the case of τ2
reading from τ1, with the following parameters

T1 “ 24 T2 “ 33

θr1 “ 0 θr2 “ 8

θw1 “ θr1 ` T1 “ 24 θw2 “ θr2 ` T2 “ 41.

The greatest common divisor between the two task periods
is gcd p24, 33q “ G “ 3, thus p1 “ 8 and p2 “ 11. From
Equations (17) and (32), we obtain Θ “ ´16 and φ2 “ 1.

The period and write phasing of the chain τ1§2 are
determined by task τ2, that is,

T1§2 “ T2 @j2, θw1§2p˚, j2q “ θw2 .

The read phasing θr1§2p˚, j2q, instead, is not constant and
follows the pattern shown over time in Figure 5, and shown
over the ring in Figure 6. Table 2 reports the sequence of jobs
and the corresponding quantities:
‚ first, it is reported the index j2 of τ2, which also indi-

cates the job p˚, j2q P J1§2. Then,
‚ the value tj2p2 ` φ2up1 represents the index among the
p1 vertices of the “star” of Figure 6. All vertices are span
as j2 varies.

‚ The read phasing θr1§2p˚, j2q is also reported as ex-
plicitly computed from Eq. (33). For the values of this
example, we have θr1§2p˚, j2q “ ´18 ´ 3 tj2p2 ` φ2up1 .
We remark that the necessary choice of indexing the
job of the chain τ1§2 by the index j2 of the job of τ2
produces a negative read phasing. This, however, does
not contradict any given definition or hypothesis.

‚ From the definition rd1§2p˚, j2q “ j2T1§2 ` θr1§2p˚, j2q
of Equation (1), we can also find the read instant of any
job, and finally

‚ the separation ∆rd1§2p˚, j2q between the read instants
of two consecutive jobs in J1§2 is also computed.

TABLE 2
Job indexing and characterization of the read instants and phasings for

the example of Section 5.2.1.

j2 0 1 2 3 4 5 6 7 . . .
tj2p2 ` φ2up1

2 5 0 3 6 1 4 7 . . .
θr1§2p˚, j2q -24 -33 -18 -27 -36 -21 -30 -39
rd1§2p˚, j2q -24 0 48 72 96 144 168 192

∆rd1§2p˚, j2q 24 48 24 24 48 24 24 48 . . .

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2023.3283707

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on June 10,2023 at 13:04:27 UTC from IEEE Xplore. Restrictions apply.

11

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61

wr1p0q wr1p1q wr1p2q wr1p3q wr1p4q wr1p5q wr1p6q wr1p7q wr1p8q wr1p9q wr1p10q wr1p11q

rd2p0q

wr2p0q

rd2p1q

wr2p1q

rd2p2q

wr2p2q

rd2p3q

wr2p3q

rd2p4q

wr2p4q

rd2p5q

wr2p5q

rd2p6q

wr2p6q

rd2p7q

wr2p7q

rd2p8q

wr2p8q

rd2p9q

wr2p9q

rd2p10q

wr2p10q

rd2p11q

wr2p11q

rd2p12q

wr2p12q

rd2p13q

wr2p13q

rd2p14q

wr2p14q

rd2p15q

wr2p15q

rd2p16q

wr2p16q

rd2p17q

wr2p17q

rd2p18q

wr2p18q

rd2p19q

wr2p19q

rd3p0q rd3p1q rd3p2q rd3p3q rd3p4q rd3p5q rd3p6q rd3p7q rd3p8q rd3p9q rd3p10q rd3p11q rd3p12q rd3p13q rd3p14q

Fig. 7. When T1 “ 5, T2 “ 3, T3 “ 4, one job of τ1 every 60 “ lcm pT1, T2, T3q time units is necessarily erased from the jobs J1§2§3 of the chain
τ1§2§3. This implies that the period T1§2§3 of the chain is not equal to maxtT1, T2, T3u “ T3 “ 5.

As stated in Lemma 3, the interval between two reading
instants can be computed from

∆rd1§2p˚, j2q “

#

48 if tj2p2 ` φ2up1 ě t´p2up1 “ 5

24 otherwise.

