
133

Cooperative Autonomous Driving in Simulation

Gonçalo Costa, José Cecílio, António Casimiro
LASIGE, Departamento de Informática, Faculdade de Ciências da Universidade de
Lisboa; email: fc53352@alunos.ciencias.ulisboa.pt,{jmcecilio, casim}@ciencias.ulisboa.pt

Abstract

Autonomous driving is an area that has been growing
in recent years. However, cars are unprepared to coop-
erate with others nearby, wasting resources and compu-
tational power. Thus, cooperative autonomous driving
reveals its importance in the future. In this work-in-
progress paper, we define, implement and test an archi-
tecture for a simulation environment where cooperative
autonomous driving protocols can be tested. Addition-
ally, a Manoeuvre Negotiation Protocol is implemented.
This protocol will make an existing autonomous driv-
ing (AD) stack more resilient in real driving scenarios,
improving its robustness and safety.

Keywords: Autonomous Driving stack, Simulator, Ma-
noeuvre Negotiation Protocol, SVL, Apollo

1 Introduction
With the increase in the number of vehicles present on the
roads [1], it became necessary to research autonomous driv-
ing, not only to allow better traffic management on the road
and thus reduce travel time but also to reduce the number of
accidents and, consequently, the amount of money dispended
for health recovering [2].

According to the Society of Automotive Engineers (SAE),
there are five levels of automation [3]. At level 1, most com-
ponents are controlled by the human driver, and only some
essential functions are automated (computer controlled). In
contrast, at level 5, the vehicle is fully autonomous, with all
controls being automated, without any human driver inter-
vention or dependence [2, 4, 5]. Currently, the highest level
of automation used in commercialized vehicles is between
level 2 and level 2.5, in which vehicles are autonomous up
to a certain point, requiring human intervention in adverse or
extreme situations [4].

Vehicle to Everything (V2X) is a concept that is very com-
mon in the area of autonomous driving and refers to commu-
nication between vehicles (V2V) and communication with
infrastructures (V2I). The V2X system is crucial for iden-
tifying and analyzing obstacles and phenomena, which are
then communicated to other vehicles and infrastructures. This
way, drivers can learn information without observing it in
person, which improves driving safety [6]. Subir et al. [7]
reinforce using V2V and V2I communication, addressing the
topic of Cooperative Collision Avoidance. This article indi-
cates the advantages of using broadcast messages instead of
performing a specific routing.

However, over these years of evolution towards autonomous
driving, there has been a significant increase in the number
of sensors and cameras in vehicles, increasing the number
of cables and data buses crucial for passing and sharing data.
Furthermore, the code required for all these components to
work correctly is extensive and increasingly complex, which
can put reliability at risk. Finally, the increasing technology
in vehicles requires more computational power [4] since they
comprise a lot of sensors that generate a considerable amount
of data to be processed quickly.

This approach of putting as much technology as possible into
vehicles refers to scenarios where each vehicle reacts to the
surrounding environment. Despite being a viable approach for
the present, we must consider that in a future where all vehi-
cles are considered autonomous, there will be a considerable
waste of computation since all the vehicles will be performing
the same processing of the environment surrounding them [4].

The advantages of cooperative autonomous driving systems
have already been demonstrated and discussed in [7]. How-
ever, its implementation is not addressed. One of the main
difficulties is the costs associated with installing and testing
those systems in actual vehicles, in which the prices of cars
and infrastructure are too high [7, 8, 9, 10, 11]. Another diffi-
culty associated with the implementation is the high number
of hours that would have to be devoted to testing the algo-
rithms on the roads, with algorithms that require hundreds
of hours of testing in different conditions (e.g., atmospheric
conditions). This makes the process very complicated to carry
out [8, 9, 10].

Considering all difficulties, the one that makes the entire im-
plementation process very difficult refers to the safety condi-
tions of humans, in which many tests involve pedestrians and,
in general, all tests carried out on the road can compromise the
life of any pedestrian who is present in the vicinity [8, 10, 11].

