
D2.3: Final Report on Adaptation Methods

Project acronym: ADMORPH
Project full title: Towards Adaptively Morphing Embedded Systems

Grant agreement no.: 871259

Due Date: Month 33

Delivery: Month 33

Lead Partner: UniLu

Editor: Federico Lucchetti, UniLu,
Marcus Völp, UniLu
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GLOSSARY

BFT-SMR Byzantine Fault Tolerant Statemachine Replication

CPS(oS) Cyber Physical System (of Systems)

FIT Fault and Intrusion Tolerance

IPC Inter-process communication

QoS Quality of Service

SoS System of Systems
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Executive summary

Work package WP2 sets out to develop the adaptation building blocks necessary for maintaining
or, in extreme situations, gracefully degrading the systems’ quality of service guarantees. The
focus is on methods, protocols, tools and techniques, to increase the resilience of controllers of
Cyber-Physical-Systems of Systems (CPSoS), to optimize the mapping, partitioning and scheduling
of system components, to automate the design transformation towards a reliable, resource and
physical requirement aware system, and to analyze and limit system reconfiguration times.

This deliverable D2.3 reports the adaptation methods and their integration with the coordi-
nation language and runtime system, involving Task 2.1 - 2.6. This deliverable builds upon and
extends deliverable D2.2.

Adaptation serves four main purposes:

1. to evade faults, including accidental ones and adversaries in their ongoing attacks;

2. to improve the resilience of systems after experiencing faults or during ongoing attacks,
possibly by degrading the systems’ quality of service, if necessary;

3. to return the system to a state that is considered safe and secure; and

4. to optimize the system whenever the perceived threat level drops (e.g., because the CPS
entered less harsh environments or because adversaries lost interest).

We conclude our achievements in adapting individualistic CPS and CPSoS-wide resilience (Sec-
tion 1), iterate on the SOTA since the last deliverable (in Section 2), look at adaptation to achieve
control-aware fault and intrusion tolerance (in Section 3) and to recover control tasks and make
them resilient (in Section 4). We report on our work to bound adaptation and reconfiguration times
(in Section 5), including how we deal with situations where reconfiguration cannot be bounded. We
report on challenges of integrating low-level control into the ADMORPH exchange format and the
coordination language compiler infrastructure (in Section 7) as well as how to test control systems
with a feedback loop for adaptation (in Section 8). We report our work on the integration of the
adaptation methods with the coordination language and runtime systems in Section 9. Section 10
concludes.
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Figure 1: ADMORPH architecture: The figure shows the main components of the
ADMORPH architecture and their interplay in relation to the three use cases. Shown
is the tool support (left), the runtime components (right), and the interaction with
other CPS of the CPSoS (back).

1 Adaptation as Key Enabler of Individualistic and

CPSoS-wide Resilience

In ADMORPH and WP2 specifically, we take a holistic view on CPSoS and its components. We
assume fault and threat models of incremental and possibly changing strength. This can be in
terms of accidental faults or intentionally malicious faults, such as targeted attacks mounted by
adversaries. Accidental faults are induced by the environment and change when the CPSoS changes
where it is operating. Intentionally malicious faults change based on their intent, access to attack
tools and skills of the team (see D2.1b for a more detailed discussion of fault and threat models).

Adaptation is the key to cope with faults, on the long run, provided the system can tolerate
faults long enough for adaptation to become effective. In addition, adaptation will serve optimizing
functional and non-functional properties. In this WP and Deliverable, we focus on adaptation in
relation to faults and threats. As mentioned above, adaptation serves four purposes in this context:

1. to evade faults by relocating services to a different set of resources;

2. to improve resilience by including more resources in the tolerance of faults;
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3. to rejuvenate the system by recovering faulty or compromised resources when possible; and

4. to match the systems’ resilience to the perceived threat by allocating more or less resources
to the defense.

We will report adaptation methods and their interplay by zooming into the runtime elements
of the ADMORPH architecture, illustrated in Figure 1. ADMORPH supports both internal and
external adaptation of tasks. Internal adaptation implies that the task or component knows by itself
how to morph in order to tolerate faults and will trigger such measures autonomously. External
adaptation are goverened by the ADMORPH toolchain and happen in a coordinated manner at
predefined points in time. We use the former for time-critical configurations, such as restarting
low-level control replicas to absorb the faults of compromised ones within a few control epochs.
The latter governs more involved reconfiguration, such as transitioning to a new configuration at
the end of a schedule’s hyperperiod. In particular, internal adaptation is tasked to tolerate faults
long enough so that external adaptation has the time to evade the cause and return the system to
a secure state.

In the following, we will report on

• adaptation to achieve control-aware fault and intrusion tolerance (in Section 3),

• recovery and resilience of control tasks (in Section 4)

• bounding reconfiguration times (in Section 5) and in particular keeping them low enough so
that timeliness can be maintained in spite of faults and subsequent reconfiguration to recover
from them,

• network-level monitoring and adaptation (in Section 6),

• interfacing with the coordination language compiler infrastructure (in Section 7), and

• testing runtime systems and adaptation strategies (in Section 8).

We start by reporting on the SOTA advances since deliverable D2.1b.

2 State-of-the-Art since D2.2 (month 33)

In addition to the threats reported in D2.2, Sargolzaei et al. [25] identified a new type of emerging
threats: Time-Delay-Switch (TDS) faults. These faults are either injected by an adversary or the
result of a an accidentally faulty communication channel (sensor-to-actuator). In the former case,
attacks are injected purposefully and follow some planned strategy in order to inflict maximal dam-
age to whereas for the latter faults are typically transient and stochastic. TDS commonly manifest
as unknown time variable delays into a control signal such as the feedback signal imparted from
the control regulator to the plant or the controller internal state update. TDS have been reported
to cause significant harm in networked control systems (NCS). Because the latter are composed
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of an array of parallel plants exchanging sensor data and feedback signals with a controller over
multiple TDS-vulnerable communication channels, an induced delay in the actuation can severely
compromise the overall stability of the system [64]. Even though, the effects of TDS on NCS have
only been studied when only one controller actuates in a network of multiple plants, the same
reasoning applies to a system with replicated controllers such as the one described in the next
section. Arguably, negative effects of injected delays are expected to be amplified in a CPS that
require real-time guarantees.

Several works have been dedicated to monitoring faults and attacks, including TDS attacks,
by estimating the state in the control system [55].

Machine learning techniques have been developed to detect and estimate time delay in real-time
but without being able to mitigate them [19].

Zhang et al. [71] developed a framework to lay out the worst-case behavior during design time
such that TDS faults can be mitigated.

Since D2.2 we identified different types of recovery methods that enable the CPS(oS), in the
presence of a fault at the level of the sensor system and/or controller to return to a state as secure
and safe as a previous verified one. Herein we distinguish between shallow and deep recovery
schemes. The former entails methods which repair the CPS behavior under attacks with minimal
or no operation on the system states. [18, 20] propose an example of this where the compromised
component is merely restarted and substituted with a surrogate of the original without sacrificing
the systems stability. Another instance of a shallow recovery is to leverage redundancy where
the output of multiple replicas are fused together and upon attack detection isolate the faulty
contribution [60]. Another variation of a shallow recovery has been investigated by [40, 35] where
a state checkpointer stores historic and verified states and are subsequently used to predict what the
current state post failure time is. Deep recovery strategies extract information about system states
and use this knowledge to steer the corrupted CPS back to a verified target state. [72, 73] propose
a linear programming recovery controller to avoid a large deviation of the CPS trajectory from the
desired one and steer it back to a safe endpoint where safety and stability can be guaranteed.

3 Adaptation to Achieve Control-Aware Fault and Intru-

sion Tolerance

Figure 2 shows the control architecture of ADMORPH. In many situations, including our use cases,
high-level controllers steer the behavior of more low-level control loops that run at much higher
frequency and have as additional task the stability of the plant. A common example are advanced
cruise control systems, which aim at keeping the distance, lane and velocity, while a lower-level
controller follows the path they dictate. Similar controls can be found in our taxiing use case,
whereby the high-level controller might as well reside outside the controlled CPS, communicating
steering commands through wireless connections. Low level controllers can themselves consist of
multiple instances of complex and simplex control components, the latter possibly replicated.