6 ZERO-JITTER TASK CHAINS

When extending the analysis to chains of more than two
tasks the first question is about the chain periodicity. Can we
say that the period T1§2§¨¨¨§n of an arbitrary chain τ1§2§¨¨¨§n is
equal to maxtT1, T2, . . . , Tnu? Unfortunately, this is not true
in general. The next two examples illustrate this fact, and
show that the relative phasings of tasks may affect, with our
initial surprise, the period of the chain.

6.1 The chain period may be larger than the maximum
In this first example we show a chain composed of three
LET tasks, where the period of the chain is strictly larger
than the maximum period across its tasks.

Example 1. Let us consider a chain τ1§2§3, with

T1 “ 5, T2 “ 3, T3 “ 4,

θr1 “ θr2 “ θr3 “ 0,

θwi “ θri ` Ti, i “ 1, 2, 3.

The schedule repeats after 60 time units. Figure 7 shows the
read and write instants of jobs over a portion of time. From the
Definition 6, the jobs of τ1§2 are

J1§2 “ t. . . , p´1, 0q, p0, 2q, p1, 4q, p2, 5q, . . .u.

Let us now focus on the jobs in J1§2p12q, which are the jobs in
J1§2 with write instant between rd3p11q “ 44 and rd3p12q “ 48
(recall the Definition of (12)). We have

J1§2p12q “ tp7, 14q, p8, 15qu,

which implies, from Eq. (14) and Definitions 6 and 8, that job
p7, 14q P J1§2 is void, as its output is overwritten by the job
nextp7, 14q “ p8, 15q before being read by the job j3 “ 12 of τ3.
This erasure happens recurrently every 60 time units, i.e., every
job of τ1 indexed by j1 “ 7` k ¨ 12, with k “ 1, 2, . . . , does not
belong to J1§2§3. As a consequence, the job set J1§2§3 contains
only 11 every 12 jobs of τ1, which means that the period of the
whole chain is T1§2§3 “ 60{11 ą 5 “ T1.

For the chain of the example above, we performed an
exhaustive search showing that no combination of (con-
stant) phasings exist for τ1, τ2 and τ3, such that T1§2§3 “

maxitTiu “ 5. More in general, the chain of Example 1 is
representative of a class of chains with n ą 2 LET tasks, with
chain period strictly larger than the largest period among
its tasks, regardless of the combination of phasing of those
tasks.

We believe that the next example even more interesting
as it shows that the period of a chain may depend on the
phasings too.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

wr1p0q wr1p1q wr1p2q wr1p3q wr1p4q wr1p5q

rd2p0q

wr2p0q

rd2p1q

wr2p1q

rd2p2q

wr2p2q

rd2p3q

wr2p3q

rd2p4q

wr2p4q

rd2p5q

wr2p5q

rd2p6q

wr2p6q

rd2p7q

wr2p7q

rd3p0q rd3p1q rd3p2q rd3p3q rd3p4q rd3p5q

Fig. 8. When T1 “ 5, T2 “ 4, and T3 “ 5, and the read phasings θri
are all zero, then the periodicity of the chain T1§2§3 is not equal to the
maximum period T1 “ T3 “ 5.

Example 2. Let us consider a chain τ1§2§3, with

T1 “ 5, T2 “ 4, T3 “ 5,

θri “ 0, θwi “ Ti, i “ 1, 2, 3.

In this scenario, represented in Figure 8, the jobs of τ1§2 are

J1§2 “ t. . . , p´1, 0q, p0, 2q, p1, 3q, p2, 4q, p3, 5q, . . .u.

When τ3 reads from τ1§2, however, job p1, 3q P J1§2 gets
overwritten by p2, 4q. Hence, job p1, 3q is void w.r.t. τ3 and the
period of the chain is strictly larger than T1 “ 5.

In this example, however, a careful tuning of the phasings can
fix the problem. As shown in Figure 9, by setting the read phasing
of τ3 equal to θr3 “ 2, all jobs of τ1 and τ3 belong to J1§2§3, which
implies that T1§2§3 “ T1 “ 5. Also, such a task phasing produces
a constant write phasing θw1§2§3 of the chain τ1§2§3 equal to 17.

In the example illustrated in Figure 9, we showed that
a careful choice of the task phasings can give the chain the
same properties of a LET task: periodic read/write instants
and constant phasings. Such a choice is not a fortunate
coincidence. Rather, we will be showing that any chain can
be made equivalent to a LET task.