According to the ISO/PAS 21448:2019 [12] standard, several
safety measures were created to guarantee safe conditions
while testing autonomous driving algorithms and protocols.
Thus, using simulators of real environments to test algorithms
and protocols became necessary since we can virtually test
any condition without creating dangerous situations. The
main advantage of simulators is the ability to change reality
for the different tests that the algorithms need to be trained
and evaluated [8, 10, 11]. The work in [10] used the CARLA
simulator to train a driving policy through Reinforcement
Learning to test it in the real world later. As such, they
recreated the route in the simulator and trained the system ac-
cording to the real-world scenario. The work done in [13] also

Ada User Jour na l Vo lume 44, Number 2, June 2023



134 Cooperat ive Autonomous Dr iv ing in Simula t ion

presents a protocol for vehicle coordination and implements it
using the V-REP simulator. The author then conducted some
tests on the protocol, namely implementing purposeful com-
munication failures, to verify the protocol’s robustness. All
these works indicate methods to test algorithms and protocols,
maintaining the security of people and infrastructures.

This work will explore the advantages of cooperative driving
systems, where vehicles can cooperate in the surrounding
environment. We will use a simulator to implement and
test a cooperative protocol for manoeuvre interception. The
protocol was designed to guarantee greater safety conditions
for each vehicle while reducing the construction complexity
and code necessary for correct operations [14]. This work
helps to remove the human factor in driving through vehicle
control and decision-making, improving vehicle efficiency
and safety. This work is also motivated by the need to test the
protocol in different scenarios to observe its behavior. Using
failure scenarios to analyze their impact on the protocol is
crucial. It is also essential to consider real-world factors such
as message losses, latency variations, and malicious behaviors
that can influence the autonomous driving system [4, 5, 7, 8,
10, 11].

This work uses a realistic simulator (SVL [15]) to demonstrate
immersively how the entire architecture works. It allows the
simulation of a driving scenario, considering other vehicles,
pedestrians, traffic signs, and traffic rules. Furthermore, each
vehicle corresponds to an instance of the Apollo autonomous
driving stack [16], along with the protocol proposed in [14]. A
network simulator is also integrated to recreate real conditions
for introducing failures.

2 Autonomous Driving Protocol
The Manoeuvre Negotiation Protocol used [14] is based on a
solution where vehicles have different priorities, depending
on the manoeuvre they intend to perform. However, to avoid
a scenario where vehicles wait indefinitely to manoeuvre,
a lower-priority vehicle can increase its priority and carry
out the manoeuvre it wants to perform. Suppose the time
to complete the manoeuvre is less than the time the higher-
priority vehicle takes to reach the intersection. In that case,
the vehicle can increase its priority and make the intersection.

The protocol was designed to handle specific conditions, like
Priority Violation. It is considered that there has been a
Priority Violation when a vehicle that has increased its priority
cannot complete the intersection, causing vehicles with higher
priorities to be unable to perform normal traffic behaviour.
To prevent this, the protocol predicts the time for the vehicle
to reach the intersection and pass the intersection. Suppose
the time interval of the passing vehicle intersects the time
interval of the vehicle present on the road of the intersection.
In that case, the protocol will not allow the vehicle to cross
the intersection.

Each vehicle (pi ) also has a membership that indicates to
other vehicles, with higher priority, that it intends to perform
a manoeuvre.

The protocol updates the membership every TM unit of time.
It is also responsible for calculating which vehicles have

higher priority than pi and which can reach the intersection
during the execution of the manoeuvre. This way, the protocol
is prepared for different types of intersections (ex, three-way
or four-way intersections). Timestamps are used to check the
correctness of the membership to guarantee security. Finally,
the value of Manoeuvre Opportunity (MO) is determined,
which only becomes True if all vehicles with the highest
priority are within the communication range. The vehicle is
in an admissible crossing opportunity if the membership is
empty and fresh.