We have identified the following adaptation possibilities in such systems:
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Figure 2: ADMORPH control architecture: The control architecture considers high-
level controllers feeding commands into low-level controllers, which themselves are
subdivided into a complex control task and simplex controllers, ready to take over in
case complex fails. A replication control component coordinates the replication and
hence the resilience of the simplex controller. It reacts to reconfiguration requests
from the runtime monitoring and adaptation component.

1. Functional adaptation, by transitioning between multiple high-level controllers and the func-
tionality they provide (e.g., manual vs. automated steering, but also internal vs. external
control). Such adaptations typically happen in the form of configuration changes at pre-
defined points in time and are coordinated by the coordination language, its compiler and
tool chain. Functional adaptations at non-pre-defined points in time are event-triggered
mode changes and must be considered ahead of time, including the transition period.

2. Resource adaptations of the current functionality (e.g., in response to changing loads or
resource unavailabilities). Such adaptations are as well steered by the coordination language
framework.

3. Threat-related adaptations, such as increasing / decreasing the internal resilience of compo-
nents in response to observed higher or lower perceived threat levels. Adaptation at this
stage needs to be a combination of proactive planning of the resources used in case of im-
minent stronger threats and fast runtime adjustments of the components itself to ensure the
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system is in the desired state one the threat manifests [61].

4. Adaptation of the runtime monitor, in terms of strategies, depth of analysis and monitored
components. Adaptation of the above kind typically entails also adapting the monitoring
subsystem whose responsibility it is to observe components and identify abnormal behavior.
Adapting also the observation and handling strategies allows monitoring to focus on the risks
at hand.

The above strategies may lead to adaptations at runtime. These are internal to the control
architecture to quickly respond to unforeseen situations and by leveraging excess resources and
planned configurations that have already be anticipated during the design-space exploration. Such
adaptations may include:

• take over by the simplex subsystem in case complex fails to provide correct information in
time

• adjustment of the simplex replication policy by transitioning from a detection quorum, which
establishes resilience over subsequent control epochs to immediate masking

• relocation of continuously failing controllers to spare resources

• adaptation of the frequency of rejuvenation

The above control-aware fault-and-intrusion tolerance techniques are enabled by the inherent sta-
bility of the plant.

We have implemented the above adaptation methods into the control infrastructure presented
in D2.1b and evaluate them in our inverted pendulum demonstrator.

4 Adaptation to Recover and Make Resilient Control

Tasks

Over time, control tasks fail or become compromised by adversaries aiming to take over the system
and cause harm to the environment in which it operates. Recovery of such control tasks and the
resources they use is essential to maintain healthy majorities and to continue tolerate failures. We
have therefore extended both the state-capturing capability of the replicated controller and the its
ability to restart replicas in a stateless manner with the means to also bring up additional replicas.
These new replicas start from binaries that are drawn from a pool of pre-compiled and pre-analysed
images that are sufficiently diverse to cancel adversarial knowledge how to attack replicas of this
kind. Starting without state, the replication controller then injects the captured state and keeps
these replicas up to date in the control tasks at hand before transitioning the responsibility to
actually control the plant1 to them. This way, additional replicas can be created and later brought

1We shall use the term plant, as common in control-related articles to refer to the controlled device or cyber-
physical system.
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into the active voting group once they are up and running. In the next section, we detail why this
two staged approach is required, i.e., why replicas must first be operational before we can consider
their outputs in the majority decisions that control the cyber-physcial system and systems of the
same.

5 Bounding the Time of Adaptation and Reconfiguration

Normally, reconfiguration is limited to starting the new components and the tasks they implement
it and transitioning responsibility to them. However, faults may also affect the resources that have
been used to run these tasks and components. To not exhaust these resources, in particular in the
presence of transient faults, resources must be rejuvenated and reconfigured themselves. The latter
typically implies rebooting the failing resource and testing it to see whether the fault persists.

Similarly, reconfiguration at software level creates new tasks, merges them into the existing
schedules and sets up their communication to coordinate with the remainder of the system. Such
reconfiguration is highly task and system dependent and may have a runtime that may by far
exceed the deadline of the re-configured tasks, even when several of them can be missed.

Primary objective of Task T2.3 is to limit configuration times in order to guarantee bounded
down times. While the Multi-model model-of-computation MoC can be used in order to bound
reconfiguation times in the general case, it considers coarse-grain reconfigurations. We refer the
reader also to Deliverable 3.2 for a more detailed account of Multi-model MOCs. In T2.3 we go
beyond by considering finer-grained reconfigurations and we do so by integrating fault models into
the scheduling analysis of redundant dataflow tasks. This way, we determine the WCET of such
tasks in the presence of errors down to a specific probability.

For instance, in the subway demonstration, we use a data transmission system running on a
separation kernel with two partitions (A and B), and each partition has a modem that connects
to an LTE network. When a decrease in the signal quality of one channel (run on partition A) is
detected, then the switching time to a new channel (run partition B) is dependent on the gateway
response. A data transmission failure may occur if the gateway reacts too slowly to the local
information about switching to the new channel.

In case there is a security attack on the software running on partition A, then the data trans-
mission system also switches to the LTE modem operated from partition B, and then partition A
is reset. If this reset restores signal quality, we switch back to the system on partition A.

Conclusion: The reaction of the data transmission system can be affected by a slow response
of the gateway to the data transmission system about switching to another channel and by the
ramp-up speed of Linux partition A in case the quality of channel B is low and communication
cannot be established.

If we are to design redundant communication for composed systems, where the limit for com-
munication loss is 2 seconds, it will be necessary to take into account all delays, including partition
ramp-up after reset. In both cases, the separation kernel response is negligible compared to the
“technology” response.

ADMORPH technology allows specifying this reaction time. Distribution of task to more cores
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(CECILE) allows to shortening and bounding reaction. The lack of security is eliminated by
PikeOS with its partitioning.

Some aspects might however still lead to unbounded reconfiguration times, such as repeated
reboots of a resource after a crash or reactivation of the same software vulnerability. These situ-
ations typically indicate a systematic and persistent failure in the hardware resource and or the
software component that is re-instantiated. For this reason, we investigated software diversifica-
tion and relocation possibly to computing resources of different characteristics and the implied
consequences on the WCET of this software component. With pre-analyzed images pooled as
well as a few resources on stand-by, the system can then adapt the schedule and reschedule entire
subsystems, if necessary.

However, even though the above measures will bound the reconfiguration times of the system,
we expect most of these bounds to be significantly larger than the worst case response times
of tasks in the system. In particular, we consider the case where the system would become
unsafe during reconfiguration if control is not maintained throughout the reconfiguration itself.
This is where fault tolerance comes into play to buy the time that is necessary to bring up the
new subsystems. A second challenge, related to the previous one, is the fact that although each
component will be reconfigured in a bounded amount of time, component interdependencies may
push the overall reconfiguration time beyond the limit what can be absorbed by our tolerance
measures. Therefore, instead of creating reconfiguration cascades by accepting the downtime of a
system while a depending system is reconfiguring (which may easily lead to transitive effects), we
aim to decouple reconfiguration and inclusion into the operational group as much as possible.