6.2 Creating a LET chain with a copier task
We consider a chain τ1§2, where τ1 and τ2 are periodic
LET tasks. From the results of Section 5, τ1§2 will have

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2023.3283707

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on June 10,2023 at 13:04:27 UTC from IEEE Xplore. Restrictions apply.

12

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

wr1p0q wr1p1q wr1p2q wr1p3q wr1p4q wr1p5q

rd2p0q

wr2p0q

rd2p1q

wr2p1q

rd2p2q

wr2p2q

rd2p3q

wr2p3q

rd2p4q

wr2p4q

rd2p5q

wr2p5q

rd2p6q

wr2p6q

rd2p7q

wr2p7q

rd3p0q rd3p1q rd3p2q rd3p3q rd3p4q rd3p5q

Fig. 9. In the very same scenario of Figure 8 with the only difference of
setting the read phasing of τ3 to θr2 “ 2, the period of the chain is equal
to the maximum period, T1§2§3 “ T1 “ 5.

T1§2 “ maxtT1, T2u and either read or write phasing con-
stant, depending if T1 ą T2 or T1 ă T2 (note that when
T1 “ T2 both phasings are constant). We are interested
in transforming the chain τ1§2 in a periodic LET chain (see
Definition 7).

Our method is based on the introduction of a “copier”
task, with negligible execution time, whose aim is to regular-
ize the phasing pattern of the chain. The analysis presented
in Section 5 is crucial to find the characteristics of such
additional task, as described in next theorem.

Theorem 4. Given a chain τ1§2 of LET tasks, with T1 ě T2. If
the LET task τ2 with
‚ period T2 “ T1,
‚ read phasing θr2 such that D̂ P Z

#

θr2 ě θw2 ´Θ` tΘuG ` T2 ´G´ ̂ T1
θr2 ă θw2 ´Θ` tΘuG ` T1 ´ ̂ T1

(37)

‚ and any constant write phasing θw2 ě θr2
is appended to τ1§2, then the chain τ1§2§2 has:
‚ period T1§2§2 equal to T1,
‚ constant read and write phasings, and
‚ set of jobs

J1§2§2 “

"ˆ

j1,

R

j1T1 ´Θ

T2

V

, j1 ` ̂

˙

: j1 P Z
*

.

Proof. We prove the theorem by showing that if τ2 satisfies
the hypotheses, then no job in J1§2 is void w.r.t. τ2 (overwrit-
ten by the next job, see Def. 8). To make sure that the output
of any job pj1, ˚q is read by some job j2 of τ2 we need that

wr1§2pj1, ˚q ď rd2
`

j2
˘

ă

wr1§2pnextpj1,˚qq
hkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkj

wr1§2pj1, ˚q`∆wr1§2pj1, ˚q . (38)

From Corollary 2, ∆wr1§2pj1, ˚q can take only two values:
rT1{T2sT2, or tT1{T2uT2. When ∆wr1§2pj1, ˚q “ rT1{T2sT2 ě
T1 “ T2, then the condition of (38) is certainly true because
the period of τ2 is T2 “ T1 and there is always a read
instant rd2

`

j2
˘

of some job j2 of τ2 between wr1§2pj1, ˚q
and wr1§2pnextpj1, ˚qq.

On the contrary, when ∆wr1§2pj1, ˚q “ tT1{T2uT2 “ T1´
tp1up2 G ă T1 (from Lemma 2 and Corollary 2), some care is
necessary because the read instant rd2

`

j2
˘

may fall outside
the boundaries of (38) causing job pj1, ˚q to be overwritten
by the next one before being read. We prove that if D̂ P Z
such that the read phase of task τ2 satisfies (37), then job

j2 “ j1 ` ̂ of τ2 is the one that reads the output of job
pj1, ˚q P J1§2. First, we rewrite Eq. (38) as

0 ď rd2
`

j2
˘

´ wr1§2pj1, ˚q ă ∆wr1§2pj1, ˚q

0 ď rd2pj1 ` ̂q ´ wr1§2pj1, ˚q ă ∆wr1§2pj1, ˚q

0 ď pj1 ` ̂qT1 ` θ
r
2 ´ pj1T1 ` θ

w
1§2pj1, ˚qq ă ∆wr1§2pj1, ˚q

0 ď θr2 ´ pθ
w
1§2pj1, ˚q ´ ̂ T1q ă T1 ´ tp1up2 G.