This protocol is also responsible for describing vehicles’
states and messages when carrying out a manoeuvre and
scenarios where messages may not reach the intended des-
tination due to network failures. Before any vehicle wants
to carry out a manoeuvre, it must connect to the server and
store its information (e.g., location). Then, this information
is used to create the membership. When a vehicle intends to
perform a manoeuvre, it invokes the tryManoeuvre procedure,
which generates a request tag, including the timestamp when
the request was made, the requester ID, and the manoeuvre to
be performed.

Next, the vehicle checks its state, and if it is in the NORMAL
(no manoeuvre is being performed) or TRYGET state (agent
intends to execute a manoeuvre), it invokes the Membership
Algorithm (MA). If the vehicle can perform the grant request
after invoking the MA, it sends it and starts a timer named
tRETRY. Suppose the vehicle receives all responses with the
GRANT message (sent when the agent accepts the required
manoeuvre). In that case, the vehicle changes its state to
EXECUTE and executes the manoeuvre. Otherwise, it sends
a RELEASE message (sent when the vehicle intends to revoke
the GRANT) to the agents that granted him, changes its state
to TRYGET, and starts the tRETRY command for a new round,
avoiding a deadlock situation. If the vehicle does not receive
all the responses within the tRETRY time, the vehicle changes
its state to TRYGET and executes the tryManoeuvre procedure
again.

In a scenario where the vehicle is in the GRANT state (vehicle
gives in to another to perform a manoeuvre) but wants to
perform a manoeuvre, it switches to the GRANTGET state
(vehicle gives a GRANT message but intends to perform
a manoeuvre) and will invoke the tryManoeuvre procedure
when it receives a RELEASE message.

This protocol also covers scenarios where communication can
fail. If the RELEASE message does not reach the vehicles,
they check the vehicle’s last position to whom the GRANT
message was sent and inferred, using sensors, whether it is
outside the intersection or not. The protocol can also discard
messages sent in previous rounds to avoid interfering with the
current round.

3 Autonomous Driving Simulator
Regarding the simulator, it was decided to choose the SVL
simulator [15] because it is open source, largely customizable,
and has a realistic graphics engine that can be easily extended.
In addition, the SVL allows the creation of modules that can
be used to establish communication between vehicles, being

Volume 44, Number 2, June 2023 Ada User Jour na l



G. Costa , J. Cecí l io, A. Cas imi ro 135

MNP_A MNP_I
BROKER

Vehicle 1
PUB

SUB

PUB

SUB

PUB SUB

Membership Service

Apollo

SVL

MNP_A MNP_I

Vehicle 2

Apollo

MNP_A MNP_I

Vehicle 3

Apollo

Figure 1: Architecture of the simulator

crucial for the work. Regarding the simulator’s architecture,
SVL has a section responsible for loading the map, vehicles,
sensors, and environmental settings. The SVL is then respon-
sible for sending the results obtained by the sensors to the AD
Stack. After receiving inputs from the SVL, the Autonomous
Driving (AD) Stack is responsible for applying the protocol
and updating the vehicle status in the SVL. This update cor-
responds to the manoeuvre or strategic route changes by the
vehicle. There is also a Visual section that receives the output
of the SVL, corresponding to the vehicle circulating on the
road according to the actuators provided by the AD stack.

Regarding the AD stack, the Apollo stack is used since it is
easily incorporated with the SVL, which makes the implemen-
tation of the protocol much easier. Apollo runs inside a docker
container, making it possible to create multiple instances of
Apollo, each corresponding to an autonomous vehicle.

Figure 1 represents the system architecture implemented in
this work. It comprises modules corresponding to the Ma-
noeuvre Negotiation Protocol, the Apollo AD stack, and the
network simulator used to conduct communication tests be-
tween the different vehicles.