We have demonstrated this decoupling of reconfiguration and inclusion in our control architec-
ture by preparing our system to reconfigure in the following three steps: First, the new configura-
tion starts up, by creating new replicas, by starting components implementing the new functionality
or by starting new resources (kept as spares). Second, the new configuration connects with the
existing setup, including by ensuring that the new configuration receives state updates and sensor
inputs and is as well already monitored. Third, once this preparation phase concludes and all
components report their readiness to be included, we transition control to them by atomically
updating voters and associated components to consider the new subsystems instead of the previ-
ous configuration. This way, the voter will consider and apply proposals exclusively from the old
configuration (leveraging its inherent tolerance to faults for a given amount of time), until the new
configuration is ready to take over. Then, once the new configuration is in place, irrespective how
many control epochs this takes, at the beginning of the next control epoch, the voter will start
to only consider proposals of this new configuration. This decouples configuration, because timely
control is maintained either by the old configuration (until the transitioning point) or by the new
configuration (from the transitioning point onwards).
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6 Dependable network monitoring and support for adap-

tation

In this section we describe the developed work on network monitoring, in particular for improv-
ing ML-based Network Intrusion Detection Systems (NIDS), Our primary focus is on preparing
appropriate datasets to tackle the shortage of datasets available to evaluate complex scenarios,
including stealthy and targeted attacks designed to evade detection, attacks that are only detected
by multi-view systems of different features (see below), and adversarial machine learning (AML)
attacks that exploit machine learning vulnerabilities. This step is essential as it sets the foundation
for developing effective models in later stages. Our objective is to create datasets that accurately
reflect the challenges faced in CPS Network Intrusion Detection and enable the creation of models
that can effectively overcome these challenges. The following subsection presents a comprehensive
overview of datasets for network monitoring, covering their formats and highlighting three signifi-
cant datasets from the literature that serve as baselines for building a public evaluation platform.
Then, work on evaluating the possibility of exploring multi-views to generate diversity is also de-
scribed, including results from the performed analyses. Finally, the work towards the creation of a
public evaluation platform is presented, followed by a discussion of open aspects that will require
further work in the future.

6.1 Datasets for network monitoring

Network monitoring mechanisms rely on datasets to train and test their ML models. These datasets
typically consist of network traffic data that includes both normal and attack behavior. The quality
and diversity of the datasets used in such context play a crucial role in the performance and
robustness of the network intrusion detection systems (NIDS) against different types of network
attacks, including AML attacks. In this context, NIDS datasets should be representative of the
network traffic in the monitored environment, diverse in terms of the types of attacks and normal
behaviors, and labeled accurately. The availability of publicly available datasets for NIDS research
and development is also essential for benchmarking and comparing different NIDS approaches [57].

Dataset type: Network data used in intrusion detection models can vary greatly in terms of
characteristics, and according to [58], two prevalent datasets types for NIDS are packet-based and
flow-based. Packet-based datasets typically consist of raw data packets captured by a network
packet analyzer with minimal processing or manipulation. These datasets contain one instance
for each packet and the payload information is used to compose the feature set [58, 52]. On the
other hand, flow-based datasets work with traffic summaries, where for each instance, aggregate
information that shares common properties (e.g., source IP, destination IP), using the protocol’s
header fields. The flow can be unidirectional or bidirectional (called sessions) [58, 52]. Some fea-
tures extracted in flow-based datasets are the number of transmitted bytes, number of transmitted
packets, duration, transport protocol, and others. It is possible to convert packet-based datasets
to flow-based datasets, but not the other way around [58, 39].
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Flow-based Datasets: Flow-based datasets play a crucial role in NID by offering a compre-
hensive overview of network traffic. This comprehensive view helps in detecting unusual behavior,
which is crucial in identifying intrusions. Furthermore, flow-based datasets are more efficient in
terms of storage and processing, as they retain only essential information about network traffic
instead of retaining individual packets [[58]].

Packet-based datasets: Packet-based datasets capture all the individual packets of network
traffic, providing a more detailed view of the data. This can be useful for identifying specific attack
signatures, as well as for forensic analysis. However, packet-based datasets are more resource-
intensive in terms of storage and processing, as they capture all the data. Additionally, they can
be less effective at detecting abnormal behavior, as they do not provide as much context about
the communication between hosts as flow-based datasets do [[58]].

Noteworthy Datasets: The use of datasets in the field of network security is crucial for eval-
uating and testing the performance of security systems. In this context, the UNSW-NB15 [53],
BoT-IoT [41], and CIC-ID2017 [59] datasets play an important role as they provide diversity in
network security by presenting a variety of scenarios, attack types, features and a large amount of
network traffic.

The UNSW-NB15 dataset, created by the Cyber Range Lab of UNSW Canberra, consists of
2.54 million records and 47 features of corporate network traffic.The BoT-IoT dataset also from
the same lab focuses on the smart-home environment, with 72 million records and 32 features,
including five IoT devices. The CIC-ID2017 dataset, designed to resemble an ICS environment,
includes the most popular attacks based on the 2016 McAfee report and boasts 700,000 records and
over 80 features. Those datasets are accessible in both raw data (pcap) and flow-based formats,
offering versatility in network security analysis.

The UNSW-NB15, BoT-IoT, and CIC-ID2017 datasets were created in different environments
and with various tools to simulate different types of attacks, making them ideal for testing the
robustness and accuracy of network security systems. By using these datasets, researchers and
practitioners can gain a better understanding of network security issues and develop solutions
to prevent cyber attacks. The availability of pcap files also allows for the extraction of custom
features, which we are leveraging in this work.

The varying feature sets utilized in different flow-based datasets in the literature have been
observed by us, leading us to the conclusion that by consolidating the strategies employed by these
works to construct their feature sets, we can produce a broad spectrum of views that can enhance
the robustness of ML models against stealth attackers who attempt to evade NIDS systems that
only use a single view. Furthermore, our aim is to create views that more effectively detect specific
attack types. In the following section, we outline our initial experiment, which entails generating
views of the UNSW-NB15 dataset to generate diversity.
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6.2 Exploring Diversity through Multi-Views

One approach to creating diversity is to utilize a multi-view approach. This approach involves gen-
erating multi-views or perspectives of the same data or problem, leading to a more comprehensive
and diverse range of solutions. By exploring multiple angles and considering different viewpoints,
a more well-rounded and diverse set of results can be achieved [68, 74].

We present our findings on multi-views, providing evidence on how to promote diversity in
NIDS. The purpose of this experiment was to examine the potential impact of using multiple
views to enhance diversity, taking into account our hypothesis that increased diversity will result
in improved NIDS accuracy and robustness to AML attacks.

To investigate the effects of multi-views on enhancing diversity for network intrusion detection,
we utilized the UNSW-NB15 dataset (original flow-based version, not pcap files), and we organized
the features into three unique views, following the method described in [34]. These views were
created based on their distinct features, including i) Content view, which encompasses information
from the data payload; ii) Basic view, comprising attributes that represent protocol connections;
and iii) Traffic view, consisting of traffic indicators of the current connections.

To evaluate the efficacy of each view, we trained three classifiers - Random Forest, Adaboot,
and K-Nearest Neighbors - using the scikit-learn library version 0.20.3. To maintain the validity
of the results, the models were trained with the default parameters without any optimization or
customization. The dataset was divided into a training set (70%) and a testing set (30%) using the
holdout method. The diversity was measured using the disagreement measure, calculated using
the false positive and false negative as input.

The disagreement measure is a metric utilized to assess the extent of inconsistency between two
or more classifiers. Simply put, it gauges the degree to which classifications produced by different
sources differ from each other. The measure returns a numerical value ranging from 0 to 1, where
a value close to 0 signifies low diversity, and a value close to 1 implies high diversity. In this study,
we used the disagreement measure to evaluate the diversity between different views.

The results of the comparison among the views are shown in Figure 3. The disagreement
measure was employed to quantify the degree of variation between the classifications produced by
different views. False positives and false negatives of the classifier varied for each view, which is
why we used all views as baseline comparisons. We first compared the Content View to the Basic
and Traffic views. Then, we compared the Basic View to the Content and Traffic views. Finally, we
compared the Traffic View to the Content and Basic views. The results of the experiment showed
that there was evidence of diversity when using multiple views, as the disagreement measure varied
from 25% to 71%.

The experiment yielded results that not only emphasized the diversity captured through multi-
views but also highlighted the impact of classifier variability on diversity. This indicates that the
utilization of different classifiers can also lead to diversity, which can be utilized to enhance the
outcome. As depicted in Figure 3, the best disagreement performance varied between AdaBoost
and K-Nearest Neighbors. The Random Forest classifier performed poorly in terms of generating
diversity, with a median result of 44%, whereas AdaBoost and K-Nearest Neighbors achieved higher
results of 59% and 60%, respectively. Furthermore, although AdaBoost and K-Nearest Neighbors
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Figure 3: View Diversity.

produced similar results in terms of generating diversity in the mean, they leveraged different views,
indicating that various classifiers can produce similar outcomes but generate diversity in unique
ways, providing complementary results. This discovery supports the second aspect of diversity
designed in our proposal, the diversity of models.