Then, by replacing the value of θw1§2pj1, ˚q from Eq. (24), we
obtain

0 ď θr2 ´ pθ
w
2 ´Θ` tΘuG ` tφ1 ´ j1p1up2G´ ̂ T1q

ă T1 ´ tp1up2 G. (39)

We now should determine the conditions on θr2 that make
Eq. (39) above always hold regardless of j1. From the first
case of Eq. (27) in Lemma 2, the case of interest with
∆wr1§2pj1, ˚q “ T1 ´ tp1up2 G happens when tp1up2 ď

t´j1p1 ` φ1up2 . The upper inequality of (39) must hold
when t´j1p1 ` φ1up2 is at its lowest value tp1up2 , that is,

θr2 ´ pθ
w
2 ´Θ` tΘuG ` tp1up2G´ ̂ T1q ă T1 ´ tp1up2 G

θr2 ă θw2 ´Θ` tΘuG ` T1 ´ ̂ T1

while the lower inequality of (39) must hold when
t´j1p1 ` φ1up2 “ p2 ´ 1, that is,

θr2 ´ pθ
w
2 ´Θ` tΘuG ` pp2 ´ 1qG´ ̂ T1q ě 0

θr2 ě θw2 ´Θ` tΘuG ` T2 ´G´ ̂ T1.

The two found conditions on θr2 are exactly the same as (37).
Hence, if τ2 conforms to the hypothesis of the theorem, no
job in J1§2 is void w.r.t. τ2, the period of the chain is T1§2§2

then is T1, and the chain τ1§2§2 has constant read phasing
equal to θr1§2§2 “ θr1 and constant write phasing equal to
θw1§2§2 “ θw2 , as required. Moreover, the job pj1 ` ̂q P J2 is
the one reading from pj1, ˚q, confirming then the expression
of J1§2§2 and concluding the theorem.

Let us now reveal the motivations behind the choice of
τ3 parameters of Example 2 depicted in Figure 9. For these
parameters θw2 ´Θ`tΘuG “ 9 and the condition on the read
phase θr3 of Eq. (37) which guarantees that τ1§2§3 has period
equal to T1 and constant phasings, is

D̂ P Z, 9` 3
loomoon

T2´G

´̂ 5
loomoon

T1

ď θr3 ă 9` 5
loomoon

T1

´̂ 5.

The task τ3 of Figure 9 has phasing θr3 “ 2, which satisfies
the constraint above with ̂ “ 2.

When T2 ě T1 an analogous theorem holds, by adding
a task prior to τ1.

Theorem 5. Given a chain τ1§2 of LET tasks, with T2 ě T1, if
the LET task τ1 with
‚ period T1 “ T2,
‚ write phasing θw1 such that D̂ P Z:

#

θw1 ą θr1 `Θ´ tΘuG ´ T2 ´ ̂ T2
θw1 ď θr1 `Θ´ tΘuG ´ T1 `G´ ̂ T2

(40)

‚ and any read phasings θr1 ď θw1
writes at the head of τ1§2, then the chain τ1§1§2 has:
‚ period T1§1§2 equal to T2,

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2023.3283707

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on June 10,2023 at 13:04:27 UTC from IEEE Xplore. Restrictions apply.

13

‚ constant read and write phasings, and
‚ set of jobs

J1§1§2 “

"ˆ

j2 ` ̂,

Z

j2T2 `Θ

T1

^

, j2

˙

: j2 P Z
*

.

Proof. When ∆rd1§2p˚, j2q ě T2 then job nextp˚, j2q is not
redundant w.r.t. τ1. We are now verifying that jobs are not
redundant even when ∆rd1§2p˚, j2q ă T2.