In our architecture, each vehicle comprises an Apollo AD
stack, a Manoeuvre Negotiation Protocol Agent (MNP_A)
and a Manoeuvre Negotiation Protocol Instance (MNP_I).
The MNP_A fetches data from the Apollo AD stack and
sends it to MNP_I. Then, MNP_I updates the membership,
applies the protocol, and returns the protocol commands to
the Apollo AD stack through the MNP_A. All the MNP_I
and the membership are connected to a broker. This broker
implements pub/sub mechanisms to support the integration of
multiple vehicles in a seamless way. All vehicles registered on
the broker can use the protocol since the messages exchanged
are broadcasted to a specific topic that everyone is subscribed
to. The protocol also defines specific message types to update
the membership. Access to these topics is restricted to the
Membership Service.

Lastly, all the vehicles are connected to the SVL simulator to
represent their status.

4 Implementation of the Simulator
Implementing the architecture defined in Figure 1, requires
docker since the Apollo AD stack runs inside a docker con-
tainer. In our implementation, there are two containers per
vehicle: one that supports and runs Apollo and another con-
tainer responsible for the protocol’s operation. In each Apollo
instance, the Planning and Control modules connect to the
MNP_A module to receive information about the vehicle,
such as speed, position, acceleration, and trajectories.

The connection between MNP_A and MNP_I is made by
sending UDP messages. Then, MNP_I uses MQTT topics
to communicate with the broker and other vehicles to create
safe manoeuvres. Each MQTT message includes specific
information concerning the intention of each vehicle. For
instance, if a vehicle intends to start a manoeuvre, it must
publish a message with the vehicle identification (vehicle ID),
a timestamp, a manoeuvre code, and the trajectory.

All instances are subscribed to the same topic. The vehicles
filter each message, and if it corresponds to a message sent
by itself, it is discarded. If the vehicle ID is different, the
message is processed by the MNP_I module, allowing it to
change the values of acceleration, velocity, and trajectory of
the vehicle. If necessary, it sends updated information to the
MNP_A module, which will update the information inside the
Apollo container by changing the information in the Control
module and completing the execution flow.

Finally, the communication between Apollo and SVL sim-
ulator is done through a network bridge. This bridge refers
to the local host if the entire simulation is performed on one
machine. Otherwise, the bridge refers to the IPv4 address
of the machines running the Apollo stack. In this way, SVL
supports multiple systems connected simultaneously.

Ada User Jour na l Vo lume 44, Number 2, June 2023



136 Cooperat ive Autonomous Dr iv ing in Simula t ion

The entire architecture can be implemented in a single ma-
chine. However, it requires a machine with a considerable
amount of graphics and processing power to process the sen-
sor results in the AD stack and to render the world in which
the cars are. In addition, in the implementation carried out in
this work, multiple autonomous vehicles will be used. They
will receive and process data, increasing the requirements for
a machine to process the simulation. Thus, it is important to
spread the processing across several machines when needed.

5 Conclusion
This work proposes an architecture to develop a simulator
for testing cooperative autonomous driving protocols. The
solution comprises integrating an autonomous driving stack
and the SVL simulator that represents the environment and
the physical conditions/status of the sensors presented in the
vehicles, as well as integrating a cooperative autonomous
driving protocol. In the prototype developed, two vehicles
were considered, and we concluded that the simulator requires
a machine with a considerable amount of graphics and pro-
cessing power, which may suggest spreading the processing
across several machines if more vehicles are considered. We
intend to test the functioning of the protocol by evaluating
possible collisions between vehicles when going through the
intersection. We also plan to insert hundreds of vehicles in
the same intersection to observe the protocol’s behavior and
latencies to reach a consensus regarding access to the intersec-
tion. We also intend to test the functioning of the architecture
by adding several vehicles to verify the performance of the
membership service and the latency in the generation of mem-
berships. In addition, we intend to compare the behavior of
vehicles in a simulation without using the architecture and
with the use of the architecture to verify the improvements
associated with the safety and organization of the vehicles.
Finally, tests that measure the consumption of machine re-
sources when the architecture is running are essential to verify
its efficiency.