Afterward, we explored the concept further by building a public, comprehensive evaluation
platform/benchmark for proposed architectures and other related literature approaches. Using the
datasets previously mentioned, we employed four unique methods to construct multi-views, with
the aim of uncovering the potential diversity in views.

6.3 Comprehensive Evaluation Platform

This report details our ongoing work on the development of a Public Comprehensive Evaluation
Platform (PCEP). We aim to create a benchmark with multi-view and adversarial machine learning
(AML) attacks to evaluate the proposed architecture documented in Deliverable D2.2 and make
it available to the research and practitioner community.

A crucial part of our research is acquiring datasets that align with the specifications of our
proposed architecture. The existing datasets in the field of Network Intrusion Detection are either
outdated or do not cater to the requirements of multi-view and AML attacks [57]. Therefore, we aim
to build or prepare new datasets that meet these criteria, and that can be used for benchmarking.
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Figure 4: Flow Export Process.

After having the network packets flow with the four preliminary views, the next step is to
generate the AML attacks. The generation of attacks is done through techniques widely used in
literature. As a result of this phase, we will have three datasets with the necessary characteristics
to evaluate the proposal and the literature approaches.

The preparation of the datasets involves utilizing three noteworthy datasets (UNSW-NB15,
BoT-IoT, and CIC-ID2017) as baselines. The process begins with converting network packets, in
the form of pcap files, into flows. Our flow export process is depicted in Figure 4. A pcap file
is input into the flow exporter, which then converts the network packets into flows and extracts
three views based on features on flow-based datasets formerly cited, as well as an additional view
based on IPFIX features.

The datasets have been converted into network flow format with four views and properly
labeled. However, our work is ongoing, and we will be outlining the remaining steps to complete
the PCEP and to implement and to evaluate the proposed architecture.

6.4 Open Aspects

This section identified open aspects towards the implementation of a complete PCEP and evalu-
ating the proposed architecture for network monitoring.

Concluding the PCEP: Once the network packets are converted to flows, the next step is to
generate AML attacks to evaluate the performance of our proposed architecture. The generation of
AML attacks can be carried out using popular methods commonly cited in the literature, including
IDS Generative Adversarial Networks [[46]], Particle Swarm Optimization, and Genetic Algorithm
[[22]].

As a result from this phase, one obtains three datasets that incorporate multi-views and AML
attacks, and that share the the same single features. They can be used in scenarios as multi-font
data and to evaluate platforms other than ours.

The PCEP results in three datasets that feature multi-views and AML attacks, providing
a comprehensive evaluation platform for our proposed architecture and other relevant literature
approaches. The consistency in features among the three datasets will also facilitate future studies,
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such as evaluating the generalization ability of the models by training on one dataset and testing
on another.

Design, Training, and Testing: After having the datasets ready, the next step is to create
multiple scenarios to objectively evaluate various aspects of our proposed architecture and relevant
literature approaches. Our implementation reflects the conceptual design.

A minimum of four evaluation scenarios has been devised to assess the impact of each proposed
diversity. These scenarios are View Diversity, Model Diversity, Worker Diversity, and Overall
Evaluation. These scenarios aim to uncover the contribution of each of the three diversities and
the overall contribution of architecture for network monitoring to the field.

Evaluation: In this phase, the proposed architecture is evaluated to measure its performance
and robustness against AML attacks. To evaluate the performance of the proposal, we consider
the capacity to mitigate network attacks. Also, this phase reveals how each diversity proposed
influences the robustness of the model.

To measure the effectiveness of the proposed architecture, a range of evaluation metrics can be
used, including but not limited to accuracy, false positive rate, false negative rate, F1 score, and
attack success ratio, to evaluate the architecture performance in AML settings.

7 Interfacing with the TeamPlay Coordination Language

Compiler Infrastructure

Downstream tools, as shown in Figure 1, can interface with the coordination TeamPlay Coor-
dination Language compiler and each other via the ADMORPH Exchange Format (AXF). The
integration includes the Scheduling and Timing Analysis tools (developed for T3.3), the AROMA
runtime environment (T3.3), the Design Space Exploration tool (T3.1, T3.3), and the TeamPlay
compiler itself (T1.1, T1.2). The integration allows for turnkey processing of a TeamPlay-specified
application with hardware and Mean-Time to Failure found through Design Space Exploration,
with redundant schedules produced by Scheduling and Timing Analysis tools and capable of run-
ning on the AROMA Runtime Environment. The combined system is intended to be robust against
hardware faults by migrating tasks when such a fault is detected. In this section, we discuss the in-
tegration via AXF, as well as outline the challenges faced when addressing robustness requirements
via runtime mode-switches.

7.1 Exchange Format

The ADMORPH Exchange Format (AXF) is a text-based graph representation with additional
attributes, allowing the expression of complex task graphs together with non-functional attributes
in a single machine readable format. AXF task graphs are represented as a bipartite directed
acyclic graph, where actor nodes (“tasks”) link to data nodes (channels). AXF files describe the
hardware (number of cores, types of cores), and can optionally define a set of static schedules
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for different scenarios (e.g. a schedule for dual-modular redundancy, a schedule for degraded
hardware). The exchange format used multiple times. The Scheduling and Timing Analysis and
Design Space Exploration tools (see Figure 1) incrementally add information to the AXF.

While both TeamPlay and AXF expect tasks to be implemented as C (or C++) functions,
we create a simpler, uniform calling convention for AXF. TeamPlay communicates input and out-
put data via the function signature (one argument per inport and outport), which may require
a different signature for each task. As such, the function call differs per task, which complicates
runtime execution environments. For AXF, the tasks are wrapped to support a homogeneous
calling convention, where inports and outports are communicated via a one-argument data struc-
ture instead of separate arguments. Furthermore, TeamPlay supports multiple edges between task
pairs as programming convenience, instead of requiring developer to merge them into one. AXF
is restricted to only one edge between task pairs, simplifying further analyses and transformations
at the cost of requiring the TeamPlay compiler to generate prologue and epilogue code for each
task to unpack and pack the arguments.

We extend the AXF to allow for the specification with sections, where real-time mode switches
can be made based on the state of the hardware. In particular, this allows reconfiguration of tasks
as a result of failing hardware well before the end of the hyperperiod. The end goal is to use AXF
to describe all possible configurations of the system under any anticipated fault situation that
can still handle the minimum required service. For example, if a core of a certain type fails, the
configuration to enable upon detecting such a core failure will be described using AXF and can be
used to generate code for activating this configuration.

To aid in validating the chain of downstream tools, the TeamPlay compiler can be used to drive
simulators, such as existing simulators like UPPAAL, or the fault-tolerance simulation runtime as
presented in D1.2. The simulators can use (among others) the task graph, timing information,
schedules and expected fault rate. The output of these simulators aids in the validation of the
output of downstream tooling using the AXF format.

7.2 Runtime Configuration changes

Configuration changes in general may involve migrating existing tasks, starting new tasks (typi-
cally the ones that executed on the failed cores), and stopping tasks (e.g., to gracefully degrade
the delivered service). However, in the presence of failing cores, some additional complexity is
introduced as there is no control over which core is to leave the system. In a regular configuration
change, the destination configuration might be viewed as a pool of identical cores and (from a
reconfiguration perspective) interchangeable. But, when a core fails, merely the ability to switch
to a destination configuration using one core fewer is not enough, as such a configuration change
may make assumptions on which core it is to give up. Rather, the fault removes a core from the
pool at random, and the tasks from that core need to migrate to meet system requirements. For
example, assume a system with four cores of some type ’A’. Failure of any of these cores (or a
similar anticipated fault) will activate a configuration where only three cores of type ’A’ will be
needed and the tasks-to-three-core mapping described in the configuration can then be realized by
selecting any of the remaining non-faulty cores as core one of this mapping (proceeding accordingly
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for core two and three of this mapping). However, depending on how this core-to-core mapping
is realized, the runtime system needs to adapt a variable amount of tasks, while maintaining the
timing guarantees of the old configuration until the new configuration can be enabled and cleanup
completes.