When ∆rd1§2p˚, j2q “ tT2{T1uT1 “ T2 ´ tp2up1G ă T2
then the condition to have no redundant jobs is that Dj1 P Z
such that

rd1§2p˚, j2q ă wr1
`

j1
˘

ď rd1§2p˚, j2q `∆rd1§2p˚, j2q

We aim at showing that if the phasings are chosen in
accordance to (40), then the job of τ1 ensuring the inequality
above is j1 “ j2 ` ̂` 1. In fact,

0 ă wr1pj2 ` ̂` 1q ´ rd1§2p˚, j2q ď ∆rd1§2p˚, j2q

0 ă pj2`̂`1qT2 ` θ
w
1 ´ pj2T2`θ

r
1§2p˚, j2qq ď ∆rd1§2p˚, j2q

0 ă θw1 ´ pθ
r
1§2p˚, j2q ´ p̂` 1qT2q ď T2 ´ tp2up1G

and by replacing the value of θr1§2p˚, j2q of (33), we find

0 ă θw1 ´ pθ
r
1 `Θ´ tΘuG ´ tj2p2 ` φ2up1G´ p̂`1qT2q

ď T2 ´ tp2up1G. (41)

As in the proof of Theorem 4, we aim at ensuring that the
value for θw1 of (40) makes (41) true regardless of the fluc-
tuations of tj2p2 ` φ2up1 through j2. The upper inequality
of (41) must hold when tj2p2 ` φ2up1 is at its largest value,
i.e., t´p2up1´ 1, from the second case of (36) in Lemma 3

θw1 ´ pθ
r
1 `Θ´ tΘuG ´ pt´p2up1 ´ 1qG´ p̂` 1qT2q ď

ď T2 ´ tp2up1 G

θw1 ď θr1 `Θ´ tΘuG ´ ptp2up1 ` t´p2up1 ´ 1qG´ ̂ T2

θw1 ď θr1`Θ´ tΘuG ´ T1 `G´ ̂ T2,

in which we exploited the property that tp2up1 ` t´p2up1 “

p1. The lower inequality of (41) must be true when
tj2p2 ` φ2up1 “ 0, that is,

0 ă θw1 ´ pθ
r
1 `Θ´ tΘuG ´ p̂` 1qT2q

θw1 ą θr1 `Θ´ tΘuG ´ p̂` 1qT2

The two found conditions coincide with (40). Hence, the
choice of θw1 in accordance to (40) guarantees that job p˚, j2`
1q P J1§2 always read the data written by job pj2`̂`1q P J1,
which demonstrates the expression for J1§1§2 and closes the
proof.

We conclude by showing that a proper addition of two
copier tasks can also regularize the chain τ1§2§3 of Figure 7
with task periods T1 “ 5, T2 “ 3, and T3 “ 4.

From Theorem 5, the introduction of a task τ2 writing
data to τ2 with period T2 “ T3 “ 4 and write phasing such
that

´7´ ̂ T3 ă θw2 ď ´5´ ̂ T3

for some ̂ P Z, makes τ2§2§3 a periodic LET chain. The
choice of θw2 “ θr2 “ 3 gives the following parameters

T2§2§3 “ T3 “ 4, θr2§2§3 “ 3, θw2§2§3 “ 12.

Let us now consider the chain made by concatenating
τ1 with τ2§2§3. Theorem 4 states that by appending τ3 with
period T3 “ T1 “ 5 and θr3 such that

12´ ̂ T1 ď θr3 ă 14´ ̂ T1

for some integer ̂, the period of the whole chain is equal to
T1 “ 5. For example, the choice of θr3 “ θw3 “ 2 produces a
chain τ1§2§2§3§3 with period equal to T1 “ 5 and phasings

θr1§2§2§3§3 “ 0, θw1§2§2§3§3 “ 17.

Hence, the application of the method described in this
section can transform any chain τ1§2§¨¨¨§n of n tasks into
a periodic LET chain with period T1§2§¨¨¨§n “ maxitTiu and
constant read/write phasings, at the price of adding at most
n´ 1 copier tasks.

7 CONCLUSION

This paper proposes a full analysis for a pair of functionally-
dependent tasks, in which the first task writes input data
that is read by the second one. Explicit expressions for
the input-output latency, minimum/maximum delays are
given. Such a characterization enables a method to trans-
form any task chain into another one with maximum
throughput and constant read/write phasings.

REFERENCES

[1] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte. Syn-
thesizing job-level dependencies for automotive multi-rate effect
chains. In Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA), 2016.

[2] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte.
End-to-end timing analysis of cause-effect chains in automotive
embedded systems. Journal of Systems Architecture, 80, 2017.

[3] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte.
Analyzing end-to-end delays in automotive systems at various
levels of timing information. ACM SIGBED Review, 14(4), 2018.