Acknowledgments
This work was supported by the LASIGE Research Unit (ref.
UIDB/00408/2020 and ref. UIDP/00408/2020), and by the
European Union’s Horizon 2020 research and innovation
programme under grant agreement No 871259 (ADMORPH
project).

References
[1] J. Dargay and D. Gately, “Income’s effect on car and

vehicle ownership, worldwide: 1960–2015,” Transporta-
tion Research Part A: Policy and Practice, vol. 33, no. 2,
pp. 101–138, 1999.

[2] S. Mariani, G. Cabri, and F. Zambonelli, “Coordination
of autonomous vehicles: taxonomy and survey,” ACM
Computing Surveys (CSUR), vol. 54, no. 1, pp. 1–33,
2021.

[3] SAE, “Taxonomy and Definitions for Terms Related
to Cooperative Driving Automation for On-Road Mo-
tor Vehicles.” https://www.sae.org/standa
rds/content/j3216_202107, 2023. [Online;
accessed 16-May-2023].

[4] J. Wang, J. Liu, and N. Kato, “Networking and com-
munications in autonomous driving: A survey,” IEEE
Communications Surveys & Tutorials, vol. 21, no. 2,
pp. 1243–1274, 2018.

[5] I. Yaqoob, L. U. Khan, S. A. Kazmi, M. Imran,
N. Guizani, and C. S. Hong, “Autonomous driving cars
in smart cities: Recent advances, requirements, and
challenges,” IEEE Network, vol. 34, no. 1, pp. 174–181,
2019.

[6] A. Abacus, “Vehicle-to-everything (V2X) communica-
tion – the design engineer’s guide.” https://www.
avnet.com/wps/portal/abacus/solution
s/markets/automotive-and-transportat
ion/automotive/communications-and-c
onnectivity/v2x-communication/, 2023.
[Online; accessed 7-February-2023].

[7] S. Biswas, R. Tatchikou, and F. Dion, “Vehicle-to-
vehicle wireless communication protocols for enhancing
highway traffic safety,” IEEE communications magazine,
vol. 44, no. 1, pp. 74–82, 2006.

[8] J. Seymour, Q.-H. Luu, et al., “An empirical testing of
autonomous vehicle simulator system for urban driving,”
in 2021 IEEE International Conference on Artificial
Intelligence Testing (AITest), pp. 111–117, IEEE, 2021.

[9] D. Zhao, Y. Liu, C. Zhang, and Y. Li, “Autonomous driv-
ing simulation for unmanned vehicles,” in 2015 IEEE
Winter Conference on Applications of Computer Vision,
pp. 185–190, IEEE, 2015.

[10] B. Osinski, A. Jakubowski, P. Zięcina, P. Miłoś,
C. Galias, S. Homoceanu, and H. Michalewski,
“Simulation-based reinforcement learning for real-world
autonomous driving,” in 2020 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 6411–
6418, IEEE, 2020.

[11] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and
V. Koltun, “Carla: An open urban driving simulator,” in
Conference on robot learning, pp. 1–16, PMLR, 2017.

[12] ISO, “ISO/PAS 21448:2019(en) Road vehicles — Safety
of the intended functionality.” https://img.auto
-testing.net/testingimg/202003/19/07
1723321.pdf, 2023. [Online; accessed 7-February-
2023].

[13] J. P. V. Pinto et al., Design and implementation of a
protocol for safe cooperation of self-driving cars. PhD
thesis, 2019.

[14] A. Casimiro, E. Ekenstedt, and E. M. Schiller,
“Membership-based manoeuvre negotiation in au-
tonomous and safety-critical vehicular systems,” arXiv
preprint arXiv:1906.04703, 2019.

[15] SVL, “Introduction.” https://www.svlsimulat
or.com/docs/getting-started/introdu
ction/, 2022. [Online; accessed 9-December-2022].

[16] Apollo, “Apollo Platform.” https://developer.
apollo.auto/developer.html, 2022. [Online;
accessed 12-December-2022].

Volume 44, Number 2, June 2023 Ada User Jour na l