We have identified two possible solutions to prepare the transitioning from source to target
configuration with the help of the coordination language compiler infrastructure. Common to
both is the assumption that each configuration is able to tolerate the occurring fault for a limited
amount of time until a new configuration can be activated. This might imply a degradation of
service until the new configuration can be enabled.

Solution 1 Construct a transition schedule for each source configuration and failure situation,
which then facilitates the transition to the target configuration that should be enabled in
the presence of a given failure type. This way, the compiler infrastructure can prepare
the runtime to implement this mapping and ensure offline that all tasks continue to meet
their deadline for as long as required, i.e., for all tasks of the source configuration until
the transition to the target configuration can be performed (at a corresponding switching
point) and for all tasks of the target configuration until cleanup completes. We expect this
solution to offer faster transition times and more confidence in the transition, since it can
benefit from the analytical rigor of all offline tools (including WCET analysis, long running
optimizations, etc.). The drawback of course is the overhead in terms of the number of
source/target pairs to consider, for each anticipated failure situation. In particular, we need
to apply the same analysis recursively to the still operational resources to prepare the system
to tolerate additional faults, although we expect the number of simultaneous faults under
which the system will still be able to deliver the minimal desired service to be rather small.

Solution 2 The second solution avoids a-priori computation of transitions altogether by defer-
ring it entirely to the runtime. The runtime environment must identify which tasks need
migration, stopping and starting to transition from the source to the target configuration.
To ensure that faults can be tolerated until the target configuration is enabled, and to allow
the target configuration to properly handle the system, deadlines of all tasks on the surviving
cores must be guaranteed for the source configuration until the point in time when the target
configuration can be enabled. Also, while the target configuration is already running, we have
to ensure that all tasks of the target configuration meet their deadlines despite unloading
the residual tasks of the source configuration. The method to achieve this timeliness during
the ramp up and ramp down phases differs significantly from the one presented for the first
solution. Rather than computing a transition schedule offline, we anticipate (during their
construction) that each configuration will have to tolerate limited interference from other
activities that are not known in advance. For example, each core may have to tolerate mem-
ory accesses at a certain pre-defined bandwidth and may experience a limited interference
through its caches. We assume that any such interference can be controlled (e.g., as described
in MemGuard [69] and subsequent papers for resources other than the memory). Therefore,
rather than scheduling ramp-up and ramp-down tasks, we would allow the runtime to use
the anticipated interference to start, stop and migrate the required tasks. In the schedule,
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this ramp-up / ramp-down interference can be included as virtual tasks, which exhibit such
a behavior. Runtime interference control thereby ensures that ramp-up and ramp-down will
not exceed the anticipated bounds of these virtual tasks.

For solution 2, the ramp-up and ramp-down activities will be severely hampered by the
interference-control mechanisms (e.g., when limiting the memory bandwidth available to load new
images into a processor’s tightly coupled memory during ramp-up). It will therefore be more
difficult to estimate worst-case bounds, at least in the orders of magnitude required for giving
”normal” timeliness guaranteed (e.g., within the epoch lengths of control tasks). But this is also
not needed, since the actual transitioning from source to target configuration happens at a different
time scale (e.g., over multiple control task epochs). The only point where ”normal” scheduling
and the ramp-up / ramp-down activities have to coordinate is when switching from the source
to the target configuration. The AXF describes viable points for such a transition in the form of
anticipated switch points. Therefore, even if the target configuration is ready to take over, the
runtime needs to wait for the next such switching point to transition to the target configuration.
Until this point in time, the surviving tasks of the source configuration maintain timely control
and the other required real-time aspects of the system, while the target configuration is ramped
up. And starting from this point in time, the target configuration will be active and responsible
for guaranteeing timeliness, while the remainder of the source configuration is ramped down in the
same interference constrained manner.

We are currently comparing and contrasting both solutions to evaluate which one (if any) can
still be realized in the remaining time of the project.

8 Testing Runtime Systems

In control systems and in systems that adapts the behaviour of software, the software plays a
crucial role of decision-making. Depending on the application, if this process is incorrect there can
be dramatic consequences. Furthermore, modern applications include high levels of digitalisation
and integration. For example, the software of a car executes several control systems in parallel
(traction control, stability control, anti-lock braking system), also together with the infotainment
systems [32, 37]. This makes control software complex, and prone to errors. Unsurprisingly, control
software requires a long and costly verification and validation process [36].

During the verification and validation process, engineers spend most time on testing [75, 36, 28].
The main difficulty in testing control systems arises from the necessity of executing the system
in a closed loop. Unit testing of the individual components is clearly important, but of limited
effectiveness, and system testing is crucial [50, 21]. Given the tight coupling of components, it
can be very difficult to identify a fault location. In fact, even when only one component is faulty,
the malfunction spreads to all the components in the loop. Furthermore, the physics makes the
execution of tests non-deterministic and costly both in time and resources.

To work around the tight coupling of the system and reduce the cost of executing system
tests, it is common practice to abstract specific components and substitute them with executable
models [48]. The choice of which components to abstract defines different testing setups [70, 31,
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43]. Said setups are called X-in-the-loop, where “X” (e.g., software or hardware) describes which
components are included as their final implementation and which components are abstracted.
Despite being common industrial practice, the differences in fault-finding capabilities among X-in-
the-loop setups have never been studied.

In particular, previous research started from the – often implicit – assumption that there exists
a hierarchy among the testing setups. This hierarchy is supposed to manifest itself in terms of
the testing capabilities and the coverage achieved with one or another setup. To mention some
examples: [70, pp. 13−14] and [49, pp. 2] discuss of how each testing setup adds detail to the testing
representativeness, [31, pp. 3] discusses the increasing level of integration of the different testing
setups, [30] and [56] discuss the re-use of test cases across testing setups, and their incremental
nature in approximating the real-world behaviour. Accordingly, previous literature uses the naming
“testing levels” for the different setups, hence implying an ordering. A likely explanation of why
this assumption has not been challenged, is that research on the topic is also limited by the
development effort required by the implementation of the different setups.

With the aim of filling the gap in the study of the setups differences and of enabling fur-
ther research, in the ADMORPH project we provide the following contributions: (i) a precise
understanding of the testing abstractions in control systems’ testing, (ii) the development of four
complete testing setups for a fully open-source case study, and consistent injection of different
types of faults, (iii) comparison and discussion of said setups in terms of their ability to detect
different types of software faults.

The system has three main components: (i) the physical process, (ii) the software implementing
the control algorithm, and (iii) the hardware executing the software. The interaction between the
controller and the physical process happens through actuators and sensors. The controller can also
receive inputs from other software components or from human operators.

The overall structure of a CPS control system is usually represented with a block diagram
similar to the ones shown in Figure 5. A cyber controller block is connected to a physical process
block to form the closed loop.

Potentially, components can be abstracted – i.e. substituted with simulation models – so that
the other components can be tested in isolation. Abstracting one or more components defines a
testing setup [70]. When a component is abstracted, it is important that its simulation model
and interaction with the other components are representative of the actual implementation. Said
in other words, for an abstracted system-level testing setup to be effective, there are associated
assumptions that have to hold: these assumptions concern the validity of the models, their imple-
mentation, and their interaction. Figure 5 provides a graphical representation of the closed loop
for each testing setup: the dashed blocks are emulated and solid ones are implemented. Table 1
summarises the main testing setups and their fundamental assumptions.

At the model-in-the-loop abstraction level, all components of the system are simulated through
models, as shown in Figure 5-MIL. The execution of said models requires a dedicated simulation
environment. During the system development, MIL testing is performed in two ways: during
the control design, and as part of the system testing (so called model-testing [29]). For control
design, the control engineer develops an executable model of the physical process, represented in
Figure 5-MIL by the function f , and a control law g, that uses measurement signals and control
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Table 1: Abstractions for system-level testing of control systems. Comparison among:
Model in the Loop (MIL), Software in the Loop (SIL), Hardware in the Loop (HIL)
and Process in the Loop (PIL). The setup comprises controller code (C), hardware (H)
and process (P); y indicates that a component is simulated, � that its real instance
is used.