[4] M. Beckert, M. Möstl, and R. Ernst. Zero-time communication
for automotive multi-core systems under SPP scheduling. In
Conference on Emerging Technologies and Factory Automation (ETFA),
2016.

[5] A. Biondi and M. Di Natale. Achieving predictable multicore
execution of automotive applications using the let paradigm.
In Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2018.

[6] T. Blaß, D. Casini, S. Bozhko, and B. B. Brandenburg. A
ros 2 response-time analysis exploiting starvation freedom and
execution-time variance. In 2021 IEEE Real-Time Systems Sympo-
sium (RTSS), pages 41–53. IEEE, 2021.

[7] A. Davare, Q. Zhu, M. Di Natale, C. Pinello, S. Kanajan, and
A. Sangiovanni-Vincentelli. Period optimization for hard real-time
distributed automotive systems. In Design Automation Conference
(DAC), 2007.

[8] M. Dürr, G. V. D. Brüggen, K.-H. Chen, and J.-J. Chen. End-to-
end timing analysis of sporadic cause-effect chains in distributed
systems. Transactions on Embedded Computing Systems, 18(5), 2019.

[9] N. Feiertag, K. Richter, J. Nordlander, and J. Jonsson. A com-
positional framework for end-to-end path delay calculation of
automotive systems under different path semantics. In Real-Time
Systems Symposium (RTSS), 2009.

[10] R. Gerber, S. Hong, and M. Saksena. Guaranteeing real-time re-
quirements with resource-based calibration of periodic processes.
Transactions on Software Engineering, 21(7), 1995.

[11] A. Girault, C. Prévot, S. Quinton, R. Henia, and N. Sordon.
Improving and estimating the precision of bounds on the worst-
case latency of task chains. Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 37(11), 2018.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2023.3283707

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on June 10,2023 at 13:04:27 UTC from IEEE Xplore. Restrictions apply.

14

[12] P. Gohari, M. Nasri, and J. Voeten. Data-age analysis for multi-
rate task chains under timing uncertainty. In Proceedings of the
30th International Conference on Real-Time Networks and Systems,
RTNS 2022, page 24–35, New York, NY, USA, 2022. Association
for Computing Machinery.

[13] M. Günzel, K.-H. Chen, N. Ueter, G. von der Brüggen, M. Dürr,
and J.-J. Chen. Timing analysis of asynchronized distributed
cause-effect chains. In Real Time and Embedded Technology and
Applications Symposium (RTAS), 2021.

[14] A. Hamann, D. Dasari, S. Kramer, M. Pressler, and F. Wurst.
Communication centric design in complex automotive embedded
systems. In Euromicro Conference on Real-Time Systems (ECRTS),
2017.

[15] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto: A time-
triggered language for embedded programming. Proceedings of the
IEEE, 91(1), 2003.

[16] T. Klaus, M. Becker, W. Schröder-Preikschat, and P. Ulbrich. Con-
strained data-age with job-level dependencies: How to reconcile
tight bounds and overheads. In Real Time and Embedded Technology
and Applications Symposium (RTAS), 2021.

[17] T. Kloda, A. Bertout, and Y. Sorel. Latency analysis for data chains
of real-time periodic tasks. In Conference on Emerging Technologies
and Factory Automation (ETFA), 2018.

[18] S. Kramer, D. Ziegenbein, and A. Hamann. Real world automotive
benchmarks for free. In Workshop on Analysis Tools and Methodolo-
gies for Embedded and Real-time Systems (WATERS), 2015.

[19] M. Lauer, F. Boniol, C. Pagetti, and J. Ermont. End-to-end la-
tency and temporal consistency analysis in networked real-time
systems. Journal of Critical Computer-Based Systems, 5(3-4), 2014.

[20] S. Liu, J. Tang, Z. Zhang, and J.-L. Gaudiot. Computer architec-
tures for autonomous driving. Computer, 50(8):18–25, 2017.

[21] J. Martinez, I. Sañudo, and M. Bertogna. Analytical characteriza-
tion of end-to-end communication delays with logical execution
time. Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 37(11), 2018.

[22] J. Martinez, I. Sañudo, and M. Bertogna. End-to-end latency
characterization of task communication models for automotive
systems. Real-Time Systems, 56(3), 2020.

[23] P. Pazzaglia, D. Casini, A. Biondi, and M. Di Natale. Optimal
memory allocation and scheduling for dma data transfers under
the let paradigm. In Design Automation Conference (DAC), 2021.