SetupName
C H P

Underlying Assumptions

MIL y y y (i) process model is accurate, (ii) controller model corresponds
to implementation

SIL � y y (i) process model is accurate, (ii) hardware model captures the
relevant properties (e.g., timing and instruction set)

HIL � � y (i) process model is accurate, (ii) execution of input/output
hardware peripherals is not affected

PIL � � � —

commands to compute the actuation signals. The models are defined as differential equations,
difference equations, and state machines [45], they can be implemented using common simulation
software, like MATLAB [2] or Modelica [3]. In this way, the closed loop is tested to verify that the
algorithm meets the expected performances and can be used to fine-tune the parameters [66].

MIL testing is completely simulation-based, and hence it fully relies on modelling assumptions.
These can be divided in two categories depending on what they concern: (i) physical process-related
assumptions, and (ii) controller-related assumptions.

Examples of assumptions on the process are: neglected dynamics (like tyre dynamics in the
vehicle model for cruise control), modelling approximations (like linearisation of nonlinear models),
and neglected phenomena (like friction and road surface variability). Control theory provides
metrics and rules-of-thumb to quantify the robustness of a control algorithm to non-ideal behaviour.
However, these metrics also rely on assumptions, and hence need verification.

Examples of controller-related assumptions are: ideal timing (instantaneous execution) and
infinite numerical precision. Moreover, not necessarily all of the required control features are
implemented at this level. For example, a controller with different modes of operation may benefit
(in terms of simplicity) from these modes being implemented and verified individually, neglecting
the mode switching. In the cruise control example, a controller handling the distance from the
vehicle ahead and a controller keeping the desired speed might be tested separately. If this is the
case, the mode switching code has to be tested in other setups.

In the software-in-the-loop setup (Figure 5-SIL), we include the actual software implementation,
while hardware and physical process are still abstracted. The physical process is implemented using
models that are similar to (or the same as) the ones used for MIL testing.2 On the hardware side,

2Here, models might need refinement. In the cruise control example, during the control design process, the
engineer may assume direct control over the vehicle acceleration. In the SIL setup, on the contrary, the simulation
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Notation: r (reference commands), u (actuation signals), y (measured signals), (actuators), (sensors).

Controller
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Figure 5: Testing setups for different testing levels. Dashed lines indicate that the
corresponding component is simulated, while solid lines denote the component exe-
cution.

different choices are viable, from simulating only a few hardware components – like for example
in our motivating example where we emulated the encoder and the pulse width modulation – to
complete cycle-accurate hardware emulation. A simple alternative is to test the code in a general
purpose machine. The code is then compiled for and executed on a machine different from the
target one, hence abstracting the hardware and the execution environment. Under the associated
assumptions, this enables testing of the functional component of the software, i.e., if the control
law g is implemented correctly. However, other non-functional properties (e.g. execution time)
cannot be verified, since they relate to system components that are abstracted. A more detailed
alternative is hardware emulation: tools like gem5 [4] and Renode [5], can provide a higher degree
of testing significance. Such a solution is often preferred in embedded systems (hence in control
systems as well) given the strong coupling between hardware and software. In this way, the software
is compiled for the target hardware. Among other things, hardware emulation enables the testing
of the interaction with the Real-Time Operating System and possibly low-level software routines
that interface with the sensor and actuator peripherals [26].

In SIL, the testing abstractions can still be divided into two sets: the first set is equivalent to
MIL and relates to the process modelling, that needs to be accurate. The second set of abstractions
is related to the environment in which the software is executed, varying significantly according to
the specific choices made for the hardware abstraction. In general, these require that execution

needs to include the fact that the actuation signal is the voltage command sent to a digital-to-analog converter
connected to a servo, that moves the throttle valve of the engine.
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environment is representative of the actual one. Such abstractions mainly include: (i) software
environment (meaning the interaction with other software components: for example the real-time
operating system, if the code is executed on machine other than the target one), (ii) hardware
(e.g. support for floating point arithmetic [47]), (iii) time modelling (the timing of the software
execution has to be consistent with the physics simulation and possibly with other events, like
user commands), and (iv) input and output definitions (measurement and actuation signals are
representative of the real ones, e.g. with respect to measurement units).

The hardware-in-the-loop setup includes the target hardware in the testing process, as shown
in Figure 5-HIL. The control software is now executed on the target computing platform – e.g. the
microcontroller of the car in the cruise control example – and the model of the physical process is
simulated on a different machine. The actuation signals produced by the software are extracted
and fed to the physics simulator, while synthetic sensor readings from the simulator are fed to the
hardware. The main design choices for this setup concern (i) the level at which the measurements
and actuation signals are redirected, (ii) and the synchronisation between the controller execution
and the physical process. For the first item, options range from using a debug port and accessing
the memory registers of interest, to manipulating the software so that it interacts with the simulator
instead of the actual peripherals. If signals are intercepted at lower levels, more details will be
required for the model simulation: for example, in the cruise control, speed readings might have
to be scaled to the encoder resolution instead of being in the physical units of measure. As an
alternative, dedicated testing hardware can be developed so that it interfaces with the simulator
at the physical connection level (i.e. I/O pins) instead of requiring that the software is redirected.
This allows better coverage of the low-level firmware. Concerning the time synchronisation, the
testing setup must ensure the consistency of time between the target hardware and the simulated
physics; this can be done by performing the physics simulation and the I/O operations in real-
time. Such a solution is however difficult to realise [44] and explicit synchronisation points might
be needed—e.g. every millisecond the hardware is halted, then outputs are read, the physics is
simulated, and sensor values are written before execution is resumed.

Apparently, also the HIL setup includes the abstractions associated to the modelling of the
physical process. The two sets of design choices mentioned above are associated to respective
testing abstractions. Intercepting the actuation and sensor signals at a higher level will possibly
exclude more of the software that handles said signals in the control system. Consequently, this
software is abstracted from the testing and assumptions have to be made about its behaviour.
Analogously, the chosen synchronisation mechanism (if a real-time simulation is not implemented)
can abstract timing phenomena from the test. For example, if the controller and physical simu-
lator are synchronised every millisecond, events that happen at a higher rate are abstracted. To
summarize, the HIL testing abstractions concern: (i) the input-output interactions of the hardware
with the physical world, and (ii) the consistent evolution of computational time in the hardware
and the evolution of time in the physical process.

In the PIL setup the physical process is included in the closed loop, therefore the full imple-
mentation of the CPS can be used and there are no testing abstractions. Extra sensors could
be installed on the process and prototypes might be used in place of production models: such
solutions are highly application-dependant and therefore excluded from this discussion. Hence,
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Figure 6: Crazyflie 2.1 with the STM debugger link.

PIL testing effectiveness mostly depends on the testing strategy. However, in this work we focus
on the design of the setups rather than of the testing strategy.

We developed and implemented the MIL, SIL, HIL and PIL testing setups for the Crazyflie
2.1 quadcopter [6], shown in Figure 6. Our code is available on github at https://github.

com/dummy-testing-abstractions/testing-abstractions. We developed the setups with the
objective of allowing consistent injection of the software faults in each of them. We did so by
allowing only minimal modifications in the drone software when implementing the different setups.
We provide a detailed report on the modifications and the setup design choices behind them. This
is crucial to avoid biases in the study caused by the differences in the fault implementations and
to assess the general validity of the results.

With the different setups, we first run the control software. We then inject faults in it, and
run tests in each abstraction configuration. We use this procedure to expose the different fault-
revealing capabilities of the setups. The choice of the Crazyflie case study is motivated by two
main reasons. First, the control system of the quadcopter is both not trivial and based on the most
used control algorithms, making it a practically relevant case study. In fact, the Crazyflie is known
to the research community; it is used for both education and research, e.g., quadcopter control
design [33], swarm robotics [24, 42, 51], distributed [65] and robust control [54]. Second, both the
Crazyflie software [7] and hardware [8] are completely open-source. We therefore have complete
knowledge about the design of the system, which allows us to build a testing infrastructure for all
the MIL, SIL, HIL, and PIL setups. In particular, using the open source hardware specification,
we can build the hardware emulator for the SIL testing. Similarly, we use the open source code
for both SIL and HIL testing. To ensure reproducibility of the results and make the artefact
available to the research community for further investigation we used only open source tools for
the implementation of the infrastructure needed in the different setups.

We implemented in Python a physical model to describe the Crazyflie and its controller [38].
We use the SciPy module [9] to integrate the differential equations describing the physics. In MIL,
several aspects are abstracted with respect to the software implementation of the controller. Some
examples are: (i) the computation of the matrix exponential is performed using the NumPy [10]
linear-algebra library, while, in the real Crazyflie software, the calculation is approximated, (ii) each
floating point variable has double precision, while the firmware uses single-word floats, and (iii) our
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model implementation is single-threaded, while in the software the algorithm is distributed over
different threads. The physics model is based on first principles, however it also abstracts different
phenomena. Some examples are: (i) the flexibility of the structure of the drone is abstracted
(hence assumed infinitely rigid), (ii) the dynamics of the electric motors is abstracted (the relation
between the voltage fed to the motors and the vertical thrust is assumed quadratic), and (iii) the
differences between the two horizontal axes are abstracted (the drone is assumed symmetric).

In our SIL setup, we rely on the open-source hardware emulator Renode [5]. Bitcraze [11]
maintains its own fork of Renode [12] and of the Renode-Infrastructure [13] which contains the
emulators of the peripherals. We implemented the platform emulator, which is able to execute the
binaries as they are compiled for the target hardware. We also implemented the infrastructure to
allow communication between Renode and our simulator of the physics. Said infrastructure lever-
ages the possibility of exposing, along with a Renode emulation, an OpenOCD [14] interface. Some
changes were required in the software to interface with the physic simulator: (i) in the Flow deck
driver, the low-level interaction with the camera is disabled, (ii) in the Z-ranger driver, the low-level
interaction with the ranging sensor is disabled, (iii) in the motor driver, no output is written to
the motors, (iv) in the IMU driver, the sensors calibration is skipped, (v) in the Kalman filter, a
division by zero check has been added. (vi) debug variables are added in mm flow.c and mm tof.c.
For the interested reader, the exact changes can be found in the patch file. When compiling the
code, our changes are triggered by defining the preprocessor macro SOFTWARE IN THE LOOP.

The most frequent interaction with the physics is the sampling of the IMU sensors, which
happens every 1ms. This periodic event is triggered by the IMU itself which sends an interrupt to
the CPU. In our SIL setup, we use a python script to iteratively: (i) simulate the physics for 1ms,
(ii) feed the synthetic sensor data to the hardware emulator, (iii) trigger the sensor interrupt, and
(iv) run the emulator. We empirically observed that the virtual time in the emulator is dilated.
More specifically, the 1ms software tick of the real-time operating system does not always increase
when the emulator is issued to run for one millisecond. For this reason, at each iteration our
script checks whether the software tick has increased or not and run the emulator until the tick
increases. This check suffices to keep the simulated physic time and the real-time operating system
time synchronised, at least to the resolution at which the sensors are sampled. Differences from
execution on the real platform can still happen in other tasks that are timed on something else
than the real-time operating system tick.

To summarise, our SIL setup for the Crazyflie is based on the following assumptions and
abstractions: (i) the physical model is representative of the physical process and of the sensors,
(ii) the emulator of the CPU is accurate, (iii) the synchronisation between the physical model and
the emulator is representative of the actual interaction, and (iv) the hardware of the Flow deck is
not emulated.

In our HIL setup, to enable low-level access to the hardware, we used the debugger link ST-
LINK/V2 [15], also depicted in Figure 6. We used OpenOCD [14] to interface with the debugger,
and communicate with the CPU. OpenOCD exposes a Telnet port through which it is possible to
read and write to specific memory addresses, or insert breakpoints. We introduced the following
changes in the software to interface with the physics simulator: (i) in the Flow deck driver, the
low-level interaction with the camera for optical flow is disabled, (ii) in the Z-ranger driver, the
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Figure 7: Nominal flight tests in the MIL, SIL, HIL, and PIL setups. For each axis x,
y and z, the solid coloured lines show the drone’s true position (when available). The
black lines show the step references. The dashed lines show the estimated position.
For the 30 repeated PIL flights, at each time point, the dashed lines show the average
over the 26 successful flights of the estimated state. Furthermore, the shades show
the area between the maximum and minimum value measured at each time step.

low-level interaction with the laser ranging sensor is disabled, (iii) in the motor actuation, no
output is written to the motors, (iv) the IMU sensor is never read, (v) the sensor thread is timed
on the real-time operating system ticks instead of the external IMU interrupt, (vi) in the Kalman
filter implementation, a check for division by zero has been added. (vii) debug variables are
added in the files mm flow.c and mm tof.c, (viii) two assert statements in uart syslink.c are
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skipped.3 These changes are introduced with the provided patch file and triggered by defining the
preprocessor macro HARDWARE IN THE LOOP.

To synchronise the hardware with the physics simulator, we issue a breakpoint when the IMU
sensor is read. When the breakpoint is hit, our python script performs the following operations:
(i) read the motor values, (ii) simulate 1ms in the physics, (iii) feed the sensor readings to the
CPU, and (iv) issue the CPU to resume execution.

To summarise, our HIL setup for the Crazyflie is based on the following assumptions and
abstractions: (i) the physical model is representative of the physical process and of the sensors,
(ii) the synchronisation between the physical model and the emulator is representative of the actual
interaction (in a different way compared to the SIL abstraction), (iii) the IMU interrupt is not
used, and (iv) the hardware of the IMU sensors and of the Flow deck is not executed in the same
way as in normal flight.

Finally, our PIL testing setup consists of running the Crazyflie with its nominal software. We
use the Micro SD card deck to log flight data [16]. When compiling the code, the changes needed
for the logging are triggered by defining the preprocessor macro PROCESS IN THE LOOP. Our MIL,
SIL, and HIL setups are deterministic, meaning that, when executed twice with the same inputs
they will generate the same output. Instead, the PIL setup is not deterministic, because of the
uncertainties related to the physical part of the system. For this reason we performed 30 test
flights in PIL with the nominal software to assess the repeatability of the PIL experiments.

Figure 7 shows plots of flight with the software as released by Bitcraze in our different setups.
The flight sequence consists of a take-off phase (from t = 0 to t = 2), followed by a setpoint step
change in the x direction, rx (2) = 0.2, followed at time t = 6 by a setpoint step change in both
the x and the y directions, rx (6) = 0.0 and ry (6) = 0.2. Those step responses expose the main
properties of a control algorithm thanks to their broad frequency spectrum [27]. Furthermore, a
recent paper on the automatic detection of software faults in CPSs showed that the majority (in
the case of said paper 80%) of control-related software faults appear in normal operation nor they
need specific environmental conditions (and therefore trajectories) [63]. Apparently, exhaustive
testing of the controller implementation requires more tests, and test case generation for CPSs is
an active research topic [70]. In this work, we focus on the differences among the testing setups,
rather than how to achieve exhaustive testing.

In the figure, the three top-left plots show the position of the quadcopter in the x, y, z co-
ordinates in the MIL setup.4 For each plot, the figure shows both the actual position from the
simulated physics (coloured solid lines) and the drone’s estimation (coloured dotted lines). The
plots also include the reference position r (dark solid lines). This test shows that the model of
the controller is able control the model of the process. Guarantees on the behaviour of the actual
control system are however subject to the validity of both process and controller models, and on
the implementation details [23]—i.e. the testing abstractions.

The top-right and bottom-left three plots in Figure 7 show the same test flight respectively

3The assert statements are related to the communication with the onboard microcontroller. In HIL they might
be triggered and halt the CPU because the breakpoint interferes with the communication.