[24] P. Pazzaglia, D. Casini, A. Biondi, and M. Di Natale. Optimizing
inter-core communications under the let paradigm using dma
engines. IEEE Transactions on Computers, 2022.

[25] P. Pazzaglia and M. Maggio. Characterising the effect of dead-
line misses on time-triggered task chains. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2022.

[26] A. Sangiovanni-Vincentelli, P. Giusto, C. Pinello, W. Zheng, and
M. Di Natale. Optimizing end-to-end latencies by adaptation of
the activation events in distributed automotive systems. In Real
Time and Embedded Technology and Applications Symposium (RTAS),
2007.

[27] J. Schlatow and R. Ernst. Response-time analysis for task chains
in communicating threads. In 2016 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 1–10, 2016.

[28] J. Schlatow, M. Mostl, S. Tobuschat, T. Ishigooka, and R. Ernst.
Data-age analysis and optimisation for cause-effect chains in au-
tomotive control systems. In Symposium on Industrial Embedded
Systems (SIES), 2018.

[29] A. Tampuu, T. Matiisen, M. Semikin, D. Fishman, and N. Muham-
mad. A survey of end-to-end driving: Architectures and training
methods. IEEE Transactions on Neural Networks and Learning Sys-
tems, 33(4):1364–1384, 2022.

[30] Y. Tang, X. Jiang, N. Guan, D. Ji, X. Luo, and W. Yi. Comparing
communication paradigms in cause-effect chains. IEEE Transac-
tions on Computers, 72(1):82–96, 2023.

[31] Y. Zhao, V. Gala, and H. Zeng. A unified framework for period
and priority optimization in distributed hard real-time systems.

Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2018.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for the
very detailed comments and suggestions and the editor for
overseeing smoothly the overall process.

This research is partially supported by the Spoke “Fu-
tureHPC & BigData” of the ICSC — Centro Nazionale
di Ricerca in “High Performance Computing, Big Data
and Quantum Computing”, funded by European Union —
NextGenerationEU. Also, it has received funding from the
European Union’s Horizon 2020 research and innovation
programme under grant agreement No 871259 (ADMORPH
project). This publication reflects only the authors’ view and
the European Commission is not responsible for any use
that may be made of the information it contains.

Enrico Bini is Associate Professor at University
of Turin. Until 2016, he was with Scuola Supe-
riore Sant’Anna, Pisa, Italy. In 2012-14, he was
Marie-Curie IEF fellow at Lund University (Swe-
den), Department of Automatic Control. In 2004,
he received the PhD on Real-Time Systems at
Scuola Superiore Sant’Anna (receiving the “Spi-
tali Award” for best PhD thesis of the whole
university). In January 2010, he also completed
a Master degree in Mathematics with a thesis on
optimal sampling for linear systems.

Paolo Pazzaglia is a Research Engineer at
Robert Bosch GmbH, Corporate Research, Ren-
ningen. From 2020 to 2022, he was a postdoc-
toral researcher at the Computer Science De-
partment at Saarland University. He completed
his Ph.D. in 2020 at the ReTiS Lab at Scuola
Superiore Sant’Anna in Pisa. He was a visiting
Ph.D. student at the Department of Automatic
Control, Lund University in the winter semester
2018/19.

Martina Maggio is a Professor at the Computer
Science Department, Saarland University (since
2020) and an Associate Professor at the De-
partment of Automatic Control, Lund University
(since 2017). She completed her Ph.D. at Po-
litecnico di Milano (in February 2012), and was
a visiting graduate student at Massachussetts
Institute of Technology (in 2010 and 2011). In
2019, she spent a sabbatical year at Bosch Cor-
porate Research.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2023.3283707

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on June 10,2023 at 13:04:27 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	Related Work
	System Model and Background
	Model of tasks and communication
	Mathematical Background

	Preliminaries
	Periodic chains
	Void and redundant jobs

	Pair of Periodic LET Tasks
	Case T1T2
	An example

	Case T2T1
	An example

	Zero-Jitter Task Chains
	The chain period may be larger than the maximum
	Creating a LET chain with a copier task

	Conclusion
	References
	Biographies
	Enrico Bini
	Paolo Pazzaglia
	Martina Maggio