4More comprehensive plots for all the nominal and faulty test scenarios can be found at: https://github.com/
dummy-testing-abstractions/cps-testing-abstractions
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in the SIL and HIL setups, using the same conventions. The bottom-right three plots show the
results of the repeated tests obtained with the physical process in the PIL setup. In PIL, there
is no physics model involved and ground truth is not available, so we only display the position
estimated by the quadcopter. Among the 30 PIL flights performed 4 failed without apparent
reason, resulting in immediate crash. One possible explanation, as the producers suggest on their
website, is that the IMU moving parts can get stuck at times. Using the successful 26 flights, we
plot the average over the different flights of the estimated position (dotted lines), and the range
between the maximum and minimum estimation. The PIL flights show consistent results, with the
exception of the first 2 seconds. At take off, the turbulence caused by the ground effect can make
the drone unpredictably oscillate. We also note that the z direction control is more accurate. This
is due to the higher performance of the laser sensor compared to the optical flow.

While the general behaviour is consistent across the setups, few differences arise. In the SIL,
HIL and PIL setups, the drone oscillates around the reference position in the x and y directions:
this is due to the optical flow quantisation caused by the camera pixels. Movements smaller than
the resolution of the camera are not detected. When the flow reading changes, the controller reacts
at once, and the drone oscillates. This quantisation is abstracted in the MIL setup, hence not seen.
In the MIL setup, the drone loses some elevation (z position) while performing the step in the x
direction. This is caused by the loss of vertical thrust when the drone tilts to move laterally. Our
tests show that the software implementation of the controller is robust to this disturbance. Finally,
the ground effect is not captured in the physics model hence observed only in the PIL setup. Such
phenomenon is chaotic and difficult to model hence often neglected in simulated setups.

We inject faults in the control software to expose the differences between the testing abstractions
and highlight the capacity of each of them to unmask errors in the controller implementation.
Unfortunately, it was not possible to mine the Bitcraze repository [7] for faults, as the developers
do not use consistent practices to mark issues and commits associated with the control software
faults, and frequently squash commits losing part of the version history. Furthermore, to the best
of the authors knowledge, there exists no database of faults in control software.

Therefore, for obtaining faults to inject in the software we used different methods: (i) We
selected two solved issues in the Bitcraze repository: the faults we used were suggested by Bitcraze
engineers, because they struggled to reproduce and identify them. (ii) We took faults types from
the close research field of faults in robotics systems: specifically, we considered [62, 67] to retrieve
common types of faults and used the descriptions and examples to develop faults to inject. The
scopes of the cited works are wider than ours as it relates to the whole robotic system and not
just the control system. Hence, we manually filtered fault types that do not relate to the control
system implementation—e.g. faults in communication protocols.

In [67], the authors use a practitioners survey to identify different categories of faults and
provide some example for each category. Said categories are (with an example from the original
work): (i) algorithms and logic (e.g. erroneous mathematical computations), (ii) resource leak
(e.g. not closing a no longer needed connection), (iii) skippable computation (e.g. executing the
same computation multiple times), (iv) configuration (e.g. erroneous initialisation of an address),
(v) threading (e.g. incorrect timing code), and (vi) communication (e.g. incorrect address in the
radio communication stack). Among said categories we excluded communication, as it apparently
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Table 2: List of injected faults and corresponding test results. The fault names
correspond to the patch files and flight plots in the repository [1]. For each fault,
we report the corresponding categories covered among the types of faults in robotics
faults highlighted in previous literature [62, 67]. For each fault and setup, we report
in the last three columns whether the test flight was impaired � or not �. We note
naming discrepancies between the two works: e.g. a missed deadline is considered a
threading fault in [67] and algorithmic in [62]. This does not affect our use of those
classifications as we independently want to cover the relevant classes proposed by the
two studies.

Fault Name Category from [67] Category from [62] SIL HIL PIL

voltageCompCast — batteries/low-level drivers � � �

initialPos configuration algorithm: configuration � � �

flowGyroData threading sensors: communication � � �

motorRatioDef — motors driver/low-level drivers � � �

simUpdate algorithms & logic algorithm: wrong estimation � � �

byteSwap — sensors: connectors/config. � � �

gyroAxesSwap — sensors: connectors/config. � � �

timingKalman threading algorithms: missed deadlines � � �

flowDeckdtTiming threading software: computer vision � � �

slowTick configuration platform: controller board � � �

does not relate to the implementation of the control system performance. We also exclude resource
leak, and skippable computation since they concern the embedded computing performance of the
system rather than the control loop. For example, a memory leak is likely not seen in the control
system performance, since it should not affect the functional properties of the software. Similarly,
a repeated computation is not harmful, as the control software is supposed to be executed in an
infinite loop. Such faults can become an issue when affecting the execution timing of the code,
timing faults are however included in the threading class.

In [62], the authors surveyed the participants to the RoboCup [17] competition about faults
encountered during the robot development. The practitioners were asked about faults concerning:
the robotic platform, the sensors, the control hardware (where “control” refers to the communi-
cation with a master device that monitors and provides commands), sensors, robot software (the
control software), and algorithms. Among those components we exclude the control hardware
since, as mentioned, “control” is used with a different meaning than in this work, and refers to
the user interface. For each of the remaining we report the main sources of faults mentioned by
developers: (i) platform: batteries, motor drivers, and controller board, (ii) sensors: connectors,
configuration, and communication, (iii) robot software: computer vision, inter-robot communica-
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tion, and low-level device drivers, (iv) algorithms: configuration, wrong estimation, and missed
deadlines. Among those fault types we exclude “inter-robot communication” since we consider a
single system.

We manually develop and inject faults on the base of the descriptions and examples of the
categories mentioned above. We cover all of the categories listed by the two surveys that relate to
control software. Table 2 reports the list of the developed faults: the second and third columns
map them to the different categories of [67, 62]. For each fault, we provide a patch file that
injects it in the software [1].5 After injecting a fault, we perform tests in the SIL, HIL and PIL
setups with the same flight sequence from Figure 7. The drone software used is the same in each
setup, ensuring consistent injection of the fault. By setting one compilation macro (respectively
SOFTWARE IN THE LOOP, HARDWARE IN THE LOOP, and PROCESS IN THE LOOP) the code is compiled
for the desired setup.

Table 2 reports the test results for each injected fault and each setup. We report whether
the fault affects flight performance (�) or not (�) in the corresponding setup by comparing to
the nominal behaviour observed in Figure 7. Complete flight data and pre-generated plots are
available at [1], respectively inside the flightdata and pdf subfolders for each setup.

9 Integration

With the above in place, we can already provide a first brief report on the interplay of all technolo-
gies. Design-space exploration will start by determining a system configuration that exhibits the
best possible survivability chances under the classes of faults and other reconfiguration causes we
anticipate. A such identified base configuration will then be further investigated to determine the
sequences of configurations through which the system needs to transition in case certain failures
manifest. Techniques like alternated re-execution, the simplex-complex split of control tasks and
the replicated execution of control tasks (in particular while leveraging the inherent stability of
plants to execute with a detection quorum only), ensure a sufficient inherent fault tolerance of
each configuration for long enough until the system can be adapted. Should a fault be detected
(e.g., though our AI-based evaluation of safety monitors), the runtime will select the correspond-
ing target configuration for this fault type and transitions to this configuration, using one of the
methods described in Section 7. The transition phase will thereby either be already anticipated
in a transition schedule or constrained such that the timeliness of the still active current or future
configuration can be guaranteed before respectively after the scheduled transition point.

We are currently preparing a publication, in which we will further detail this interplay.

5The repository contains information about the specific version of the software that we used, together with
detailed instructions on how to retrieve the correct version and inject the faults.
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10 Conclusions

In this deliverable, we have presented the recent advances made in Task T2.1 – T2.6 of WP2
and our findings in terms of adaptation methods and how to embed them into the ADMORPH
architecture. Although adaptation is governed by offline-computed strategies, possibly originating
from design-space exploration, the actual adaptation performed at runtime requires care to secure
fast response times of the individual CPSoS building blocks. In particular tasks with stringent
timing requirements may need to be equipped with internal resilience mechanisms to absorb faults
of an accidental and malicious nature. We have identified and already partially implemented
several strategies for adapting to different situations, for bounding reconfiguration times and, in
particular, for decoupling reconfiguration from the operational behavior of components, specifically
controllers. The latter secures low response times by already bringing the new configuration into
an operational state before responsibility is transferred.

Next steps include investigating how to more closely integrate internal adaptation and the
coordination language and how to secure the monitoring and adaptation layer from faults.
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